824 lines
26 KiB
C
824 lines
26 KiB
C
/* bnx2x_init.h: Broadcom Everest network driver.
|
|
*
|
|
* Copyright (c) 2007-2009 Broadcom Corporation
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License as published by
|
|
* the Free Software Foundation.
|
|
*
|
|
* Maintained by: Eilon Greenstein <eilong@broadcom.com>
|
|
* Written by: Eliezer Tamir
|
|
*/
|
|
|
|
#ifndef BNX2X_INIT_H
|
|
#define BNX2X_INIT_H
|
|
|
|
#define COMMON 0x1
|
|
#define PORT0 0x2
|
|
#define PORT1 0x4
|
|
|
|
#define INIT_EMULATION 0x1
|
|
#define INIT_FPGA 0x2
|
|
#define INIT_ASIC 0x4
|
|
#define INIT_HARDWARE 0x7
|
|
|
|
#define TSTORM_INTMEM_ADDR TSEM_REG_FAST_MEMORY
|
|
#define CSTORM_INTMEM_ADDR CSEM_REG_FAST_MEMORY
|
|
#define XSTORM_INTMEM_ADDR XSEM_REG_FAST_MEMORY
|
|
#define USTORM_INTMEM_ADDR USEM_REG_FAST_MEMORY
|
|
/* RAM0 size in bytes */
|
|
#define STORM_INTMEM_SIZE_E1 0x5800
|
|
#define STORM_INTMEM_SIZE_E1H 0x10000
|
|
#define STORM_INTMEM_SIZE(bp) ((CHIP_IS_E1H(bp) ? STORM_INTMEM_SIZE_E1H : \
|
|
STORM_INTMEM_SIZE_E1) / 4)
|
|
|
|
|
|
/* Init operation types and structures */
|
|
/* Common for both E1 and E1H */
|
|
#define OP_RD 0x1 /* read single register */
|
|
#define OP_WR 0x2 /* write single register */
|
|
#define OP_IW 0x3 /* write single register using mailbox */
|
|
#define OP_SW 0x4 /* copy a string to the device */
|
|
#define OP_SI 0x5 /* copy a string using mailbox */
|
|
#define OP_ZR 0x6 /* clear memory */
|
|
#define OP_ZP 0x7 /* unzip then copy with DMAE */
|
|
#define OP_WR_64 0x8 /* write 64 bit pattern */
|
|
#define OP_WB 0x9 /* copy a string using DMAE */
|
|
|
|
/* Operation specific for E1 */
|
|
#define OP_RD_E1 0xa /* read single register */
|
|
#define OP_WR_E1 0xb /* write single register */
|
|
#define OP_IW_E1 0xc /* write single register using mailbox */
|
|
#define OP_SW_E1 0xd /* copy a string to the device */
|
|
#define OP_SI_E1 0xe /* copy a string using mailbox */
|
|
#define OP_ZR_E1 0xf /* clear memory */
|
|
#define OP_ZP_E1 0x10 /* unzip then copy with DMAE */
|
|
#define OP_WR_64_E1 0x11 /* write 64 bit pattern on E1 */
|
|
#define OP_WB_E1 0x12 /* copy a string using DMAE */
|
|
|
|
/* Operation specific for E1H */
|
|
#define OP_RD_E1H 0x13 /* read single register */
|
|
#define OP_WR_E1H 0x14 /* write single register */
|
|
#define OP_IW_E1H 0x15 /* write single register using mailbox */
|
|
#define OP_SW_E1H 0x16 /* copy a string to the device */
|
|
#define OP_SI_E1H 0x17 /* copy a string using mailbox */
|
|
#define OP_ZR_E1H 0x18 /* clear memory */
|
|
#define OP_ZP_E1H 0x19 /* unzip then copy with DMAE */
|
|
#define OP_WR_64_E1H 0x1a /* write 64 bit pattern on E1H */
|
|
#define OP_WB_E1H 0x1b /* copy a string using DMAE */
|
|
|
|
/* FPGA and EMUL specific operations */
|
|
#define OP_WR_EMUL_E1H 0x1c /* write single register on E1H Emul */
|
|
#define OP_WR_EMUL 0x1d /* write single register on Emulation */
|
|
#define OP_WR_FPGA 0x1e /* write single register on FPGA */
|
|
#define OP_WR_ASIC 0x1f /* write single register on ASIC */
|
|
|
|
|
|
struct raw_op {
|
|
u32 op:8;
|
|
u32 offset:24;
|
|
u32 raw_data;
|
|
};
|
|
|
|
struct op_read {
|
|
u32 op:8;
|
|
u32 offset:24;
|
|
u32 pad;
|
|
};
|
|
|
|
struct op_write {
|
|
u32 op:8;
|
|
u32 offset:24;
|
|
u32 val;
|
|
};
|
|
|
|
struct op_string_write {
|
|
u32 op:8;
|
|
u32 offset:24;
|
|
#ifdef __LITTLE_ENDIAN
|
|
u16 data_off;
|
|
u16 data_len;
|
|
#else /* __BIG_ENDIAN */
|
|
u16 data_len;
|
|
u16 data_off;
|
|
#endif
|
|
};
|
|
|
|
struct op_zero {
|
|
u32 op:8;
|
|
u32 offset:24;
|
|
u32 len;
|
|
};
|
|
|
|
union init_op {
|
|
struct op_read read;
|
|
struct op_write write;
|
|
struct op_string_write str_wr;
|
|
struct op_zero zero;
|
|
struct raw_op raw;
|
|
};
|
|
|
|
#include "bnx2x_init_values.h"
|
|
|
|
static void bnx2x_reg_wr_ind(struct bnx2x *bp, u32 addr, u32 val);
|
|
static int bnx2x_gunzip(struct bnx2x *bp, u8 *zbuf, int len);
|
|
|
|
static void bnx2x_init_str_wr(struct bnx2x *bp, u32 addr, const u32 *data,
|
|
u32 len)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < len; i++) {
|
|
REG_WR(bp, addr + i*4, data[i]);
|
|
if (!(i % 10000)) {
|
|
touch_softlockup_watchdog();
|
|
cpu_relax();
|
|
}
|
|
}
|
|
}
|
|
|
|
static void bnx2x_init_ind_wr(struct bnx2x *bp, u32 addr, const u32 *data,
|
|
u16 len)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < len; i++) {
|
|
REG_WR_IND(bp, addr + i*4, data[i]);
|
|
if (!(i % 10000)) {
|
|
touch_softlockup_watchdog();
|
|
cpu_relax();
|
|
}
|
|
}
|
|
}
|
|
|
|
static void bnx2x_write_big_buf(struct bnx2x *bp, u32 addr, u32 len)
|
|
{
|
|
int offset = 0;
|
|
|
|
if (bp->dmae_ready) {
|
|
while (len > DMAE_LEN32_WR_MAX) {
|
|
bnx2x_write_dmae(bp, bp->gunzip_mapping + offset,
|
|
addr + offset, DMAE_LEN32_WR_MAX);
|
|
offset += DMAE_LEN32_WR_MAX * 4;
|
|
len -= DMAE_LEN32_WR_MAX;
|
|
}
|
|
bnx2x_write_dmae(bp, bp->gunzip_mapping + offset,
|
|
addr + offset, len);
|
|
} else
|
|
bnx2x_init_str_wr(bp, addr, bp->gunzip_buf, len);
|
|
}
|
|
|
|
static void bnx2x_init_fill(struct bnx2x *bp, u32 addr, int fill, u32 len)
|
|
{
|
|
u32 buf_len = (((len * 4) > FW_BUF_SIZE) ? FW_BUF_SIZE : (len * 4));
|
|
u32 buf_len32 = buf_len / 4;
|
|
int i;
|
|
|
|
memset(bp->gunzip_buf, fill, buf_len);
|
|
|
|
for (i = 0; i < len; i += buf_len32) {
|
|
u32 cur_len = min(buf_len32, len - i);
|
|
|
|
bnx2x_write_big_buf(bp, addr + i * 4, cur_len);
|
|
}
|
|
}
|
|
|
|
static void bnx2x_init_wr_64(struct bnx2x *bp, u32 addr, const u32 *data,
|
|
u32 len64)
|
|
{
|
|
u32 buf_len32 = FW_BUF_SIZE / 4;
|
|
u32 len = len64 * 2;
|
|
u64 data64 = 0;
|
|
int i;
|
|
|
|
/* 64 bit value is in a blob: first low DWORD, then high DWORD */
|
|
data64 = HILO_U64((*(data + 1)), (*data));
|
|
len64 = min((u32)(FW_BUF_SIZE/8), len64);
|
|
for (i = 0; i < len64; i++) {
|
|
u64 *pdata = ((u64 *)(bp->gunzip_buf)) + i;
|
|
|
|
*pdata = data64;
|
|
}
|
|
|
|
for (i = 0; i < len; i += buf_len32) {
|
|
u32 cur_len = min(buf_len32, len - i);
|
|
|
|
bnx2x_write_big_buf(bp, addr + i * 4, cur_len);
|
|
}
|
|
}
|
|
|
|
/*********************************************************
|
|
There are different blobs for each PRAM section.
|
|
In addition, each blob write operation is divided into a few operations
|
|
in order to decrease the amount of phys. contiguous buffer needed.
|
|
Thus, when we select a blob the address may be with some offset
|
|
from the beginning of PRAM section.
|
|
The same holds for the INT_TABLE sections.
|
|
**********************************************************/
|
|
#define IF_IS_INT_TABLE_ADDR(base, addr) \
|
|
if (((base) <= (addr)) && ((base) + 0x400 >= (addr)))
|
|
|
|
#define IF_IS_PRAM_ADDR(base, addr) \
|
|
if (((base) <= (addr)) && ((base) + 0x40000 >= (addr)))
|
|
|
|
static const u32 *bnx2x_sel_blob(u32 addr, const u32 *data, int is_e1)
|
|
{
|
|
IF_IS_INT_TABLE_ADDR(TSEM_REG_INT_TABLE, addr)
|
|
data = is_e1 ? tsem_int_table_data_e1 :
|
|
tsem_int_table_data_e1h;
|
|
else
|
|
IF_IS_INT_TABLE_ADDR(CSEM_REG_INT_TABLE, addr)
|
|
data = is_e1 ? csem_int_table_data_e1 :
|
|
csem_int_table_data_e1h;
|
|
else
|
|
IF_IS_INT_TABLE_ADDR(USEM_REG_INT_TABLE, addr)
|
|
data = is_e1 ? usem_int_table_data_e1 :
|
|
usem_int_table_data_e1h;
|
|
else
|
|
IF_IS_INT_TABLE_ADDR(XSEM_REG_INT_TABLE, addr)
|
|
data = is_e1 ? xsem_int_table_data_e1 :
|
|
xsem_int_table_data_e1h;
|
|
else
|
|
IF_IS_PRAM_ADDR(TSEM_REG_PRAM, addr)
|
|
data = is_e1 ? tsem_pram_data_e1 : tsem_pram_data_e1h;
|
|
else
|
|
IF_IS_PRAM_ADDR(CSEM_REG_PRAM, addr)
|
|
data = is_e1 ? csem_pram_data_e1 : csem_pram_data_e1h;
|
|
else
|
|
IF_IS_PRAM_ADDR(USEM_REG_PRAM, addr)
|
|
data = is_e1 ? usem_pram_data_e1 : usem_pram_data_e1h;
|
|
else
|
|
IF_IS_PRAM_ADDR(XSEM_REG_PRAM, addr)
|
|
data = is_e1 ? xsem_pram_data_e1 : xsem_pram_data_e1h;
|
|
|
|
return data;
|
|
}
|
|
|
|
static void bnx2x_init_wr_wb(struct bnx2x *bp, u32 addr, const u32 *data,
|
|
u32 len, int gunzip, int is_e1, u32 blob_off)
|
|
{
|
|
int offset = 0;
|
|
|
|
data = bnx2x_sel_blob(addr, data, is_e1) + blob_off;
|
|
|
|
if (gunzip) {
|
|
int rc;
|
|
#ifdef __BIG_ENDIAN
|
|
int i, size;
|
|
u32 *temp;
|
|
|
|
temp = kmalloc(len, GFP_KERNEL);
|
|
size = (len / 4) + ((len % 4) ? 1 : 0);
|
|
for (i = 0; i < size; i++)
|
|
temp[i] = swab32(data[i]);
|
|
data = temp;
|
|
#endif
|
|
rc = bnx2x_gunzip(bp, (u8 *)data, len);
|
|
if (rc) {
|
|
BNX2X_ERR("gunzip failed ! rc %d\n", rc);
|
|
#ifdef __BIG_ENDIAN
|
|
kfree(temp);
|
|
#endif
|
|
return;
|
|
}
|
|
len = bp->gunzip_outlen;
|
|
#ifdef __BIG_ENDIAN
|
|
kfree(temp);
|
|
for (i = 0; i < len; i++)
|
|
((u32 *)bp->gunzip_buf)[i] =
|
|
swab32(((u32 *)bp->gunzip_buf)[i]);
|
|
#endif
|
|
} else {
|
|
if ((len * 4) > FW_BUF_SIZE) {
|
|
BNX2X_ERR("LARGE DMAE OPERATION ! "
|
|
"addr 0x%x len 0x%x\n", addr, len*4);
|
|
return;
|
|
}
|
|
memcpy(bp->gunzip_buf, data, len * 4);
|
|
}
|
|
|
|
if (bp->dmae_ready) {
|
|
while (len > DMAE_LEN32_WR_MAX) {
|
|
bnx2x_write_dmae(bp, bp->gunzip_mapping + offset,
|
|
addr + offset, DMAE_LEN32_WR_MAX);
|
|
offset += DMAE_LEN32_WR_MAX * 4;
|
|
len -= DMAE_LEN32_WR_MAX;
|
|
}
|
|
bnx2x_write_dmae(bp, bp->gunzip_mapping + offset,
|
|
addr + offset, len);
|
|
} else
|
|
bnx2x_init_ind_wr(bp, addr, bp->gunzip_buf, len);
|
|
}
|
|
|
|
static void bnx2x_init_block(struct bnx2x *bp, u32 op_start, u32 op_end)
|
|
{
|
|
int is_e1 = CHIP_IS_E1(bp);
|
|
int is_e1h = CHIP_IS_E1H(bp);
|
|
int is_emul_e1h = (CHIP_REV_IS_EMUL(bp) && is_e1h);
|
|
int hw_wr, i;
|
|
union init_op *op;
|
|
u32 op_type, addr, len;
|
|
const u32 *data, *data_base;
|
|
|
|
if (CHIP_REV_IS_FPGA(bp))
|
|
hw_wr = OP_WR_FPGA;
|
|
else if (CHIP_REV_IS_EMUL(bp))
|
|
hw_wr = OP_WR_EMUL;
|
|
else
|
|
hw_wr = OP_WR_ASIC;
|
|
|
|
if (is_e1)
|
|
data_base = init_data_e1;
|
|
else /* CHIP_IS_E1H(bp) */
|
|
data_base = init_data_e1h;
|
|
|
|
for (i = op_start; i < op_end; i++) {
|
|
|
|
op = (union init_op *)&(init_ops[i]);
|
|
|
|
op_type = op->str_wr.op;
|
|
addr = op->str_wr.offset;
|
|
len = op->str_wr.data_len;
|
|
data = data_base + op->str_wr.data_off;
|
|
|
|
/* careful! it must be in order */
|
|
if (unlikely(op_type > OP_WB)) {
|
|
|
|
/* If E1 only */
|
|
if (op_type <= OP_WB_E1) {
|
|
if (is_e1)
|
|
op_type -= (OP_RD_E1 - OP_RD);
|
|
|
|
/* If E1H only */
|
|
} else if (op_type <= OP_WB_E1H) {
|
|
if (is_e1h)
|
|
op_type -= (OP_RD_E1H - OP_RD);
|
|
}
|
|
|
|
/* HW/EMUL specific */
|
|
if (op_type == hw_wr)
|
|
op_type = OP_WR;
|
|
|
|
/* EMUL on E1H is special */
|
|
if ((op_type == OP_WR_EMUL_E1H) && is_emul_e1h)
|
|
op_type = OP_WR;
|
|
}
|
|
|
|
switch (op_type) {
|
|
case OP_RD:
|
|
REG_RD(bp, addr);
|
|
break;
|
|
case OP_WR:
|
|
REG_WR(bp, addr, op->write.val);
|
|
break;
|
|
case OP_SW:
|
|
bnx2x_init_str_wr(bp, addr, data, len);
|
|
break;
|
|
case OP_WB:
|
|
bnx2x_init_wr_wb(bp, addr, data, len, 0, is_e1, 0);
|
|
break;
|
|
case OP_SI:
|
|
bnx2x_init_ind_wr(bp, addr, data, len);
|
|
break;
|
|
case OP_ZR:
|
|
bnx2x_init_fill(bp, addr, 0, op->zero.len);
|
|
break;
|
|
case OP_ZP:
|
|
bnx2x_init_wr_wb(bp, addr, data, len, 1, is_e1,
|
|
op->str_wr.data_off);
|
|
break;
|
|
case OP_WR_64:
|
|
bnx2x_init_wr_64(bp, addr, data, len);
|
|
break;
|
|
default:
|
|
/* happens whenever an op is of a diff HW */
|
|
#if 0
|
|
DP(NETIF_MSG_HW, "skipping init operation "
|
|
"index %d[%d:%d]: type %d addr 0x%x "
|
|
"len %d(0x%x)\n",
|
|
i, op_start, op_end, op_type, addr, len, len);
|
|
#endif
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
/****************************************************************************
|
|
* PXP
|
|
****************************************************************************/
|
|
/*
|
|
* This code configures the PCI read/write arbiter
|
|
* which implements a weighted round robin
|
|
* between the virtual queues in the chip.
|
|
*
|
|
* The values were derived for each PCI max payload and max request size.
|
|
* since max payload and max request size are only known at run time,
|
|
* this is done as a separate init stage.
|
|
*/
|
|
|
|
#define NUM_WR_Q 13
|
|
#define NUM_RD_Q 29
|
|
#define MAX_RD_ORD 3
|
|
#define MAX_WR_ORD 2
|
|
|
|
/* configuration for one arbiter queue */
|
|
struct arb_line {
|
|
int l;
|
|
int add;
|
|
int ubound;
|
|
};
|
|
|
|
/* derived configuration for each read queue for each max request size */
|
|
static const struct arb_line read_arb_data[NUM_RD_Q][MAX_RD_ORD + 1] = {
|
|
/* 1 */ { {8, 64, 25}, {16, 64, 25}, {32, 64, 25}, {64, 64, 41} },
|
|
{ {4, 8, 4}, {4, 8, 4}, {4, 8, 4}, {4, 8, 4} },
|
|
{ {4, 3, 3}, {4, 3, 3}, {4, 3, 3}, {4, 3, 3} },
|
|
{ {8, 3, 6}, {16, 3, 11}, {16, 3, 11}, {16, 3, 11} },
|
|
{ {8, 64, 25}, {16, 64, 25}, {32, 64, 25}, {64, 64, 41} },
|
|
{ {8, 3, 6}, {16, 3, 11}, {32, 3, 21}, {64, 3, 41} },
|
|
{ {8, 3, 6}, {16, 3, 11}, {32, 3, 21}, {64, 3, 41} },
|
|
{ {8, 3, 6}, {16, 3, 11}, {32, 3, 21}, {64, 3, 41} },
|
|
{ {8, 3, 6}, {16, 3, 11}, {32, 3, 21}, {64, 3, 41} },
|
|
/* 10 */{ {8, 3, 6}, {16, 3, 11}, {32, 3, 21}, {32, 3, 21} },
|
|
{ {8, 3, 6}, {16, 3, 11}, {32, 3, 21}, {32, 3, 21} },
|
|
{ {8, 3, 6}, {16, 3, 11}, {32, 3, 21}, {32, 3, 21} },
|
|
{ {8, 3, 6}, {16, 3, 11}, {32, 3, 21}, {32, 3, 21} },
|
|
{ {8, 3, 6}, {16, 3, 11}, {32, 3, 21}, {32, 3, 21} },
|
|
{ {8, 3, 6}, {16, 3, 11}, {32, 3, 21}, {32, 3, 21} },
|
|
{ {8, 3, 6}, {16, 3, 11}, {32, 3, 21}, {32, 3, 21} },
|
|
{ {8, 3, 6}, {16, 3, 11}, {32, 3, 21}, {32, 3, 21} },
|
|
{ {8, 3, 6}, {16, 3, 11}, {32, 3, 21}, {32, 3, 21} },
|
|
{ {8, 3, 6}, {16, 3, 11}, {32, 3, 21}, {32, 3, 21} },
|
|
/* 20 */{ {8, 3, 6}, {16, 3, 11}, {32, 3, 21}, {32, 3, 21} },
|
|
{ {8, 3, 6}, {16, 3, 11}, {32, 3, 21}, {32, 3, 21} },
|
|
{ {8, 3, 6}, {16, 3, 11}, {32, 3, 21}, {32, 3, 21} },
|
|
{ {8, 3, 6}, {16, 3, 11}, {32, 3, 21}, {32, 3, 21} },
|
|
{ {8, 3, 6}, {16, 3, 11}, {32, 3, 21}, {32, 3, 21} },
|
|
{ {8, 3, 6}, {16, 3, 11}, {32, 3, 21}, {32, 3, 21} },
|
|
{ {8, 3, 6}, {16, 3, 11}, {32, 3, 21}, {32, 3, 21} },
|
|
{ {8, 3, 6}, {16, 3, 11}, {32, 3, 21}, {32, 3, 21} },
|
|
{ {8, 3, 6}, {16, 3, 11}, {32, 3, 21}, {32, 3, 21} },
|
|
{ {8, 64, 25}, {16, 64, 41}, {32, 64, 81}, {64, 64, 120} }
|
|
};
|
|
|
|
/* derived configuration for each write queue for each max request size */
|
|
static const struct arb_line write_arb_data[NUM_WR_Q][MAX_WR_ORD + 1] = {
|
|
/* 1 */ { {4, 6, 3}, {4, 6, 3}, {4, 6, 3} },
|
|
{ {4, 2, 3}, {4, 2, 3}, {4, 2, 3} },
|
|
{ {8, 2, 6}, {16, 2, 11}, {16, 2, 11} },
|
|
{ {8, 2, 6}, {16, 2, 11}, {32, 2, 21} },
|
|
{ {8, 2, 6}, {16, 2, 11}, {32, 2, 21} },
|
|
{ {8, 2, 6}, {16, 2, 11}, {32, 2, 21} },
|
|
{ {8, 64, 25}, {16, 64, 25}, {32, 64, 25} },
|
|
{ {8, 2, 6}, {16, 2, 11}, {16, 2, 11} },
|
|
{ {8, 2, 6}, {16, 2, 11}, {16, 2, 11} },
|
|
/* 10 */{ {8, 9, 6}, {16, 9, 11}, {32, 9, 21} },
|
|
{ {8, 47, 19}, {16, 47, 19}, {32, 47, 21} },
|
|
{ {8, 9, 6}, {16, 9, 11}, {16, 9, 11} },
|
|
{ {8, 64, 25}, {16, 64, 41}, {32, 64, 81} }
|
|
};
|
|
|
|
/* register addresses for read queues */
|
|
static const struct arb_line read_arb_addr[NUM_RD_Q-1] = {
|
|
/* 1 */ {PXP2_REG_RQ_BW_RD_L0, PXP2_REG_RQ_BW_RD_ADD0,
|
|
PXP2_REG_RQ_BW_RD_UBOUND0},
|
|
{PXP2_REG_PSWRQ_BW_L1, PXP2_REG_PSWRQ_BW_ADD1,
|
|
PXP2_REG_PSWRQ_BW_UB1},
|
|
{PXP2_REG_PSWRQ_BW_L2, PXP2_REG_PSWRQ_BW_ADD2,
|
|
PXP2_REG_PSWRQ_BW_UB2},
|
|
{PXP2_REG_PSWRQ_BW_L3, PXP2_REG_PSWRQ_BW_ADD3,
|
|
PXP2_REG_PSWRQ_BW_UB3},
|
|
{PXP2_REG_RQ_BW_RD_L4, PXP2_REG_RQ_BW_RD_ADD4,
|
|
PXP2_REG_RQ_BW_RD_UBOUND4},
|
|
{PXP2_REG_RQ_BW_RD_L5, PXP2_REG_RQ_BW_RD_ADD5,
|
|
PXP2_REG_RQ_BW_RD_UBOUND5},
|
|
{PXP2_REG_PSWRQ_BW_L6, PXP2_REG_PSWRQ_BW_ADD6,
|
|
PXP2_REG_PSWRQ_BW_UB6},
|
|
{PXP2_REG_PSWRQ_BW_L7, PXP2_REG_PSWRQ_BW_ADD7,
|
|
PXP2_REG_PSWRQ_BW_UB7},
|
|
{PXP2_REG_PSWRQ_BW_L8, PXP2_REG_PSWRQ_BW_ADD8,
|
|
PXP2_REG_PSWRQ_BW_UB8},
|
|
/* 10 */{PXP2_REG_PSWRQ_BW_L9, PXP2_REG_PSWRQ_BW_ADD9,
|
|
PXP2_REG_PSWRQ_BW_UB9},
|
|
{PXP2_REG_PSWRQ_BW_L10, PXP2_REG_PSWRQ_BW_ADD10,
|
|
PXP2_REG_PSWRQ_BW_UB10},
|
|
{PXP2_REG_PSWRQ_BW_L11, PXP2_REG_PSWRQ_BW_ADD11,
|
|
PXP2_REG_PSWRQ_BW_UB11},
|
|
{PXP2_REG_RQ_BW_RD_L12, PXP2_REG_RQ_BW_RD_ADD12,
|
|
PXP2_REG_RQ_BW_RD_UBOUND12},
|
|
{PXP2_REG_RQ_BW_RD_L13, PXP2_REG_RQ_BW_RD_ADD13,
|
|
PXP2_REG_RQ_BW_RD_UBOUND13},
|
|
{PXP2_REG_RQ_BW_RD_L14, PXP2_REG_RQ_BW_RD_ADD14,
|
|
PXP2_REG_RQ_BW_RD_UBOUND14},
|
|
{PXP2_REG_RQ_BW_RD_L15, PXP2_REG_RQ_BW_RD_ADD15,
|
|
PXP2_REG_RQ_BW_RD_UBOUND15},
|
|
{PXP2_REG_RQ_BW_RD_L16, PXP2_REG_RQ_BW_RD_ADD16,
|
|
PXP2_REG_RQ_BW_RD_UBOUND16},
|
|
{PXP2_REG_RQ_BW_RD_L17, PXP2_REG_RQ_BW_RD_ADD17,
|
|
PXP2_REG_RQ_BW_RD_UBOUND17},
|
|
{PXP2_REG_RQ_BW_RD_L18, PXP2_REG_RQ_BW_RD_ADD18,
|
|
PXP2_REG_RQ_BW_RD_UBOUND18},
|
|
/* 20 */{PXP2_REG_RQ_BW_RD_L19, PXP2_REG_RQ_BW_RD_ADD19,
|
|
PXP2_REG_RQ_BW_RD_UBOUND19},
|
|
{PXP2_REG_RQ_BW_RD_L20, PXP2_REG_RQ_BW_RD_ADD20,
|
|
PXP2_REG_RQ_BW_RD_UBOUND20},
|
|
{PXP2_REG_RQ_BW_RD_L22, PXP2_REG_RQ_BW_RD_ADD22,
|
|
PXP2_REG_RQ_BW_RD_UBOUND22},
|
|
{PXP2_REG_RQ_BW_RD_L23, PXP2_REG_RQ_BW_RD_ADD23,
|
|
PXP2_REG_RQ_BW_RD_UBOUND23},
|
|
{PXP2_REG_RQ_BW_RD_L24, PXP2_REG_RQ_BW_RD_ADD24,
|
|
PXP2_REG_RQ_BW_RD_UBOUND24},
|
|
{PXP2_REG_RQ_BW_RD_L25, PXP2_REG_RQ_BW_RD_ADD25,
|
|
PXP2_REG_RQ_BW_RD_UBOUND25},
|
|
{PXP2_REG_RQ_BW_RD_L26, PXP2_REG_RQ_BW_RD_ADD26,
|
|
PXP2_REG_RQ_BW_RD_UBOUND26},
|
|
{PXP2_REG_RQ_BW_RD_L27, PXP2_REG_RQ_BW_RD_ADD27,
|
|
PXP2_REG_RQ_BW_RD_UBOUND27},
|
|
{PXP2_REG_PSWRQ_BW_L28, PXP2_REG_PSWRQ_BW_ADD28,
|
|
PXP2_REG_PSWRQ_BW_UB28}
|
|
};
|
|
|
|
/* register addresses for write queues */
|
|
static const struct arb_line write_arb_addr[NUM_WR_Q-1] = {
|
|
/* 1 */ {PXP2_REG_PSWRQ_BW_L1, PXP2_REG_PSWRQ_BW_ADD1,
|
|
PXP2_REG_PSWRQ_BW_UB1},
|
|
{PXP2_REG_PSWRQ_BW_L2, PXP2_REG_PSWRQ_BW_ADD2,
|
|
PXP2_REG_PSWRQ_BW_UB2},
|
|
{PXP2_REG_PSWRQ_BW_L3, PXP2_REG_PSWRQ_BW_ADD3,
|
|
PXP2_REG_PSWRQ_BW_UB3},
|
|
{PXP2_REG_PSWRQ_BW_L6, PXP2_REG_PSWRQ_BW_ADD6,
|
|
PXP2_REG_PSWRQ_BW_UB6},
|
|
{PXP2_REG_PSWRQ_BW_L7, PXP2_REG_PSWRQ_BW_ADD7,
|
|
PXP2_REG_PSWRQ_BW_UB7},
|
|
{PXP2_REG_PSWRQ_BW_L8, PXP2_REG_PSWRQ_BW_ADD8,
|
|
PXP2_REG_PSWRQ_BW_UB8},
|
|
{PXP2_REG_PSWRQ_BW_L9, PXP2_REG_PSWRQ_BW_ADD9,
|
|
PXP2_REG_PSWRQ_BW_UB9},
|
|
{PXP2_REG_PSWRQ_BW_L10, PXP2_REG_PSWRQ_BW_ADD10,
|
|
PXP2_REG_PSWRQ_BW_UB10},
|
|
{PXP2_REG_PSWRQ_BW_L11, PXP2_REG_PSWRQ_BW_ADD11,
|
|
PXP2_REG_PSWRQ_BW_UB11},
|
|
/* 10 */{PXP2_REG_PSWRQ_BW_L28, PXP2_REG_PSWRQ_BW_ADD28,
|
|
PXP2_REG_PSWRQ_BW_UB28},
|
|
{PXP2_REG_RQ_BW_WR_L29, PXP2_REG_RQ_BW_WR_ADD29,
|
|
PXP2_REG_RQ_BW_WR_UBOUND29},
|
|
{PXP2_REG_RQ_BW_WR_L30, PXP2_REG_RQ_BW_WR_ADD30,
|
|
PXP2_REG_RQ_BW_WR_UBOUND30}
|
|
};
|
|
|
|
static void bnx2x_init_pxp(struct bnx2x *bp)
|
|
{
|
|
u16 devctl;
|
|
int r_order, w_order;
|
|
u32 val, i;
|
|
|
|
pci_read_config_word(bp->pdev,
|
|
bp->pcie_cap + PCI_EXP_DEVCTL, &devctl);
|
|
DP(NETIF_MSG_HW, "read 0x%x from devctl\n", devctl);
|
|
w_order = ((devctl & PCI_EXP_DEVCTL_PAYLOAD) >> 5);
|
|
if (bp->mrrs == -1)
|
|
r_order = ((devctl & PCI_EXP_DEVCTL_READRQ) >> 12);
|
|
else {
|
|
DP(NETIF_MSG_HW, "force read order to %d\n", bp->mrrs);
|
|
r_order = bp->mrrs;
|
|
}
|
|
|
|
if (r_order > MAX_RD_ORD) {
|
|
DP(NETIF_MSG_HW, "read order of %d order adjusted to %d\n",
|
|
r_order, MAX_RD_ORD);
|
|
r_order = MAX_RD_ORD;
|
|
}
|
|
if (w_order > MAX_WR_ORD) {
|
|
DP(NETIF_MSG_HW, "write order of %d order adjusted to %d\n",
|
|
w_order, MAX_WR_ORD);
|
|
w_order = MAX_WR_ORD;
|
|
}
|
|
if (CHIP_REV_IS_FPGA(bp)) {
|
|
DP(NETIF_MSG_HW, "write order adjusted to 1 for FPGA\n");
|
|
w_order = 0;
|
|
}
|
|
DP(NETIF_MSG_HW, "read order %d write order %d\n", r_order, w_order);
|
|
|
|
for (i = 0; i < NUM_RD_Q-1; i++) {
|
|
REG_WR(bp, read_arb_addr[i].l, read_arb_data[i][r_order].l);
|
|
REG_WR(bp, read_arb_addr[i].add,
|
|
read_arb_data[i][r_order].add);
|
|
REG_WR(bp, read_arb_addr[i].ubound,
|
|
read_arb_data[i][r_order].ubound);
|
|
}
|
|
|
|
for (i = 0; i < NUM_WR_Q-1; i++) {
|
|
if ((write_arb_addr[i].l == PXP2_REG_RQ_BW_WR_L29) ||
|
|
(write_arb_addr[i].l == PXP2_REG_RQ_BW_WR_L30)) {
|
|
|
|
REG_WR(bp, write_arb_addr[i].l,
|
|
write_arb_data[i][w_order].l);
|
|
|
|
REG_WR(bp, write_arb_addr[i].add,
|
|
write_arb_data[i][w_order].add);
|
|
|
|
REG_WR(bp, write_arb_addr[i].ubound,
|
|
write_arb_data[i][w_order].ubound);
|
|
} else {
|
|
|
|
val = REG_RD(bp, write_arb_addr[i].l);
|
|
REG_WR(bp, write_arb_addr[i].l,
|
|
val | (write_arb_data[i][w_order].l << 10));
|
|
|
|
val = REG_RD(bp, write_arb_addr[i].add);
|
|
REG_WR(bp, write_arb_addr[i].add,
|
|
val | (write_arb_data[i][w_order].add << 10));
|
|
|
|
val = REG_RD(bp, write_arb_addr[i].ubound);
|
|
REG_WR(bp, write_arb_addr[i].ubound,
|
|
val | (write_arb_data[i][w_order].ubound << 7));
|
|
}
|
|
}
|
|
|
|
val = write_arb_data[NUM_WR_Q-1][w_order].add;
|
|
val += write_arb_data[NUM_WR_Q-1][w_order].ubound << 10;
|
|
val += write_arb_data[NUM_WR_Q-1][w_order].l << 17;
|
|
REG_WR(bp, PXP2_REG_PSWRQ_BW_RD, val);
|
|
|
|
val = read_arb_data[NUM_RD_Q-1][r_order].add;
|
|
val += read_arb_data[NUM_RD_Q-1][r_order].ubound << 10;
|
|
val += read_arb_data[NUM_RD_Q-1][r_order].l << 17;
|
|
REG_WR(bp, PXP2_REG_PSWRQ_BW_WR, val);
|
|
|
|
REG_WR(bp, PXP2_REG_RQ_WR_MBS0, w_order);
|
|
REG_WR(bp, PXP2_REG_RQ_WR_MBS1, w_order);
|
|
REG_WR(bp, PXP2_REG_RQ_RD_MBS0, r_order);
|
|
REG_WR(bp, PXP2_REG_RQ_RD_MBS1, r_order);
|
|
|
|
if (r_order == MAX_RD_ORD)
|
|
REG_WR(bp, PXP2_REG_RQ_PDR_LIMIT, 0xe00);
|
|
|
|
REG_WR(bp, PXP2_REG_WR_USDMDP_TH, (0x18 << w_order));
|
|
|
|
if (CHIP_IS_E1H(bp)) {
|
|
val = ((w_order == 0) ? 2 : 3);
|
|
REG_WR(bp, PXP2_REG_WR_HC_MPS, val);
|
|
REG_WR(bp, PXP2_REG_WR_USDM_MPS, val);
|
|
REG_WR(bp, PXP2_REG_WR_CSDM_MPS, val);
|
|
REG_WR(bp, PXP2_REG_WR_TSDM_MPS, val);
|
|
REG_WR(bp, PXP2_REG_WR_XSDM_MPS, val);
|
|
REG_WR(bp, PXP2_REG_WR_QM_MPS, val);
|
|
REG_WR(bp, PXP2_REG_WR_TM_MPS, val);
|
|
REG_WR(bp, PXP2_REG_WR_SRC_MPS, val);
|
|
REG_WR(bp, PXP2_REG_WR_DBG_MPS, val);
|
|
REG_WR(bp, PXP2_REG_WR_DMAE_MPS, 2); /* DMAE is special */
|
|
REG_WR(bp, PXP2_REG_WR_CDU_MPS, val);
|
|
}
|
|
}
|
|
|
|
|
|
/****************************************************************************
|
|
* CDU
|
|
****************************************************************************/
|
|
|
|
#define CDU_REGION_NUMBER_XCM_AG 2
|
|
#define CDU_REGION_NUMBER_UCM_AG 4
|
|
|
|
/**
|
|
* String-to-compress [31:8] = CID (all 24 bits)
|
|
* String-to-compress [7:4] = Region
|
|
* String-to-compress [3:0] = Type
|
|
*/
|
|
#define CDU_VALID_DATA(_cid, _region, _type) \
|
|
(((_cid) << 8) | (((_region) & 0xf) << 4) | (((_type) & 0xf)))
|
|
#define CDU_CRC8(_cid, _region, _type) \
|
|
calc_crc8(CDU_VALID_DATA(_cid, _region, _type), 0xff)
|
|
#define CDU_RSRVD_VALUE_TYPE_A(_cid, _region, _type) \
|
|
(0x80 | (CDU_CRC8(_cid, _region, _type) & 0x7f))
|
|
#define CDU_RSRVD_VALUE_TYPE_B(_crc, _type) \
|
|
(0x80 | ((_type) & 0xf << 3) | (CDU_CRC8(_cid, _region, _type) & 0x7))
|
|
#define CDU_RSRVD_INVALIDATE_CONTEXT_VALUE(_val) ((_val) & ~0x80)
|
|
|
|
/*****************************************************************************
|
|
* Description:
|
|
* Calculates crc 8 on a word value: polynomial 0-1-2-8
|
|
* Code was translated from Verilog.
|
|
****************************************************************************/
|
|
static u8 calc_crc8(u32 data, u8 crc)
|
|
{
|
|
u8 D[32];
|
|
u8 NewCRC[8];
|
|
u8 C[8];
|
|
u8 crc_res;
|
|
u8 i;
|
|
|
|
/* split the data into 31 bits */
|
|
for (i = 0; i < 32; i++) {
|
|
D[i] = data & 1;
|
|
data = data >> 1;
|
|
}
|
|
|
|
/* split the crc into 8 bits */
|
|
for (i = 0; i < 8; i++) {
|
|
C[i] = crc & 1;
|
|
crc = crc >> 1;
|
|
}
|
|
|
|
NewCRC[0] = D[31] ^ D[30] ^ D[28] ^ D[23] ^ D[21] ^ D[19] ^ D[18] ^
|
|
D[16] ^ D[14] ^ D[12] ^ D[8] ^ D[7] ^ D[6] ^ D[0] ^ C[4] ^
|
|
C[6] ^ C[7];
|
|
NewCRC[1] = D[30] ^ D[29] ^ D[28] ^ D[24] ^ D[23] ^ D[22] ^ D[21] ^
|
|
D[20] ^ D[18] ^ D[17] ^ D[16] ^ D[15] ^ D[14] ^ D[13] ^
|
|
D[12] ^ D[9] ^ D[6] ^ D[1] ^ D[0] ^ C[0] ^ C[4] ^ C[5] ^ C[6];
|
|
NewCRC[2] = D[29] ^ D[28] ^ D[25] ^ D[24] ^ D[22] ^ D[17] ^ D[15] ^
|
|
D[13] ^ D[12] ^ D[10] ^ D[8] ^ D[6] ^ D[2] ^ D[1] ^ D[0] ^
|
|
C[0] ^ C[1] ^ C[4] ^ C[5];
|
|
NewCRC[3] = D[30] ^ D[29] ^ D[26] ^ D[25] ^ D[23] ^ D[18] ^ D[16] ^
|
|
D[14] ^ D[13] ^ D[11] ^ D[9] ^ D[7] ^ D[3] ^ D[2] ^ D[1] ^
|
|
C[1] ^ C[2] ^ C[5] ^ C[6];
|
|
NewCRC[4] = D[31] ^ D[30] ^ D[27] ^ D[26] ^ D[24] ^ D[19] ^ D[17] ^
|
|
D[15] ^ D[14] ^ D[12] ^ D[10] ^ D[8] ^ D[4] ^ D[3] ^ D[2] ^
|
|
C[0] ^ C[2] ^ C[3] ^ C[6] ^ C[7];
|
|
NewCRC[5] = D[31] ^ D[28] ^ D[27] ^ D[25] ^ D[20] ^ D[18] ^ D[16] ^
|
|
D[15] ^ D[13] ^ D[11] ^ D[9] ^ D[5] ^ D[4] ^ D[3] ^ C[1] ^
|
|
C[3] ^ C[4] ^ C[7];
|
|
NewCRC[6] = D[29] ^ D[28] ^ D[26] ^ D[21] ^ D[19] ^ D[17] ^ D[16] ^
|
|
D[14] ^ D[12] ^ D[10] ^ D[6] ^ D[5] ^ D[4] ^ C[2] ^ C[4] ^
|
|
C[5];
|
|
NewCRC[7] = D[30] ^ D[29] ^ D[27] ^ D[22] ^ D[20] ^ D[18] ^ D[17] ^
|
|
D[15] ^ D[13] ^ D[11] ^ D[7] ^ D[6] ^ D[5] ^ C[3] ^ C[5] ^
|
|
C[6];
|
|
|
|
crc_res = 0;
|
|
for (i = 0; i < 8; i++)
|
|
crc_res |= (NewCRC[i] << i);
|
|
|
|
return crc_res;
|
|
}
|
|
|
|
/* registers addresses are not in order
|
|
so these arrays help simplify the code */
|
|
static const int cm_start[E1H_FUNC_MAX][9] = {
|
|
{MISC_FUNC0_START, TCM_FUNC0_START, UCM_FUNC0_START, CCM_FUNC0_START,
|
|
XCM_FUNC0_START, TSEM_FUNC0_START, USEM_FUNC0_START, CSEM_FUNC0_START,
|
|
XSEM_FUNC0_START},
|
|
{MISC_FUNC1_START, TCM_FUNC1_START, UCM_FUNC1_START, CCM_FUNC1_START,
|
|
XCM_FUNC1_START, TSEM_FUNC1_START, USEM_FUNC1_START, CSEM_FUNC1_START,
|
|
XSEM_FUNC1_START},
|
|
{MISC_FUNC2_START, TCM_FUNC2_START, UCM_FUNC2_START, CCM_FUNC2_START,
|
|
XCM_FUNC2_START, TSEM_FUNC2_START, USEM_FUNC2_START, CSEM_FUNC2_START,
|
|
XSEM_FUNC2_START},
|
|
{MISC_FUNC3_START, TCM_FUNC3_START, UCM_FUNC3_START, CCM_FUNC3_START,
|
|
XCM_FUNC3_START, TSEM_FUNC3_START, USEM_FUNC3_START, CSEM_FUNC3_START,
|
|
XSEM_FUNC3_START},
|
|
{MISC_FUNC4_START, TCM_FUNC4_START, UCM_FUNC4_START, CCM_FUNC4_START,
|
|
XCM_FUNC4_START, TSEM_FUNC4_START, USEM_FUNC4_START, CSEM_FUNC4_START,
|
|
XSEM_FUNC4_START},
|
|
{MISC_FUNC5_START, TCM_FUNC5_START, UCM_FUNC5_START, CCM_FUNC5_START,
|
|
XCM_FUNC5_START, TSEM_FUNC5_START, USEM_FUNC5_START, CSEM_FUNC5_START,
|
|
XSEM_FUNC5_START},
|
|
{MISC_FUNC6_START, TCM_FUNC6_START, UCM_FUNC6_START, CCM_FUNC6_START,
|
|
XCM_FUNC6_START, TSEM_FUNC6_START, USEM_FUNC6_START, CSEM_FUNC6_START,
|
|
XSEM_FUNC6_START},
|
|
{MISC_FUNC7_START, TCM_FUNC7_START, UCM_FUNC7_START, CCM_FUNC7_START,
|
|
XCM_FUNC7_START, TSEM_FUNC7_START, USEM_FUNC7_START, CSEM_FUNC7_START,
|
|
XSEM_FUNC7_START}
|
|
};
|
|
|
|
static const int cm_end[E1H_FUNC_MAX][9] = {
|
|
{MISC_FUNC0_END, TCM_FUNC0_END, UCM_FUNC0_END, CCM_FUNC0_END,
|
|
XCM_FUNC0_END, TSEM_FUNC0_END, USEM_FUNC0_END, CSEM_FUNC0_END,
|
|
XSEM_FUNC0_END},
|
|
{MISC_FUNC1_END, TCM_FUNC1_END, UCM_FUNC1_END, CCM_FUNC1_END,
|
|
XCM_FUNC1_END, TSEM_FUNC1_END, USEM_FUNC1_END, CSEM_FUNC1_END,
|
|
XSEM_FUNC1_END},
|
|
{MISC_FUNC2_END, TCM_FUNC2_END, UCM_FUNC2_END, CCM_FUNC2_END,
|
|
XCM_FUNC2_END, TSEM_FUNC2_END, USEM_FUNC2_END, CSEM_FUNC2_END,
|
|
XSEM_FUNC2_END},
|
|
{MISC_FUNC3_END, TCM_FUNC3_END, UCM_FUNC3_END, CCM_FUNC3_END,
|
|
XCM_FUNC3_END, TSEM_FUNC3_END, USEM_FUNC3_END, CSEM_FUNC3_END,
|
|
XSEM_FUNC3_END},
|
|
{MISC_FUNC4_END, TCM_FUNC4_END, UCM_FUNC4_END, CCM_FUNC4_END,
|
|
XCM_FUNC4_END, TSEM_FUNC4_END, USEM_FUNC4_END, CSEM_FUNC4_END,
|
|
XSEM_FUNC4_END},
|
|
{MISC_FUNC5_END, TCM_FUNC5_END, UCM_FUNC5_END, CCM_FUNC5_END,
|
|
XCM_FUNC5_END, TSEM_FUNC5_END, USEM_FUNC5_END, CSEM_FUNC5_END,
|
|
XSEM_FUNC5_END},
|
|
{MISC_FUNC6_END, TCM_FUNC6_END, UCM_FUNC6_END, CCM_FUNC6_END,
|
|
XCM_FUNC6_END, TSEM_FUNC6_END, USEM_FUNC6_END, CSEM_FUNC6_END,
|
|
XSEM_FUNC6_END},
|
|
{MISC_FUNC7_END, TCM_FUNC7_END, UCM_FUNC7_END, CCM_FUNC7_END,
|
|
XCM_FUNC7_END, TSEM_FUNC7_END, USEM_FUNC7_END, CSEM_FUNC7_END,
|
|
XSEM_FUNC7_END},
|
|
};
|
|
|
|
static const int hc_limits[E1H_FUNC_MAX][2] = {
|
|
{HC_FUNC0_START, HC_FUNC0_END},
|
|
{HC_FUNC1_START, HC_FUNC1_END},
|
|
{HC_FUNC2_START, HC_FUNC2_END},
|
|
{HC_FUNC3_START, HC_FUNC3_END},
|
|
{HC_FUNC4_START, HC_FUNC4_END},
|
|
{HC_FUNC5_START, HC_FUNC5_END},
|
|
{HC_FUNC6_START, HC_FUNC6_END},
|
|
{HC_FUNC7_START, HC_FUNC7_END}
|
|
};
|
|
|
|
#endif /* BNX2X_INIT_H */
|
|
|