885 lines
24 KiB
C
885 lines
24 KiB
C
/*
|
|
* Copyright 2011 Freescale Semiconductor, Inc. All Rights Reserved.
|
|
*
|
|
* Refer to drivers/dma/imx-sdma.c
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License version 2 as
|
|
* published by the Free Software Foundation.
|
|
*/
|
|
|
|
#include <linux/init.h>
|
|
#include <linux/types.h>
|
|
#include <linux/mm.h>
|
|
#include <linux/interrupt.h>
|
|
#include <linux/clk.h>
|
|
#include <linux/wait.h>
|
|
#include <linux/sched.h>
|
|
#include <linux/semaphore.h>
|
|
#include <linux/device.h>
|
|
#include <linux/dma-mapping.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/platform_device.h>
|
|
#include <linux/dmaengine.h>
|
|
#include <linux/delay.h>
|
|
#include <linux/module.h>
|
|
#include <linux/stmp_device.h>
|
|
#include <linux/of.h>
|
|
#include <linux/of_device.h>
|
|
#include <linux/of_dma.h>
|
|
#include <linux/list.h>
|
|
|
|
#include <asm/irq.h>
|
|
|
|
#include "dmaengine.h"
|
|
|
|
/*
|
|
* NOTE: The term "PIO" throughout the mxs-dma implementation means
|
|
* PIO mode of mxs apbh-dma and apbx-dma. With this working mode,
|
|
* dma can program the controller registers of peripheral devices.
|
|
*/
|
|
|
|
#define dma_is_apbh(mxs_dma) ((mxs_dma)->type == MXS_DMA_APBH)
|
|
#define apbh_is_old(mxs_dma) ((mxs_dma)->dev_id == IMX23_DMA)
|
|
|
|
#define HW_APBHX_CTRL0 0x000
|
|
#define BM_APBH_CTRL0_APB_BURST8_EN (1 << 29)
|
|
#define BM_APBH_CTRL0_APB_BURST_EN (1 << 28)
|
|
#define BP_APBH_CTRL0_RESET_CHANNEL 16
|
|
#define HW_APBHX_CTRL1 0x010
|
|
#define HW_APBHX_CTRL2 0x020
|
|
#define HW_APBHX_CHANNEL_CTRL 0x030
|
|
#define BP_APBHX_CHANNEL_CTRL_RESET_CHANNEL 16
|
|
/*
|
|
* The offset of NXTCMDAR register is different per both dma type and version,
|
|
* while stride for each channel is all the same 0x70.
|
|
*/
|
|
#define HW_APBHX_CHn_NXTCMDAR(d, n) \
|
|
(((dma_is_apbh(d) && apbh_is_old(d)) ? 0x050 : 0x110) + (n) * 0x70)
|
|
#define HW_APBHX_CHn_SEMA(d, n) \
|
|
(((dma_is_apbh(d) && apbh_is_old(d)) ? 0x080 : 0x140) + (n) * 0x70)
|
|
#define HW_APBHX_CHn_BAR(d, n) \
|
|
(((dma_is_apbh(d) && apbh_is_old(d)) ? 0x070 : 0x130) + (n) * 0x70)
|
|
#define HW_APBX_CHn_DEBUG1(d, n) (0x150 + (n) * 0x70)
|
|
|
|
/*
|
|
* ccw bits definitions
|
|
*
|
|
* COMMAND: 0..1 (2)
|
|
* CHAIN: 2 (1)
|
|
* IRQ: 3 (1)
|
|
* NAND_LOCK: 4 (1) - not implemented
|
|
* NAND_WAIT4READY: 5 (1) - not implemented
|
|
* DEC_SEM: 6 (1)
|
|
* WAIT4END: 7 (1)
|
|
* HALT_ON_TERMINATE: 8 (1)
|
|
* TERMINATE_FLUSH: 9 (1)
|
|
* RESERVED: 10..11 (2)
|
|
* PIO_NUM: 12..15 (4)
|
|
*/
|
|
#define BP_CCW_COMMAND 0
|
|
#define BM_CCW_COMMAND (3 << 0)
|
|
#define CCW_CHAIN (1 << 2)
|
|
#define CCW_IRQ (1 << 3)
|
|
#define CCW_DEC_SEM (1 << 6)
|
|
#define CCW_WAIT4END (1 << 7)
|
|
#define CCW_HALT_ON_TERM (1 << 8)
|
|
#define CCW_TERM_FLUSH (1 << 9)
|
|
#define BP_CCW_PIO_NUM 12
|
|
#define BM_CCW_PIO_NUM (0xf << 12)
|
|
|
|
#define BF_CCW(value, field) (((value) << BP_CCW_##field) & BM_CCW_##field)
|
|
|
|
#define MXS_DMA_CMD_NO_XFER 0
|
|
#define MXS_DMA_CMD_WRITE 1
|
|
#define MXS_DMA_CMD_READ 2
|
|
#define MXS_DMA_CMD_DMA_SENSE 3 /* not implemented */
|
|
|
|
struct mxs_dma_ccw {
|
|
u32 next;
|
|
u16 bits;
|
|
u16 xfer_bytes;
|
|
#define MAX_XFER_BYTES 0xff00
|
|
u32 bufaddr;
|
|
#define MXS_PIO_WORDS 16
|
|
u32 pio_words[MXS_PIO_WORDS];
|
|
};
|
|
|
|
#define CCW_BLOCK_SIZE (4 * PAGE_SIZE)
|
|
#define NUM_CCW (int)(CCW_BLOCK_SIZE / sizeof(struct mxs_dma_ccw))
|
|
|
|
struct mxs_dma_chan {
|
|
struct mxs_dma_engine *mxs_dma;
|
|
struct dma_chan chan;
|
|
struct dma_async_tx_descriptor desc;
|
|
struct tasklet_struct tasklet;
|
|
unsigned int chan_irq;
|
|
struct mxs_dma_ccw *ccw;
|
|
dma_addr_t ccw_phys;
|
|
int desc_count;
|
|
enum dma_status status;
|
|
unsigned int flags;
|
|
bool reset;
|
|
#define MXS_DMA_SG_LOOP (1 << 0)
|
|
#define MXS_DMA_USE_SEMAPHORE (1 << 1)
|
|
};
|
|
|
|
#define MXS_DMA_CHANNELS 16
|
|
#define MXS_DMA_CHANNELS_MASK 0xffff
|
|
|
|
enum mxs_dma_devtype {
|
|
MXS_DMA_APBH,
|
|
MXS_DMA_APBX,
|
|
};
|
|
|
|
enum mxs_dma_id {
|
|
IMX23_DMA,
|
|
IMX28_DMA,
|
|
};
|
|
|
|
struct mxs_dma_engine {
|
|
enum mxs_dma_id dev_id;
|
|
enum mxs_dma_devtype type;
|
|
void __iomem *base;
|
|
struct clk *clk;
|
|
struct dma_device dma_device;
|
|
struct device_dma_parameters dma_parms;
|
|
struct mxs_dma_chan mxs_chans[MXS_DMA_CHANNELS];
|
|
struct platform_device *pdev;
|
|
unsigned int nr_channels;
|
|
};
|
|
|
|
struct mxs_dma_type {
|
|
enum mxs_dma_id id;
|
|
enum mxs_dma_devtype type;
|
|
};
|
|
|
|
static struct mxs_dma_type mxs_dma_types[] = {
|
|
{
|
|
.id = IMX23_DMA,
|
|
.type = MXS_DMA_APBH,
|
|
}, {
|
|
.id = IMX23_DMA,
|
|
.type = MXS_DMA_APBX,
|
|
}, {
|
|
.id = IMX28_DMA,
|
|
.type = MXS_DMA_APBH,
|
|
}, {
|
|
.id = IMX28_DMA,
|
|
.type = MXS_DMA_APBX,
|
|
}
|
|
};
|
|
|
|
static const struct platform_device_id mxs_dma_ids[] = {
|
|
{
|
|
.name = "imx23-dma-apbh",
|
|
.driver_data = (kernel_ulong_t) &mxs_dma_types[0],
|
|
}, {
|
|
.name = "imx23-dma-apbx",
|
|
.driver_data = (kernel_ulong_t) &mxs_dma_types[1],
|
|
}, {
|
|
.name = "imx28-dma-apbh",
|
|
.driver_data = (kernel_ulong_t) &mxs_dma_types[2],
|
|
}, {
|
|
.name = "imx28-dma-apbx",
|
|
.driver_data = (kernel_ulong_t) &mxs_dma_types[3],
|
|
}, {
|
|
/* end of list */
|
|
}
|
|
};
|
|
|
|
static const struct of_device_id mxs_dma_dt_ids[] = {
|
|
{ .compatible = "fsl,imx23-dma-apbh", .data = &mxs_dma_ids[0], },
|
|
{ .compatible = "fsl,imx23-dma-apbx", .data = &mxs_dma_ids[1], },
|
|
{ .compatible = "fsl,imx28-dma-apbh", .data = &mxs_dma_ids[2], },
|
|
{ .compatible = "fsl,imx28-dma-apbx", .data = &mxs_dma_ids[3], },
|
|
{ /* sentinel */ }
|
|
};
|
|
MODULE_DEVICE_TABLE(of, mxs_dma_dt_ids);
|
|
|
|
static struct mxs_dma_chan *to_mxs_dma_chan(struct dma_chan *chan)
|
|
{
|
|
return container_of(chan, struct mxs_dma_chan, chan);
|
|
}
|
|
|
|
static void mxs_dma_reset_chan(struct dma_chan *chan)
|
|
{
|
|
struct mxs_dma_chan *mxs_chan = to_mxs_dma_chan(chan);
|
|
struct mxs_dma_engine *mxs_dma = mxs_chan->mxs_dma;
|
|
int chan_id = mxs_chan->chan.chan_id;
|
|
|
|
/*
|
|
* mxs dma channel resets can cause a channel stall. To recover from a
|
|
* channel stall, we have to reset the whole DMA engine. To avoid this,
|
|
* we use cyclic DMA with semaphores, that are enhanced in
|
|
* mxs_dma_int_handler. To reset the channel, we can simply stop writing
|
|
* into the semaphore counter.
|
|
*/
|
|
if (mxs_chan->flags & MXS_DMA_USE_SEMAPHORE &&
|
|
mxs_chan->flags & MXS_DMA_SG_LOOP) {
|
|
mxs_chan->reset = true;
|
|
} else if (dma_is_apbh(mxs_dma) && apbh_is_old(mxs_dma)) {
|
|
writel(1 << (chan_id + BP_APBH_CTRL0_RESET_CHANNEL),
|
|
mxs_dma->base + HW_APBHX_CTRL0 + STMP_OFFSET_REG_SET);
|
|
} else {
|
|
unsigned long elapsed = 0;
|
|
const unsigned long max_wait = 50000; /* 50ms */
|
|
void __iomem *reg_dbg1 = mxs_dma->base +
|
|
HW_APBX_CHn_DEBUG1(mxs_dma, chan_id);
|
|
|
|
/*
|
|
* On i.MX28 APBX, the DMA channel can stop working if we reset
|
|
* the channel while it is in READ_FLUSH (0x08) state.
|
|
* We wait here until we leave the state. Then we trigger the
|
|
* reset. Waiting a maximum of 50ms, the kernel shouldn't crash
|
|
* because of this.
|
|
*/
|
|
while ((readl(reg_dbg1) & 0xf) == 0x8 && elapsed < max_wait) {
|
|
udelay(100);
|
|
elapsed += 100;
|
|
}
|
|
|
|
if (elapsed >= max_wait)
|
|
dev_err(&mxs_chan->mxs_dma->pdev->dev,
|
|
"Failed waiting for the DMA channel %d to leave state READ_FLUSH, trying to reset channel in READ_FLUSH state now\n",
|
|
chan_id);
|
|
|
|
writel(1 << (chan_id + BP_APBHX_CHANNEL_CTRL_RESET_CHANNEL),
|
|
mxs_dma->base + HW_APBHX_CHANNEL_CTRL + STMP_OFFSET_REG_SET);
|
|
}
|
|
|
|
mxs_chan->status = DMA_COMPLETE;
|
|
}
|
|
|
|
static void mxs_dma_enable_chan(struct dma_chan *chan)
|
|
{
|
|
struct mxs_dma_chan *mxs_chan = to_mxs_dma_chan(chan);
|
|
struct mxs_dma_engine *mxs_dma = mxs_chan->mxs_dma;
|
|
int chan_id = mxs_chan->chan.chan_id;
|
|
|
|
/* set cmd_addr up */
|
|
writel(mxs_chan->ccw_phys,
|
|
mxs_dma->base + HW_APBHX_CHn_NXTCMDAR(mxs_dma, chan_id));
|
|
|
|
/* write 1 to SEMA to kick off the channel */
|
|
if (mxs_chan->flags & MXS_DMA_USE_SEMAPHORE &&
|
|
mxs_chan->flags & MXS_DMA_SG_LOOP) {
|
|
/* A cyclic DMA consists of at least 2 segments, so initialize
|
|
* the semaphore with 2 so we have enough time to add 1 to the
|
|
* semaphore if we need to */
|
|
writel(2, mxs_dma->base + HW_APBHX_CHn_SEMA(mxs_dma, chan_id));
|
|
} else {
|
|
writel(1, mxs_dma->base + HW_APBHX_CHn_SEMA(mxs_dma, chan_id));
|
|
}
|
|
mxs_chan->reset = false;
|
|
}
|
|
|
|
static void mxs_dma_disable_chan(struct dma_chan *chan)
|
|
{
|
|
struct mxs_dma_chan *mxs_chan = to_mxs_dma_chan(chan);
|
|
|
|
mxs_chan->status = DMA_COMPLETE;
|
|
}
|
|
|
|
static int mxs_dma_pause_chan(struct dma_chan *chan)
|
|
{
|
|
struct mxs_dma_chan *mxs_chan = to_mxs_dma_chan(chan);
|
|
struct mxs_dma_engine *mxs_dma = mxs_chan->mxs_dma;
|
|
int chan_id = mxs_chan->chan.chan_id;
|
|
|
|
/* freeze the channel */
|
|
if (dma_is_apbh(mxs_dma) && apbh_is_old(mxs_dma))
|
|
writel(1 << chan_id,
|
|
mxs_dma->base + HW_APBHX_CTRL0 + STMP_OFFSET_REG_SET);
|
|
else
|
|
writel(1 << chan_id,
|
|
mxs_dma->base + HW_APBHX_CHANNEL_CTRL + STMP_OFFSET_REG_SET);
|
|
|
|
mxs_chan->status = DMA_PAUSED;
|
|
return 0;
|
|
}
|
|
|
|
static int mxs_dma_resume_chan(struct dma_chan *chan)
|
|
{
|
|
struct mxs_dma_chan *mxs_chan = to_mxs_dma_chan(chan);
|
|
struct mxs_dma_engine *mxs_dma = mxs_chan->mxs_dma;
|
|
int chan_id = mxs_chan->chan.chan_id;
|
|
|
|
/* unfreeze the channel */
|
|
if (dma_is_apbh(mxs_dma) && apbh_is_old(mxs_dma))
|
|
writel(1 << chan_id,
|
|
mxs_dma->base + HW_APBHX_CTRL0 + STMP_OFFSET_REG_CLR);
|
|
else
|
|
writel(1 << chan_id,
|
|
mxs_dma->base + HW_APBHX_CHANNEL_CTRL + STMP_OFFSET_REG_CLR);
|
|
|
|
mxs_chan->status = DMA_IN_PROGRESS;
|
|
return 0;
|
|
}
|
|
|
|
static dma_cookie_t mxs_dma_tx_submit(struct dma_async_tx_descriptor *tx)
|
|
{
|
|
return dma_cookie_assign(tx);
|
|
}
|
|
|
|
static void mxs_dma_tasklet(unsigned long data)
|
|
{
|
|
struct mxs_dma_chan *mxs_chan = (struct mxs_dma_chan *) data;
|
|
|
|
dmaengine_desc_get_callback_invoke(&mxs_chan->desc, NULL);
|
|
}
|
|
|
|
static int mxs_dma_irq_to_chan(struct mxs_dma_engine *mxs_dma, int irq)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i != mxs_dma->nr_channels; ++i)
|
|
if (mxs_dma->mxs_chans[i].chan_irq == irq)
|
|
return i;
|
|
|
|
return -EINVAL;
|
|
}
|
|
|
|
static irqreturn_t mxs_dma_int_handler(int irq, void *dev_id)
|
|
{
|
|
struct mxs_dma_engine *mxs_dma = dev_id;
|
|
struct mxs_dma_chan *mxs_chan;
|
|
u32 completed;
|
|
u32 err;
|
|
int chan = mxs_dma_irq_to_chan(mxs_dma, irq);
|
|
|
|
if (chan < 0)
|
|
return IRQ_NONE;
|
|
|
|
/* completion status */
|
|
completed = readl(mxs_dma->base + HW_APBHX_CTRL1);
|
|
completed = (completed >> chan) & 0x1;
|
|
|
|
/* Clear interrupt */
|
|
writel((1 << chan),
|
|
mxs_dma->base + HW_APBHX_CTRL1 + STMP_OFFSET_REG_CLR);
|
|
|
|
/* error status */
|
|
err = readl(mxs_dma->base + HW_APBHX_CTRL2);
|
|
err &= (1 << (MXS_DMA_CHANNELS + chan)) | (1 << chan);
|
|
|
|
/*
|
|
* error status bit is in the upper 16 bits, error irq bit in the lower
|
|
* 16 bits. We transform it into a simpler error code:
|
|
* err: 0x00 = no error, 0x01 = TERMINATION, 0x02 = BUS_ERROR
|
|
*/
|
|
err = (err >> (MXS_DMA_CHANNELS + chan)) + (err >> chan);
|
|
|
|
/* Clear error irq */
|
|
writel((1 << chan),
|
|
mxs_dma->base + HW_APBHX_CTRL2 + STMP_OFFSET_REG_CLR);
|
|
|
|
/*
|
|
* When both completion and error of termination bits set at the
|
|
* same time, we do not take it as an error. IOW, it only becomes
|
|
* an error we need to handle here in case of either it's a bus
|
|
* error or a termination error with no completion. 0x01 is termination
|
|
* error, so we can subtract err & completed to get the real error case.
|
|
*/
|
|
err -= err & completed;
|
|
|
|
mxs_chan = &mxs_dma->mxs_chans[chan];
|
|
|
|
if (err) {
|
|
dev_dbg(mxs_dma->dma_device.dev,
|
|
"%s: error in channel %d\n", __func__,
|
|
chan);
|
|
mxs_chan->status = DMA_ERROR;
|
|
mxs_dma_reset_chan(&mxs_chan->chan);
|
|
} else if (mxs_chan->status != DMA_COMPLETE) {
|
|
if (mxs_chan->flags & MXS_DMA_SG_LOOP) {
|
|
mxs_chan->status = DMA_IN_PROGRESS;
|
|
if (mxs_chan->flags & MXS_DMA_USE_SEMAPHORE)
|
|
writel(1, mxs_dma->base +
|
|
HW_APBHX_CHn_SEMA(mxs_dma, chan));
|
|
} else {
|
|
mxs_chan->status = DMA_COMPLETE;
|
|
}
|
|
}
|
|
|
|
if (mxs_chan->status == DMA_COMPLETE) {
|
|
if (mxs_chan->reset)
|
|
return IRQ_HANDLED;
|
|
dma_cookie_complete(&mxs_chan->desc);
|
|
}
|
|
|
|
/* schedule tasklet on this channel */
|
|
tasklet_schedule(&mxs_chan->tasklet);
|
|
|
|
return IRQ_HANDLED;
|
|
}
|
|
|
|
static int mxs_dma_alloc_chan_resources(struct dma_chan *chan)
|
|
{
|
|
struct mxs_dma_chan *mxs_chan = to_mxs_dma_chan(chan);
|
|
struct mxs_dma_engine *mxs_dma = mxs_chan->mxs_dma;
|
|
int ret;
|
|
|
|
mxs_chan->ccw = dma_zalloc_coherent(mxs_dma->dma_device.dev,
|
|
CCW_BLOCK_SIZE,
|
|
&mxs_chan->ccw_phys, GFP_KERNEL);
|
|
if (!mxs_chan->ccw) {
|
|
ret = -ENOMEM;
|
|
goto err_alloc;
|
|
}
|
|
|
|
ret = request_irq(mxs_chan->chan_irq, mxs_dma_int_handler,
|
|
0, "mxs-dma", mxs_dma);
|
|
if (ret)
|
|
goto err_irq;
|
|
|
|
ret = clk_prepare_enable(mxs_dma->clk);
|
|
if (ret)
|
|
goto err_clk;
|
|
|
|
mxs_dma_reset_chan(chan);
|
|
|
|
dma_async_tx_descriptor_init(&mxs_chan->desc, chan);
|
|
mxs_chan->desc.tx_submit = mxs_dma_tx_submit;
|
|
|
|
/* the descriptor is ready */
|
|
async_tx_ack(&mxs_chan->desc);
|
|
|
|
return 0;
|
|
|
|
err_clk:
|
|
free_irq(mxs_chan->chan_irq, mxs_dma);
|
|
err_irq:
|
|
dma_free_coherent(mxs_dma->dma_device.dev, CCW_BLOCK_SIZE,
|
|
mxs_chan->ccw, mxs_chan->ccw_phys);
|
|
err_alloc:
|
|
return ret;
|
|
}
|
|
|
|
static void mxs_dma_free_chan_resources(struct dma_chan *chan)
|
|
{
|
|
struct mxs_dma_chan *mxs_chan = to_mxs_dma_chan(chan);
|
|
struct mxs_dma_engine *mxs_dma = mxs_chan->mxs_dma;
|
|
|
|
mxs_dma_disable_chan(chan);
|
|
|
|
free_irq(mxs_chan->chan_irq, mxs_dma);
|
|
|
|
dma_free_coherent(mxs_dma->dma_device.dev, CCW_BLOCK_SIZE,
|
|
mxs_chan->ccw, mxs_chan->ccw_phys);
|
|
|
|
clk_disable_unprepare(mxs_dma->clk);
|
|
}
|
|
|
|
/*
|
|
* How to use the flags for ->device_prep_slave_sg() :
|
|
* [1] If there is only one DMA command in the DMA chain, the code should be:
|
|
* ......
|
|
* ->device_prep_slave_sg(DMA_CTRL_ACK);
|
|
* ......
|
|
* [2] If there are two DMA commands in the DMA chain, the code should be
|
|
* ......
|
|
* ->device_prep_slave_sg(0);
|
|
* ......
|
|
* ->device_prep_slave_sg(DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
|
|
* ......
|
|
* [3] If there are more than two DMA commands in the DMA chain, the code
|
|
* should be:
|
|
* ......
|
|
* ->device_prep_slave_sg(0); // First
|
|
* ......
|
|
* ->device_prep_slave_sg(DMA_PREP_INTERRUPT [| DMA_CTRL_ACK]);
|
|
* ......
|
|
* ->device_prep_slave_sg(DMA_PREP_INTERRUPT | DMA_CTRL_ACK); // Last
|
|
* ......
|
|
*/
|
|
static struct dma_async_tx_descriptor *mxs_dma_prep_slave_sg(
|
|
struct dma_chan *chan, struct scatterlist *sgl,
|
|
unsigned int sg_len, enum dma_transfer_direction direction,
|
|
unsigned long flags, void *context)
|
|
{
|
|
struct mxs_dma_chan *mxs_chan = to_mxs_dma_chan(chan);
|
|
struct mxs_dma_engine *mxs_dma = mxs_chan->mxs_dma;
|
|
struct mxs_dma_ccw *ccw;
|
|
struct scatterlist *sg;
|
|
u32 i, j;
|
|
u32 *pio;
|
|
bool append = flags & DMA_PREP_INTERRUPT;
|
|
int idx = append ? mxs_chan->desc_count : 0;
|
|
|
|
if (mxs_chan->status == DMA_IN_PROGRESS && !append)
|
|
return NULL;
|
|
|
|
if (sg_len + (append ? idx : 0) > NUM_CCW) {
|
|
dev_err(mxs_dma->dma_device.dev,
|
|
"maximum number of sg exceeded: %d > %d\n",
|
|
sg_len, NUM_CCW);
|
|
goto err_out;
|
|
}
|
|
|
|
mxs_chan->status = DMA_IN_PROGRESS;
|
|
mxs_chan->flags = 0;
|
|
|
|
/*
|
|
* If the sg is prepared with append flag set, the sg
|
|
* will be appended to the last prepared sg.
|
|
*/
|
|
if (append) {
|
|
BUG_ON(idx < 1);
|
|
ccw = &mxs_chan->ccw[idx - 1];
|
|
ccw->next = mxs_chan->ccw_phys + sizeof(*ccw) * idx;
|
|
ccw->bits |= CCW_CHAIN;
|
|
ccw->bits &= ~CCW_IRQ;
|
|
ccw->bits &= ~CCW_DEC_SEM;
|
|
} else {
|
|
idx = 0;
|
|
}
|
|
|
|
if (direction == DMA_TRANS_NONE) {
|
|
ccw = &mxs_chan->ccw[idx++];
|
|
pio = (u32 *) sgl;
|
|
|
|
for (j = 0; j < sg_len;)
|
|
ccw->pio_words[j++] = *pio++;
|
|
|
|
ccw->bits = 0;
|
|
ccw->bits |= CCW_IRQ;
|
|
ccw->bits |= CCW_DEC_SEM;
|
|
if (flags & DMA_CTRL_ACK)
|
|
ccw->bits |= CCW_WAIT4END;
|
|
ccw->bits |= CCW_HALT_ON_TERM;
|
|
ccw->bits |= CCW_TERM_FLUSH;
|
|
ccw->bits |= BF_CCW(sg_len, PIO_NUM);
|
|
ccw->bits |= BF_CCW(MXS_DMA_CMD_NO_XFER, COMMAND);
|
|
} else {
|
|
for_each_sg(sgl, sg, sg_len, i) {
|
|
if (sg_dma_len(sg) > MAX_XFER_BYTES) {
|
|
dev_err(mxs_dma->dma_device.dev, "maximum bytes for sg entry exceeded: %d > %d\n",
|
|
sg_dma_len(sg), MAX_XFER_BYTES);
|
|
goto err_out;
|
|
}
|
|
|
|
ccw = &mxs_chan->ccw[idx++];
|
|
|
|
ccw->next = mxs_chan->ccw_phys + sizeof(*ccw) * idx;
|
|
ccw->bufaddr = sg->dma_address;
|
|
ccw->xfer_bytes = sg_dma_len(sg);
|
|
|
|
ccw->bits = 0;
|
|
ccw->bits |= CCW_CHAIN;
|
|
ccw->bits |= CCW_HALT_ON_TERM;
|
|
ccw->bits |= CCW_TERM_FLUSH;
|
|
ccw->bits |= BF_CCW(direction == DMA_DEV_TO_MEM ?
|
|
MXS_DMA_CMD_WRITE : MXS_DMA_CMD_READ,
|
|
COMMAND);
|
|
|
|
if (i + 1 == sg_len) {
|
|
ccw->bits &= ~CCW_CHAIN;
|
|
ccw->bits |= CCW_IRQ;
|
|
ccw->bits |= CCW_DEC_SEM;
|
|
if (flags & DMA_CTRL_ACK)
|
|
ccw->bits |= CCW_WAIT4END;
|
|
}
|
|
}
|
|
}
|
|
mxs_chan->desc_count = idx;
|
|
|
|
return &mxs_chan->desc;
|
|
|
|
err_out:
|
|
mxs_chan->status = DMA_ERROR;
|
|
return NULL;
|
|
}
|
|
|
|
static struct dma_async_tx_descriptor *mxs_dma_prep_dma_cyclic(
|
|
struct dma_chan *chan, dma_addr_t dma_addr, size_t buf_len,
|
|
size_t period_len, enum dma_transfer_direction direction,
|
|
unsigned long flags)
|
|
{
|
|
struct mxs_dma_chan *mxs_chan = to_mxs_dma_chan(chan);
|
|
struct mxs_dma_engine *mxs_dma = mxs_chan->mxs_dma;
|
|
u32 num_periods = buf_len / period_len;
|
|
u32 i = 0, buf = 0;
|
|
|
|
if (mxs_chan->status == DMA_IN_PROGRESS)
|
|
return NULL;
|
|
|
|
mxs_chan->status = DMA_IN_PROGRESS;
|
|
mxs_chan->flags |= MXS_DMA_SG_LOOP;
|
|
mxs_chan->flags |= MXS_DMA_USE_SEMAPHORE;
|
|
|
|
if (num_periods > NUM_CCW) {
|
|
dev_err(mxs_dma->dma_device.dev,
|
|
"maximum number of sg exceeded: %d > %d\n",
|
|
num_periods, NUM_CCW);
|
|
goto err_out;
|
|
}
|
|
|
|
if (period_len > MAX_XFER_BYTES) {
|
|
dev_err(mxs_dma->dma_device.dev,
|
|
"maximum period size exceeded: %zu > %d\n",
|
|
period_len, MAX_XFER_BYTES);
|
|
goto err_out;
|
|
}
|
|
|
|
while (buf < buf_len) {
|
|
struct mxs_dma_ccw *ccw = &mxs_chan->ccw[i];
|
|
|
|
if (i + 1 == num_periods)
|
|
ccw->next = mxs_chan->ccw_phys;
|
|
else
|
|
ccw->next = mxs_chan->ccw_phys + sizeof(*ccw) * (i + 1);
|
|
|
|
ccw->bufaddr = dma_addr;
|
|
ccw->xfer_bytes = period_len;
|
|
|
|
ccw->bits = 0;
|
|
ccw->bits |= CCW_CHAIN;
|
|
ccw->bits |= CCW_IRQ;
|
|
ccw->bits |= CCW_HALT_ON_TERM;
|
|
ccw->bits |= CCW_TERM_FLUSH;
|
|
ccw->bits |= CCW_DEC_SEM;
|
|
ccw->bits |= BF_CCW(direction == DMA_DEV_TO_MEM ?
|
|
MXS_DMA_CMD_WRITE : MXS_DMA_CMD_READ, COMMAND);
|
|
|
|
dma_addr += period_len;
|
|
buf += period_len;
|
|
|
|
i++;
|
|
}
|
|
mxs_chan->desc_count = i;
|
|
|
|
return &mxs_chan->desc;
|
|
|
|
err_out:
|
|
mxs_chan->status = DMA_ERROR;
|
|
return NULL;
|
|
}
|
|
|
|
static int mxs_dma_terminate_all(struct dma_chan *chan)
|
|
{
|
|
mxs_dma_reset_chan(chan);
|
|
mxs_dma_disable_chan(chan);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static enum dma_status mxs_dma_tx_status(struct dma_chan *chan,
|
|
dma_cookie_t cookie, struct dma_tx_state *txstate)
|
|
{
|
|
struct mxs_dma_chan *mxs_chan = to_mxs_dma_chan(chan);
|
|
struct mxs_dma_engine *mxs_dma = mxs_chan->mxs_dma;
|
|
u32 residue = 0;
|
|
|
|
if (mxs_chan->status == DMA_IN_PROGRESS &&
|
|
mxs_chan->flags & MXS_DMA_SG_LOOP) {
|
|
struct mxs_dma_ccw *last_ccw;
|
|
u32 bar;
|
|
|
|
last_ccw = &mxs_chan->ccw[mxs_chan->desc_count - 1];
|
|
residue = last_ccw->xfer_bytes + last_ccw->bufaddr;
|
|
|
|
bar = readl(mxs_dma->base +
|
|
HW_APBHX_CHn_BAR(mxs_dma, chan->chan_id));
|
|
residue -= bar;
|
|
}
|
|
|
|
dma_set_tx_state(txstate, chan->completed_cookie, chan->cookie,
|
|
residue);
|
|
|
|
return mxs_chan->status;
|
|
}
|
|
|
|
static int __init mxs_dma_init(struct mxs_dma_engine *mxs_dma)
|
|
{
|
|
int ret;
|
|
|
|
ret = clk_prepare_enable(mxs_dma->clk);
|
|
if (ret)
|
|
return ret;
|
|
|
|
ret = stmp_reset_block(mxs_dma->base);
|
|
if (ret)
|
|
goto err_out;
|
|
|
|
/* enable apbh burst */
|
|
if (dma_is_apbh(mxs_dma)) {
|
|
writel(BM_APBH_CTRL0_APB_BURST_EN,
|
|
mxs_dma->base + HW_APBHX_CTRL0 + STMP_OFFSET_REG_SET);
|
|
writel(BM_APBH_CTRL0_APB_BURST8_EN,
|
|
mxs_dma->base + HW_APBHX_CTRL0 + STMP_OFFSET_REG_SET);
|
|
}
|
|
|
|
/* enable irq for all the channels */
|
|
writel(MXS_DMA_CHANNELS_MASK << MXS_DMA_CHANNELS,
|
|
mxs_dma->base + HW_APBHX_CTRL1 + STMP_OFFSET_REG_SET);
|
|
|
|
err_out:
|
|
clk_disable_unprepare(mxs_dma->clk);
|
|
return ret;
|
|
}
|
|
|
|
struct mxs_dma_filter_param {
|
|
struct device_node *of_node;
|
|
unsigned int chan_id;
|
|
};
|
|
|
|
static bool mxs_dma_filter_fn(struct dma_chan *chan, void *fn_param)
|
|
{
|
|
struct mxs_dma_filter_param *param = fn_param;
|
|
struct mxs_dma_chan *mxs_chan = to_mxs_dma_chan(chan);
|
|
struct mxs_dma_engine *mxs_dma = mxs_chan->mxs_dma;
|
|
int chan_irq;
|
|
|
|
if (mxs_dma->dma_device.dev->of_node != param->of_node)
|
|
return false;
|
|
|
|
if (chan->chan_id != param->chan_id)
|
|
return false;
|
|
|
|
chan_irq = platform_get_irq(mxs_dma->pdev, param->chan_id);
|
|
if (chan_irq < 0)
|
|
return false;
|
|
|
|
mxs_chan->chan_irq = chan_irq;
|
|
|
|
return true;
|
|
}
|
|
|
|
static struct dma_chan *mxs_dma_xlate(struct of_phandle_args *dma_spec,
|
|
struct of_dma *ofdma)
|
|
{
|
|
struct mxs_dma_engine *mxs_dma = ofdma->of_dma_data;
|
|
dma_cap_mask_t mask = mxs_dma->dma_device.cap_mask;
|
|
struct mxs_dma_filter_param param;
|
|
|
|
if (dma_spec->args_count != 1)
|
|
return NULL;
|
|
|
|
param.of_node = ofdma->of_node;
|
|
param.chan_id = dma_spec->args[0];
|
|
|
|
if (param.chan_id >= mxs_dma->nr_channels)
|
|
return NULL;
|
|
|
|
return dma_request_channel(mask, mxs_dma_filter_fn, ¶m);
|
|
}
|
|
|
|
static int __init mxs_dma_probe(struct platform_device *pdev)
|
|
{
|
|
struct device_node *np = pdev->dev.of_node;
|
|
const struct platform_device_id *id_entry;
|
|
const struct of_device_id *of_id;
|
|
const struct mxs_dma_type *dma_type;
|
|
struct mxs_dma_engine *mxs_dma;
|
|
struct resource *iores;
|
|
int ret, i;
|
|
|
|
mxs_dma = devm_kzalloc(&pdev->dev, sizeof(*mxs_dma), GFP_KERNEL);
|
|
if (!mxs_dma)
|
|
return -ENOMEM;
|
|
|
|
ret = of_property_read_u32(np, "dma-channels", &mxs_dma->nr_channels);
|
|
if (ret) {
|
|
dev_err(&pdev->dev, "failed to read dma-channels\n");
|
|
return ret;
|
|
}
|
|
|
|
of_id = of_match_device(mxs_dma_dt_ids, &pdev->dev);
|
|
if (of_id)
|
|
id_entry = of_id->data;
|
|
else
|
|
id_entry = platform_get_device_id(pdev);
|
|
|
|
dma_type = (struct mxs_dma_type *)id_entry->driver_data;
|
|
mxs_dma->type = dma_type->type;
|
|
mxs_dma->dev_id = dma_type->id;
|
|
|
|
iores = platform_get_resource(pdev, IORESOURCE_MEM, 0);
|
|
mxs_dma->base = devm_ioremap_resource(&pdev->dev, iores);
|
|
if (IS_ERR(mxs_dma->base))
|
|
return PTR_ERR(mxs_dma->base);
|
|
|
|
mxs_dma->clk = devm_clk_get(&pdev->dev, NULL);
|
|
if (IS_ERR(mxs_dma->clk))
|
|
return PTR_ERR(mxs_dma->clk);
|
|
|
|
dma_cap_set(DMA_SLAVE, mxs_dma->dma_device.cap_mask);
|
|
dma_cap_set(DMA_CYCLIC, mxs_dma->dma_device.cap_mask);
|
|
|
|
INIT_LIST_HEAD(&mxs_dma->dma_device.channels);
|
|
|
|
/* Initialize channel parameters */
|
|
for (i = 0; i < MXS_DMA_CHANNELS; i++) {
|
|
struct mxs_dma_chan *mxs_chan = &mxs_dma->mxs_chans[i];
|
|
|
|
mxs_chan->mxs_dma = mxs_dma;
|
|
mxs_chan->chan.device = &mxs_dma->dma_device;
|
|
dma_cookie_init(&mxs_chan->chan);
|
|
|
|
tasklet_init(&mxs_chan->tasklet, mxs_dma_tasklet,
|
|
(unsigned long) mxs_chan);
|
|
|
|
|
|
/* Add the channel to mxs_chan list */
|
|
list_add_tail(&mxs_chan->chan.device_node,
|
|
&mxs_dma->dma_device.channels);
|
|
}
|
|
|
|
ret = mxs_dma_init(mxs_dma);
|
|
if (ret)
|
|
return ret;
|
|
|
|
mxs_dma->pdev = pdev;
|
|
mxs_dma->dma_device.dev = &pdev->dev;
|
|
|
|
/* mxs_dma gets 65535 bytes maximum sg size */
|
|
mxs_dma->dma_device.dev->dma_parms = &mxs_dma->dma_parms;
|
|
dma_set_max_seg_size(mxs_dma->dma_device.dev, MAX_XFER_BYTES);
|
|
|
|
mxs_dma->dma_device.device_alloc_chan_resources = mxs_dma_alloc_chan_resources;
|
|
mxs_dma->dma_device.device_free_chan_resources = mxs_dma_free_chan_resources;
|
|
mxs_dma->dma_device.device_tx_status = mxs_dma_tx_status;
|
|
mxs_dma->dma_device.device_prep_slave_sg = mxs_dma_prep_slave_sg;
|
|
mxs_dma->dma_device.device_prep_dma_cyclic = mxs_dma_prep_dma_cyclic;
|
|
mxs_dma->dma_device.device_pause = mxs_dma_pause_chan;
|
|
mxs_dma->dma_device.device_resume = mxs_dma_resume_chan;
|
|
mxs_dma->dma_device.device_terminate_all = mxs_dma_terminate_all;
|
|
mxs_dma->dma_device.src_addr_widths = BIT(DMA_SLAVE_BUSWIDTH_4_BYTES);
|
|
mxs_dma->dma_device.dst_addr_widths = BIT(DMA_SLAVE_BUSWIDTH_4_BYTES);
|
|
mxs_dma->dma_device.directions = BIT(DMA_DEV_TO_MEM) | BIT(DMA_MEM_TO_DEV);
|
|
mxs_dma->dma_device.residue_granularity = DMA_RESIDUE_GRANULARITY_BURST;
|
|
mxs_dma->dma_device.device_issue_pending = mxs_dma_enable_chan;
|
|
|
|
ret = dma_async_device_register(&mxs_dma->dma_device);
|
|
if (ret) {
|
|
dev_err(mxs_dma->dma_device.dev, "unable to register\n");
|
|
return ret;
|
|
}
|
|
|
|
ret = of_dma_controller_register(np, mxs_dma_xlate, mxs_dma);
|
|
if (ret) {
|
|
dev_err(mxs_dma->dma_device.dev,
|
|
"failed to register controller\n");
|
|
dma_async_device_unregister(&mxs_dma->dma_device);
|
|
}
|
|
|
|
dev_info(mxs_dma->dma_device.dev, "initialized\n");
|
|
|
|
return 0;
|
|
}
|
|
|
|
static struct platform_driver mxs_dma_driver = {
|
|
.driver = {
|
|
.name = "mxs-dma",
|
|
.of_match_table = mxs_dma_dt_ids,
|
|
},
|
|
.id_table = mxs_dma_ids,
|
|
};
|
|
|
|
static int __init mxs_dma_module_init(void)
|
|
{
|
|
return platform_driver_probe(&mxs_dma_driver, mxs_dma_probe);
|
|
}
|
|
subsys_initcall(mxs_dma_module_init);
|