1492 lines
36 KiB
C
1492 lines
36 KiB
C
// SPDX-License-Identifier: GPL-2.0
|
|
|
|
#define pr_fmt(fmt) "DMAR-IR: " fmt
|
|
|
|
#include <linux/interrupt.h>
|
|
#include <linux/dmar.h>
|
|
#include <linux/spinlock.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/jiffies.h>
|
|
#include <linux/hpet.h>
|
|
#include <linux/pci.h>
|
|
#include <linux/irq.h>
|
|
#include <linux/intel-iommu.h>
|
|
#include <linux/acpi.h>
|
|
#include <linux/irqdomain.h>
|
|
#include <linux/crash_dump.h>
|
|
#include <asm/io_apic.h>
|
|
#include <asm/smp.h>
|
|
#include <asm/cpu.h>
|
|
#include <asm/irq_remapping.h>
|
|
#include <asm/pci-direct.h>
|
|
#include <asm/msidef.h>
|
|
|
|
#include "irq_remapping.h"
|
|
|
|
enum irq_mode {
|
|
IRQ_REMAPPING,
|
|
IRQ_POSTING,
|
|
};
|
|
|
|
struct ioapic_scope {
|
|
struct intel_iommu *iommu;
|
|
unsigned int id;
|
|
unsigned int bus; /* PCI bus number */
|
|
unsigned int devfn; /* PCI devfn number */
|
|
};
|
|
|
|
struct hpet_scope {
|
|
struct intel_iommu *iommu;
|
|
u8 id;
|
|
unsigned int bus;
|
|
unsigned int devfn;
|
|
};
|
|
|
|
struct irq_2_iommu {
|
|
struct intel_iommu *iommu;
|
|
u16 irte_index;
|
|
u16 sub_handle;
|
|
u8 irte_mask;
|
|
enum irq_mode mode;
|
|
};
|
|
|
|
struct intel_ir_data {
|
|
struct irq_2_iommu irq_2_iommu;
|
|
struct irte irte_entry;
|
|
union {
|
|
struct msi_msg msi_entry;
|
|
};
|
|
};
|
|
|
|
#define IR_X2APIC_MODE(mode) (mode ? (1 << 11) : 0)
|
|
#define IRTE_DEST(dest) ((eim_mode) ? dest : dest << 8)
|
|
|
|
static int __read_mostly eim_mode;
|
|
static struct ioapic_scope ir_ioapic[MAX_IO_APICS];
|
|
static struct hpet_scope ir_hpet[MAX_HPET_TBS];
|
|
|
|
/*
|
|
* Lock ordering:
|
|
* ->dmar_global_lock
|
|
* ->irq_2_ir_lock
|
|
* ->qi->q_lock
|
|
* ->iommu->register_lock
|
|
* Note:
|
|
* intel_irq_remap_ops.{supported,prepare,enable,disable,reenable} are called
|
|
* in single-threaded environment with interrupt disabled, so no need to tabke
|
|
* the dmar_global_lock.
|
|
*/
|
|
static DEFINE_RAW_SPINLOCK(irq_2_ir_lock);
|
|
static const struct irq_domain_ops intel_ir_domain_ops;
|
|
|
|
static void iommu_disable_irq_remapping(struct intel_iommu *iommu);
|
|
static int __init parse_ioapics_under_ir(void);
|
|
|
|
static bool ir_pre_enabled(struct intel_iommu *iommu)
|
|
{
|
|
return (iommu->flags & VTD_FLAG_IRQ_REMAP_PRE_ENABLED);
|
|
}
|
|
|
|
static void clear_ir_pre_enabled(struct intel_iommu *iommu)
|
|
{
|
|
iommu->flags &= ~VTD_FLAG_IRQ_REMAP_PRE_ENABLED;
|
|
}
|
|
|
|
static void init_ir_status(struct intel_iommu *iommu)
|
|
{
|
|
u32 gsts;
|
|
|
|
gsts = readl(iommu->reg + DMAR_GSTS_REG);
|
|
if (gsts & DMA_GSTS_IRES)
|
|
iommu->flags |= VTD_FLAG_IRQ_REMAP_PRE_ENABLED;
|
|
}
|
|
|
|
static int alloc_irte(struct intel_iommu *iommu, int irq,
|
|
struct irq_2_iommu *irq_iommu, u16 count)
|
|
{
|
|
struct ir_table *table = iommu->ir_table;
|
|
unsigned int mask = 0;
|
|
unsigned long flags;
|
|
int index;
|
|
|
|
if (!count || !irq_iommu)
|
|
return -1;
|
|
|
|
if (count > 1) {
|
|
count = __roundup_pow_of_two(count);
|
|
mask = ilog2(count);
|
|
}
|
|
|
|
if (mask > ecap_max_handle_mask(iommu->ecap)) {
|
|
pr_err("Requested mask %x exceeds the max invalidation handle"
|
|
" mask value %Lx\n", mask,
|
|
ecap_max_handle_mask(iommu->ecap));
|
|
return -1;
|
|
}
|
|
|
|
raw_spin_lock_irqsave(&irq_2_ir_lock, flags);
|
|
index = bitmap_find_free_region(table->bitmap,
|
|
INTR_REMAP_TABLE_ENTRIES, mask);
|
|
if (index < 0) {
|
|
pr_warn("IR%d: can't allocate an IRTE\n", iommu->seq_id);
|
|
} else {
|
|
irq_iommu->iommu = iommu;
|
|
irq_iommu->irte_index = index;
|
|
irq_iommu->sub_handle = 0;
|
|
irq_iommu->irte_mask = mask;
|
|
irq_iommu->mode = IRQ_REMAPPING;
|
|
}
|
|
raw_spin_unlock_irqrestore(&irq_2_ir_lock, flags);
|
|
|
|
return index;
|
|
}
|
|
|
|
static int qi_flush_iec(struct intel_iommu *iommu, int index, int mask)
|
|
{
|
|
struct qi_desc desc;
|
|
|
|
desc.low = QI_IEC_IIDEX(index) | QI_IEC_TYPE | QI_IEC_IM(mask)
|
|
| QI_IEC_SELECTIVE;
|
|
desc.high = 0;
|
|
|
|
return qi_submit_sync(&desc, iommu);
|
|
}
|
|
|
|
static int modify_irte(struct irq_2_iommu *irq_iommu,
|
|
struct irte *irte_modified)
|
|
{
|
|
struct intel_iommu *iommu;
|
|
unsigned long flags;
|
|
struct irte *irte;
|
|
int rc, index;
|
|
|
|
if (!irq_iommu)
|
|
return -1;
|
|
|
|
raw_spin_lock_irqsave(&irq_2_ir_lock, flags);
|
|
|
|
iommu = irq_iommu->iommu;
|
|
|
|
index = irq_iommu->irte_index + irq_iommu->sub_handle;
|
|
irte = &iommu->ir_table->base[index];
|
|
|
|
#if defined(CONFIG_HAVE_CMPXCHG_DOUBLE)
|
|
if ((irte->pst == 1) || (irte_modified->pst == 1)) {
|
|
bool ret;
|
|
|
|
ret = cmpxchg_double(&irte->low, &irte->high,
|
|
irte->low, irte->high,
|
|
irte_modified->low, irte_modified->high);
|
|
/*
|
|
* We use cmpxchg16 to atomically update the 128-bit IRTE,
|
|
* and it cannot be updated by the hardware or other processors
|
|
* behind us, so the return value of cmpxchg16 should be the
|
|
* same as the old value.
|
|
*/
|
|
WARN_ON(!ret);
|
|
} else
|
|
#endif
|
|
{
|
|
set_64bit(&irte->low, irte_modified->low);
|
|
set_64bit(&irte->high, irte_modified->high);
|
|
}
|
|
__iommu_flush_cache(iommu, irte, sizeof(*irte));
|
|
|
|
rc = qi_flush_iec(iommu, index, 0);
|
|
|
|
/* Update iommu mode according to the IRTE mode */
|
|
irq_iommu->mode = irte->pst ? IRQ_POSTING : IRQ_REMAPPING;
|
|
raw_spin_unlock_irqrestore(&irq_2_ir_lock, flags);
|
|
|
|
return rc;
|
|
}
|
|
|
|
static struct intel_iommu *map_hpet_to_ir(u8 hpet_id)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < MAX_HPET_TBS; i++)
|
|
if (ir_hpet[i].id == hpet_id && ir_hpet[i].iommu)
|
|
return ir_hpet[i].iommu;
|
|
return NULL;
|
|
}
|
|
|
|
static struct intel_iommu *map_ioapic_to_ir(int apic)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < MAX_IO_APICS; i++)
|
|
if (ir_ioapic[i].id == apic && ir_ioapic[i].iommu)
|
|
return ir_ioapic[i].iommu;
|
|
return NULL;
|
|
}
|
|
|
|
static struct intel_iommu *map_dev_to_ir(struct pci_dev *dev)
|
|
{
|
|
struct dmar_drhd_unit *drhd;
|
|
|
|
drhd = dmar_find_matched_drhd_unit(dev);
|
|
if (!drhd)
|
|
return NULL;
|
|
|
|
return drhd->iommu;
|
|
}
|
|
|
|
static int clear_entries(struct irq_2_iommu *irq_iommu)
|
|
{
|
|
struct irte *start, *entry, *end;
|
|
struct intel_iommu *iommu;
|
|
int index;
|
|
|
|
if (irq_iommu->sub_handle)
|
|
return 0;
|
|
|
|
iommu = irq_iommu->iommu;
|
|
index = irq_iommu->irte_index;
|
|
|
|
start = iommu->ir_table->base + index;
|
|
end = start + (1 << irq_iommu->irte_mask);
|
|
|
|
for (entry = start; entry < end; entry++) {
|
|
set_64bit(&entry->low, 0);
|
|
set_64bit(&entry->high, 0);
|
|
}
|
|
bitmap_release_region(iommu->ir_table->bitmap, index,
|
|
irq_iommu->irte_mask);
|
|
|
|
return qi_flush_iec(iommu, index, irq_iommu->irte_mask);
|
|
}
|
|
|
|
/*
|
|
* source validation type
|
|
*/
|
|
#define SVT_NO_VERIFY 0x0 /* no verification is required */
|
|
#define SVT_VERIFY_SID_SQ 0x1 /* verify using SID and SQ fields */
|
|
#define SVT_VERIFY_BUS 0x2 /* verify bus of request-id */
|
|
|
|
/*
|
|
* source-id qualifier
|
|
*/
|
|
#define SQ_ALL_16 0x0 /* verify all 16 bits of request-id */
|
|
#define SQ_13_IGNORE_1 0x1 /* verify most significant 13 bits, ignore
|
|
* the third least significant bit
|
|
*/
|
|
#define SQ_13_IGNORE_2 0x2 /* verify most significant 13 bits, ignore
|
|
* the second and third least significant bits
|
|
*/
|
|
#define SQ_13_IGNORE_3 0x3 /* verify most significant 13 bits, ignore
|
|
* the least three significant bits
|
|
*/
|
|
|
|
/*
|
|
* set SVT, SQ and SID fields of irte to verify
|
|
* source ids of interrupt requests
|
|
*/
|
|
static void set_irte_sid(struct irte *irte, unsigned int svt,
|
|
unsigned int sq, unsigned int sid)
|
|
{
|
|
if (disable_sourceid_checking)
|
|
svt = SVT_NO_VERIFY;
|
|
irte->svt = svt;
|
|
irte->sq = sq;
|
|
irte->sid = sid;
|
|
}
|
|
|
|
static int set_ioapic_sid(struct irte *irte, int apic)
|
|
{
|
|
int i;
|
|
u16 sid = 0;
|
|
|
|
if (!irte)
|
|
return -1;
|
|
|
|
down_read(&dmar_global_lock);
|
|
for (i = 0; i < MAX_IO_APICS; i++) {
|
|
if (ir_ioapic[i].iommu && ir_ioapic[i].id == apic) {
|
|
sid = (ir_ioapic[i].bus << 8) | ir_ioapic[i].devfn;
|
|
break;
|
|
}
|
|
}
|
|
up_read(&dmar_global_lock);
|
|
|
|
if (sid == 0) {
|
|
pr_warn("Failed to set source-id of IOAPIC (%d)\n", apic);
|
|
return -1;
|
|
}
|
|
|
|
set_irte_sid(irte, SVT_VERIFY_SID_SQ, SQ_ALL_16, sid);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int set_hpet_sid(struct irte *irte, u8 id)
|
|
{
|
|
int i;
|
|
u16 sid = 0;
|
|
|
|
if (!irte)
|
|
return -1;
|
|
|
|
down_read(&dmar_global_lock);
|
|
for (i = 0; i < MAX_HPET_TBS; i++) {
|
|
if (ir_hpet[i].iommu && ir_hpet[i].id == id) {
|
|
sid = (ir_hpet[i].bus << 8) | ir_hpet[i].devfn;
|
|
break;
|
|
}
|
|
}
|
|
up_read(&dmar_global_lock);
|
|
|
|
if (sid == 0) {
|
|
pr_warn("Failed to set source-id of HPET block (%d)\n", id);
|
|
return -1;
|
|
}
|
|
|
|
/*
|
|
* Should really use SQ_ALL_16. Some platforms are broken.
|
|
* While we figure out the right quirks for these broken platforms, use
|
|
* SQ_13_IGNORE_3 for now.
|
|
*/
|
|
set_irte_sid(irte, SVT_VERIFY_SID_SQ, SQ_13_IGNORE_3, sid);
|
|
|
|
return 0;
|
|
}
|
|
|
|
struct set_msi_sid_data {
|
|
struct pci_dev *pdev;
|
|
u16 alias;
|
|
};
|
|
|
|
static int set_msi_sid_cb(struct pci_dev *pdev, u16 alias, void *opaque)
|
|
{
|
|
struct set_msi_sid_data *data = opaque;
|
|
|
|
data->pdev = pdev;
|
|
data->alias = alias;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int set_msi_sid(struct irte *irte, struct pci_dev *dev)
|
|
{
|
|
struct set_msi_sid_data data;
|
|
|
|
if (!irte || !dev)
|
|
return -1;
|
|
|
|
pci_for_each_dma_alias(dev, set_msi_sid_cb, &data);
|
|
|
|
/*
|
|
* DMA alias provides us with a PCI device and alias. The only case
|
|
* where the it will return an alias on a different bus than the
|
|
* device is the case of a PCIe-to-PCI bridge, where the alias is for
|
|
* the subordinate bus. In this case we can only verify the bus.
|
|
*
|
|
* If the alias device is on a different bus than our source device
|
|
* then we have a topology based alias, use it.
|
|
*
|
|
* Otherwise, the alias is for a device DMA quirk and we cannot
|
|
* assume that MSI uses the same requester ID. Therefore use the
|
|
* original device.
|
|
*/
|
|
if (PCI_BUS_NUM(data.alias) != data.pdev->bus->number)
|
|
set_irte_sid(irte, SVT_VERIFY_BUS, SQ_ALL_16,
|
|
PCI_DEVID(PCI_BUS_NUM(data.alias),
|
|
dev->bus->number));
|
|
else if (data.pdev->bus->number != dev->bus->number)
|
|
set_irte_sid(irte, SVT_VERIFY_SID_SQ, SQ_ALL_16, data.alias);
|
|
else
|
|
set_irte_sid(irte, SVT_VERIFY_SID_SQ, SQ_ALL_16,
|
|
PCI_DEVID(dev->bus->number, dev->devfn));
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int iommu_load_old_irte(struct intel_iommu *iommu)
|
|
{
|
|
struct irte *old_ir_table;
|
|
phys_addr_t irt_phys;
|
|
unsigned int i;
|
|
size_t size;
|
|
u64 irta;
|
|
|
|
/* Check whether the old ir-table has the same size as ours */
|
|
irta = dmar_readq(iommu->reg + DMAR_IRTA_REG);
|
|
if ((irta & INTR_REMAP_TABLE_REG_SIZE_MASK)
|
|
!= INTR_REMAP_TABLE_REG_SIZE)
|
|
return -EINVAL;
|
|
|
|
irt_phys = irta & VTD_PAGE_MASK;
|
|
size = INTR_REMAP_TABLE_ENTRIES*sizeof(struct irte);
|
|
|
|
/* Map the old IR table */
|
|
old_ir_table = memremap(irt_phys, size, MEMREMAP_WB);
|
|
if (!old_ir_table)
|
|
return -ENOMEM;
|
|
|
|
/* Copy data over */
|
|
memcpy(iommu->ir_table->base, old_ir_table, size);
|
|
|
|
__iommu_flush_cache(iommu, iommu->ir_table->base, size);
|
|
|
|
/*
|
|
* Now check the table for used entries and mark those as
|
|
* allocated in the bitmap
|
|
*/
|
|
for (i = 0; i < INTR_REMAP_TABLE_ENTRIES; i++) {
|
|
if (iommu->ir_table->base[i].present)
|
|
bitmap_set(iommu->ir_table->bitmap, i, 1);
|
|
}
|
|
|
|
memunmap(old_ir_table);
|
|
|
|
return 0;
|
|
}
|
|
|
|
|
|
static void iommu_set_irq_remapping(struct intel_iommu *iommu, int mode)
|
|
{
|
|
unsigned long flags;
|
|
u64 addr;
|
|
u32 sts;
|
|
|
|
addr = virt_to_phys((void *)iommu->ir_table->base);
|
|
|
|
raw_spin_lock_irqsave(&iommu->register_lock, flags);
|
|
|
|
dmar_writeq(iommu->reg + DMAR_IRTA_REG,
|
|
(addr) | IR_X2APIC_MODE(mode) | INTR_REMAP_TABLE_REG_SIZE);
|
|
|
|
/* Set interrupt-remapping table pointer */
|
|
writel(iommu->gcmd | DMA_GCMD_SIRTP, iommu->reg + DMAR_GCMD_REG);
|
|
|
|
IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
|
|
readl, (sts & DMA_GSTS_IRTPS), sts);
|
|
raw_spin_unlock_irqrestore(&iommu->register_lock, flags);
|
|
|
|
/*
|
|
* Global invalidation of interrupt entry cache to make sure the
|
|
* hardware uses the new irq remapping table.
|
|
*/
|
|
qi_global_iec(iommu);
|
|
}
|
|
|
|
static void iommu_enable_irq_remapping(struct intel_iommu *iommu)
|
|
{
|
|
unsigned long flags;
|
|
u32 sts;
|
|
|
|
raw_spin_lock_irqsave(&iommu->register_lock, flags);
|
|
|
|
/* Enable interrupt-remapping */
|
|
iommu->gcmd |= DMA_GCMD_IRE;
|
|
iommu->gcmd &= ~DMA_GCMD_CFI; /* Block compatibility-format MSIs */
|
|
writel(iommu->gcmd, iommu->reg + DMAR_GCMD_REG);
|
|
|
|
IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
|
|
readl, (sts & DMA_GSTS_IRES), sts);
|
|
|
|
/*
|
|
* With CFI clear in the Global Command register, we should be
|
|
* protected from dangerous (i.e. compatibility) interrupts
|
|
* regardless of x2apic status. Check just to be sure.
|
|
*/
|
|
if (sts & DMA_GSTS_CFIS)
|
|
WARN(1, KERN_WARNING
|
|
"Compatibility-format IRQs enabled despite intr remapping;\n"
|
|
"you are vulnerable to IRQ injection.\n");
|
|
|
|
raw_spin_unlock_irqrestore(&iommu->register_lock, flags);
|
|
}
|
|
|
|
static int intel_setup_irq_remapping(struct intel_iommu *iommu)
|
|
{
|
|
struct ir_table *ir_table;
|
|
struct fwnode_handle *fn;
|
|
unsigned long *bitmap;
|
|
struct page *pages;
|
|
|
|
if (iommu->ir_table)
|
|
return 0;
|
|
|
|
ir_table = kzalloc(sizeof(struct ir_table), GFP_KERNEL);
|
|
if (!ir_table)
|
|
return -ENOMEM;
|
|
|
|
pages = alloc_pages_node(iommu->node, GFP_KERNEL | __GFP_ZERO,
|
|
INTR_REMAP_PAGE_ORDER);
|
|
if (!pages) {
|
|
pr_err("IR%d: failed to allocate pages of order %d\n",
|
|
iommu->seq_id, INTR_REMAP_PAGE_ORDER);
|
|
goto out_free_table;
|
|
}
|
|
|
|
bitmap = kcalloc(BITS_TO_LONGS(INTR_REMAP_TABLE_ENTRIES),
|
|
sizeof(long), GFP_ATOMIC);
|
|
if (bitmap == NULL) {
|
|
pr_err("IR%d: failed to allocate bitmap\n", iommu->seq_id);
|
|
goto out_free_pages;
|
|
}
|
|
|
|
fn = irq_domain_alloc_named_id_fwnode("INTEL-IR", iommu->seq_id);
|
|
if (!fn)
|
|
goto out_free_bitmap;
|
|
|
|
iommu->ir_domain =
|
|
irq_domain_create_hierarchy(arch_get_ir_parent_domain(),
|
|
0, INTR_REMAP_TABLE_ENTRIES,
|
|
fn, &intel_ir_domain_ops,
|
|
iommu);
|
|
irq_domain_free_fwnode(fn);
|
|
if (!iommu->ir_domain) {
|
|
pr_err("IR%d: failed to allocate irqdomain\n", iommu->seq_id);
|
|
goto out_free_bitmap;
|
|
}
|
|
iommu->ir_msi_domain =
|
|
arch_create_remap_msi_irq_domain(iommu->ir_domain,
|
|
"INTEL-IR-MSI",
|
|
iommu->seq_id);
|
|
|
|
ir_table->base = page_address(pages);
|
|
ir_table->bitmap = bitmap;
|
|
iommu->ir_table = ir_table;
|
|
|
|
/*
|
|
* If the queued invalidation is already initialized,
|
|
* shouldn't disable it.
|
|
*/
|
|
if (!iommu->qi) {
|
|
/*
|
|
* Clear previous faults.
|
|
*/
|
|
dmar_fault(-1, iommu);
|
|
dmar_disable_qi(iommu);
|
|
|
|
if (dmar_enable_qi(iommu)) {
|
|
pr_err("Failed to enable queued invalidation\n");
|
|
goto out_free_bitmap;
|
|
}
|
|
}
|
|
|
|
init_ir_status(iommu);
|
|
|
|
if (ir_pre_enabled(iommu)) {
|
|
if (!is_kdump_kernel()) {
|
|
pr_warn("IRQ remapping was enabled on %s but we are not in kdump mode\n",
|
|
iommu->name);
|
|
clear_ir_pre_enabled(iommu);
|
|
iommu_disable_irq_remapping(iommu);
|
|
} else if (iommu_load_old_irte(iommu))
|
|
pr_err("Failed to copy IR table for %s from previous kernel\n",
|
|
iommu->name);
|
|
else
|
|
pr_info("Copied IR table for %s from previous kernel\n",
|
|
iommu->name);
|
|
}
|
|
|
|
iommu_set_irq_remapping(iommu, eim_mode);
|
|
|
|
return 0;
|
|
|
|
out_free_bitmap:
|
|
kfree(bitmap);
|
|
out_free_pages:
|
|
__free_pages(pages, INTR_REMAP_PAGE_ORDER);
|
|
out_free_table:
|
|
kfree(ir_table);
|
|
|
|
iommu->ir_table = NULL;
|
|
|
|
return -ENOMEM;
|
|
}
|
|
|
|
static void intel_teardown_irq_remapping(struct intel_iommu *iommu)
|
|
{
|
|
if (iommu && iommu->ir_table) {
|
|
if (iommu->ir_msi_domain) {
|
|
irq_domain_remove(iommu->ir_msi_domain);
|
|
iommu->ir_msi_domain = NULL;
|
|
}
|
|
if (iommu->ir_domain) {
|
|
irq_domain_remove(iommu->ir_domain);
|
|
iommu->ir_domain = NULL;
|
|
}
|
|
free_pages((unsigned long)iommu->ir_table->base,
|
|
INTR_REMAP_PAGE_ORDER);
|
|
kfree(iommu->ir_table->bitmap);
|
|
kfree(iommu->ir_table);
|
|
iommu->ir_table = NULL;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Disable Interrupt Remapping.
|
|
*/
|
|
static void iommu_disable_irq_remapping(struct intel_iommu *iommu)
|
|
{
|
|
unsigned long flags;
|
|
u32 sts;
|
|
|
|
if (!ecap_ir_support(iommu->ecap))
|
|
return;
|
|
|
|
/*
|
|
* global invalidation of interrupt entry cache before disabling
|
|
* interrupt-remapping.
|
|
*/
|
|
qi_global_iec(iommu);
|
|
|
|
raw_spin_lock_irqsave(&iommu->register_lock, flags);
|
|
|
|
sts = readl(iommu->reg + DMAR_GSTS_REG);
|
|
if (!(sts & DMA_GSTS_IRES))
|
|
goto end;
|
|
|
|
iommu->gcmd &= ~DMA_GCMD_IRE;
|
|
writel(iommu->gcmd, iommu->reg + DMAR_GCMD_REG);
|
|
|
|
IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
|
|
readl, !(sts & DMA_GSTS_IRES), sts);
|
|
|
|
end:
|
|
raw_spin_unlock_irqrestore(&iommu->register_lock, flags);
|
|
}
|
|
|
|
static int __init dmar_x2apic_optout(void)
|
|
{
|
|
struct acpi_table_dmar *dmar;
|
|
dmar = (struct acpi_table_dmar *)dmar_tbl;
|
|
if (!dmar || no_x2apic_optout)
|
|
return 0;
|
|
return dmar->flags & DMAR_X2APIC_OPT_OUT;
|
|
}
|
|
|
|
static void __init intel_cleanup_irq_remapping(void)
|
|
{
|
|
struct dmar_drhd_unit *drhd;
|
|
struct intel_iommu *iommu;
|
|
|
|
for_each_iommu(iommu, drhd) {
|
|
if (ecap_ir_support(iommu->ecap)) {
|
|
iommu_disable_irq_remapping(iommu);
|
|
intel_teardown_irq_remapping(iommu);
|
|
}
|
|
}
|
|
|
|
if (x2apic_supported())
|
|
pr_warn("Failed to enable irq remapping. You are vulnerable to irq-injection attacks.\n");
|
|
}
|
|
|
|
static int __init intel_prepare_irq_remapping(void)
|
|
{
|
|
struct dmar_drhd_unit *drhd;
|
|
struct intel_iommu *iommu;
|
|
int eim = 0;
|
|
|
|
if (irq_remap_broken) {
|
|
pr_warn("This system BIOS has enabled interrupt remapping\n"
|
|
"on a chipset that contains an erratum making that\n"
|
|
"feature unstable. To maintain system stability\n"
|
|
"interrupt remapping is being disabled. Please\n"
|
|
"contact your BIOS vendor for an update\n");
|
|
add_taint(TAINT_FIRMWARE_WORKAROUND, LOCKDEP_STILL_OK);
|
|
return -ENODEV;
|
|
}
|
|
|
|
if (dmar_table_init() < 0)
|
|
return -ENODEV;
|
|
|
|
if (!dmar_ir_support())
|
|
return -ENODEV;
|
|
|
|
if (parse_ioapics_under_ir()) {
|
|
pr_info("Not enabling interrupt remapping\n");
|
|
goto error;
|
|
}
|
|
|
|
/* First make sure all IOMMUs support IRQ remapping */
|
|
for_each_iommu(iommu, drhd)
|
|
if (!ecap_ir_support(iommu->ecap))
|
|
goto error;
|
|
|
|
/* Detect remapping mode: lapic or x2apic */
|
|
if (x2apic_supported()) {
|
|
eim = !dmar_x2apic_optout();
|
|
if (!eim) {
|
|
pr_info("x2apic is disabled because BIOS sets x2apic opt out bit.");
|
|
pr_info("Use 'intremap=no_x2apic_optout' to override the BIOS setting.\n");
|
|
}
|
|
}
|
|
|
|
for_each_iommu(iommu, drhd) {
|
|
if (eim && !ecap_eim_support(iommu->ecap)) {
|
|
pr_info("%s does not support EIM\n", iommu->name);
|
|
eim = 0;
|
|
}
|
|
}
|
|
|
|
eim_mode = eim;
|
|
if (eim)
|
|
pr_info("Queued invalidation will be enabled to support x2apic and Intr-remapping.\n");
|
|
|
|
/* Do the initializations early */
|
|
for_each_iommu(iommu, drhd) {
|
|
if (intel_setup_irq_remapping(iommu)) {
|
|
pr_err("Failed to setup irq remapping for %s\n",
|
|
iommu->name);
|
|
goto error;
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
|
|
error:
|
|
intel_cleanup_irq_remapping();
|
|
return -ENODEV;
|
|
}
|
|
|
|
/*
|
|
* Set Posted-Interrupts capability.
|
|
*/
|
|
static inline void set_irq_posting_cap(void)
|
|
{
|
|
struct dmar_drhd_unit *drhd;
|
|
struct intel_iommu *iommu;
|
|
|
|
if (!disable_irq_post) {
|
|
/*
|
|
* If IRTE is in posted format, the 'pda' field goes across the
|
|
* 64-bit boundary, we need use cmpxchg16b to atomically update
|
|
* it. We only expose posted-interrupt when X86_FEATURE_CX16
|
|
* is supported. Actually, hardware platforms supporting PI
|
|
* should have X86_FEATURE_CX16 support, this has been confirmed
|
|
* with Intel hardware guys.
|
|
*/
|
|
if (boot_cpu_has(X86_FEATURE_CX16))
|
|
intel_irq_remap_ops.capability |= 1 << IRQ_POSTING_CAP;
|
|
|
|
for_each_iommu(iommu, drhd)
|
|
if (!cap_pi_support(iommu->cap)) {
|
|
intel_irq_remap_ops.capability &=
|
|
~(1 << IRQ_POSTING_CAP);
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
static int __init intel_enable_irq_remapping(void)
|
|
{
|
|
struct dmar_drhd_unit *drhd;
|
|
struct intel_iommu *iommu;
|
|
bool setup = false;
|
|
|
|
/*
|
|
* Setup Interrupt-remapping for all the DRHD's now.
|
|
*/
|
|
for_each_iommu(iommu, drhd) {
|
|
if (!ir_pre_enabled(iommu))
|
|
iommu_enable_irq_remapping(iommu);
|
|
setup = true;
|
|
}
|
|
|
|
if (!setup)
|
|
goto error;
|
|
|
|
irq_remapping_enabled = 1;
|
|
|
|
set_irq_posting_cap();
|
|
|
|
pr_info("Enabled IRQ remapping in %s mode\n", eim_mode ? "x2apic" : "xapic");
|
|
|
|
return eim_mode ? IRQ_REMAP_X2APIC_MODE : IRQ_REMAP_XAPIC_MODE;
|
|
|
|
error:
|
|
intel_cleanup_irq_remapping();
|
|
return -1;
|
|
}
|
|
|
|
static int ir_parse_one_hpet_scope(struct acpi_dmar_device_scope *scope,
|
|
struct intel_iommu *iommu,
|
|
struct acpi_dmar_hardware_unit *drhd)
|
|
{
|
|
struct acpi_dmar_pci_path *path;
|
|
u8 bus;
|
|
int count, free = -1;
|
|
|
|
bus = scope->bus;
|
|
path = (struct acpi_dmar_pci_path *)(scope + 1);
|
|
count = (scope->length - sizeof(struct acpi_dmar_device_scope))
|
|
/ sizeof(struct acpi_dmar_pci_path);
|
|
|
|
while (--count > 0) {
|
|
/*
|
|
* Access PCI directly due to the PCI
|
|
* subsystem isn't initialized yet.
|
|
*/
|
|
bus = read_pci_config_byte(bus, path->device, path->function,
|
|
PCI_SECONDARY_BUS);
|
|
path++;
|
|
}
|
|
|
|
for (count = 0; count < MAX_HPET_TBS; count++) {
|
|
if (ir_hpet[count].iommu == iommu &&
|
|
ir_hpet[count].id == scope->enumeration_id)
|
|
return 0;
|
|
else if (ir_hpet[count].iommu == NULL && free == -1)
|
|
free = count;
|
|
}
|
|
if (free == -1) {
|
|
pr_warn("Exceeded Max HPET blocks\n");
|
|
return -ENOSPC;
|
|
}
|
|
|
|
ir_hpet[free].iommu = iommu;
|
|
ir_hpet[free].id = scope->enumeration_id;
|
|
ir_hpet[free].bus = bus;
|
|
ir_hpet[free].devfn = PCI_DEVFN(path->device, path->function);
|
|
pr_info("HPET id %d under DRHD base 0x%Lx\n",
|
|
scope->enumeration_id, drhd->address);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int ir_parse_one_ioapic_scope(struct acpi_dmar_device_scope *scope,
|
|
struct intel_iommu *iommu,
|
|
struct acpi_dmar_hardware_unit *drhd)
|
|
{
|
|
struct acpi_dmar_pci_path *path;
|
|
u8 bus;
|
|
int count, free = -1;
|
|
|
|
bus = scope->bus;
|
|
path = (struct acpi_dmar_pci_path *)(scope + 1);
|
|
count = (scope->length - sizeof(struct acpi_dmar_device_scope))
|
|
/ sizeof(struct acpi_dmar_pci_path);
|
|
|
|
while (--count > 0) {
|
|
/*
|
|
* Access PCI directly due to the PCI
|
|
* subsystem isn't initialized yet.
|
|
*/
|
|
bus = read_pci_config_byte(bus, path->device, path->function,
|
|
PCI_SECONDARY_BUS);
|
|
path++;
|
|
}
|
|
|
|
for (count = 0; count < MAX_IO_APICS; count++) {
|
|
if (ir_ioapic[count].iommu == iommu &&
|
|
ir_ioapic[count].id == scope->enumeration_id)
|
|
return 0;
|
|
else if (ir_ioapic[count].iommu == NULL && free == -1)
|
|
free = count;
|
|
}
|
|
if (free == -1) {
|
|
pr_warn("Exceeded Max IO APICS\n");
|
|
return -ENOSPC;
|
|
}
|
|
|
|
ir_ioapic[free].bus = bus;
|
|
ir_ioapic[free].devfn = PCI_DEVFN(path->device, path->function);
|
|
ir_ioapic[free].iommu = iommu;
|
|
ir_ioapic[free].id = scope->enumeration_id;
|
|
pr_info("IOAPIC id %d under DRHD base 0x%Lx IOMMU %d\n",
|
|
scope->enumeration_id, drhd->address, iommu->seq_id);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int ir_parse_ioapic_hpet_scope(struct acpi_dmar_header *header,
|
|
struct intel_iommu *iommu)
|
|
{
|
|
int ret = 0;
|
|
struct acpi_dmar_hardware_unit *drhd;
|
|
struct acpi_dmar_device_scope *scope;
|
|
void *start, *end;
|
|
|
|
drhd = (struct acpi_dmar_hardware_unit *)header;
|
|
start = (void *)(drhd + 1);
|
|
end = ((void *)drhd) + header->length;
|
|
|
|
while (start < end && ret == 0) {
|
|
scope = start;
|
|
if (scope->entry_type == ACPI_DMAR_SCOPE_TYPE_IOAPIC)
|
|
ret = ir_parse_one_ioapic_scope(scope, iommu, drhd);
|
|
else if (scope->entry_type == ACPI_DMAR_SCOPE_TYPE_HPET)
|
|
ret = ir_parse_one_hpet_scope(scope, iommu, drhd);
|
|
start += scope->length;
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
static void ir_remove_ioapic_hpet_scope(struct intel_iommu *iommu)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < MAX_HPET_TBS; i++)
|
|
if (ir_hpet[i].iommu == iommu)
|
|
ir_hpet[i].iommu = NULL;
|
|
|
|
for (i = 0; i < MAX_IO_APICS; i++)
|
|
if (ir_ioapic[i].iommu == iommu)
|
|
ir_ioapic[i].iommu = NULL;
|
|
}
|
|
|
|
/*
|
|
* Finds the assocaition between IOAPIC's and its Interrupt-remapping
|
|
* hardware unit.
|
|
*/
|
|
static int __init parse_ioapics_under_ir(void)
|
|
{
|
|
struct dmar_drhd_unit *drhd;
|
|
struct intel_iommu *iommu;
|
|
bool ir_supported = false;
|
|
int ioapic_idx;
|
|
|
|
for_each_iommu(iommu, drhd) {
|
|
int ret;
|
|
|
|
if (!ecap_ir_support(iommu->ecap))
|
|
continue;
|
|
|
|
ret = ir_parse_ioapic_hpet_scope(drhd->hdr, iommu);
|
|
if (ret)
|
|
return ret;
|
|
|
|
ir_supported = true;
|
|
}
|
|
|
|
if (!ir_supported)
|
|
return -ENODEV;
|
|
|
|
for (ioapic_idx = 0; ioapic_idx < nr_ioapics; ioapic_idx++) {
|
|
int ioapic_id = mpc_ioapic_id(ioapic_idx);
|
|
if (!map_ioapic_to_ir(ioapic_id)) {
|
|
pr_err(FW_BUG "ioapic %d has no mapping iommu, "
|
|
"interrupt remapping will be disabled\n",
|
|
ioapic_id);
|
|
return -1;
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int __init ir_dev_scope_init(void)
|
|
{
|
|
int ret;
|
|
|
|
if (!irq_remapping_enabled)
|
|
return 0;
|
|
|
|
down_write(&dmar_global_lock);
|
|
ret = dmar_dev_scope_init();
|
|
up_write(&dmar_global_lock);
|
|
|
|
return ret;
|
|
}
|
|
rootfs_initcall(ir_dev_scope_init);
|
|
|
|
static void disable_irq_remapping(void)
|
|
{
|
|
struct dmar_drhd_unit *drhd;
|
|
struct intel_iommu *iommu = NULL;
|
|
|
|
/*
|
|
* Disable Interrupt-remapping for all the DRHD's now.
|
|
*/
|
|
for_each_iommu(iommu, drhd) {
|
|
if (!ecap_ir_support(iommu->ecap))
|
|
continue;
|
|
|
|
iommu_disable_irq_remapping(iommu);
|
|
}
|
|
|
|
/*
|
|
* Clear Posted-Interrupts capability.
|
|
*/
|
|
if (!disable_irq_post)
|
|
intel_irq_remap_ops.capability &= ~(1 << IRQ_POSTING_CAP);
|
|
}
|
|
|
|
static int reenable_irq_remapping(int eim)
|
|
{
|
|
struct dmar_drhd_unit *drhd;
|
|
bool setup = false;
|
|
struct intel_iommu *iommu = NULL;
|
|
|
|
for_each_iommu(iommu, drhd)
|
|
if (iommu->qi)
|
|
dmar_reenable_qi(iommu);
|
|
|
|
/*
|
|
* Setup Interrupt-remapping for all the DRHD's now.
|
|
*/
|
|
for_each_iommu(iommu, drhd) {
|
|
if (!ecap_ir_support(iommu->ecap))
|
|
continue;
|
|
|
|
/* Set up interrupt remapping for iommu.*/
|
|
iommu_set_irq_remapping(iommu, eim);
|
|
iommu_enable_irq_remapping(iommu);
|
|
setup = true;
|
|
}
|
|
|
|
if (!setup)
|
|
goto error;
|
|
|
|
set_irq_posting_cap();
|
|
|
|
return 0;
|
|
|
|
error:
|
|
/*
|
|
* handle error condition gracefully here!
|
|
*/
|
|
return -1;
|
|
}
|
|
|
|
static void prepare_irte(struct irte *irte, int vector, unsigned int dest)
|
|
{
|
|
memset(irte, 0, sizeof(*irte));
|
|
|
|
irte->present = 1;
|
|
irte->dst_mode = apic->irq_dest_mode;
|
|
/*
|
|
* Trigger mode in the IRTE will always be edge, and for IO-APIC, the
|
|
* actual level or edge trigger will be setup in the IO-APIC
|
|
* RTE. This will help simplify level triggered irq migration.
|
|
* For more details, see the comments (in io_apic.c) explainig IO-APIC
|
|
* irq migration in the presence of interrupt-remapping.
|
|
*/
|
|
irte->trigger_mode = 0;
|
|
irte->dlvry_mode = apic->irq_delivery_mode;
|
|
irte->vector = vector;
|
|
irte->dest_id = IRTE_DEST(dest);
|
|
irte->redir_hint = 1;
|
|
}
|
|
|
|
static struct irq_domain *intel_get_ir_irq_domain(struct irq_alloc_info *info)
|
|
{
|
|
struct intel_iommu *iommu = NULL;
|
|
|
|
if (!info)
|
|
return NULL;
|
|
|
|
switch (info->type) {
|
|
case X86_IRQ_ALLOC_TYPE_IOAPIC:
|
|
iommu = map_ioapic_to_ir(info->ioapic_id);
|
|
break;
|
|
case X86_IRQ_ALLOC_TYPE_HPET:
|
|
iommu = map_hpet_to_ir(info->hpet_id);
|
|
break;
|
|
case X86_IRQ_ALLOC_TYPE_MSI:
|
|
case X86_IRQ_ALLOC_TYPE_MSIX:
|
|
iommu = map_dev_to_ir(info->msi_dev);
|
|
break;
|
|
default:
|
|
BUG_ON(1);
|
|
break;
|
|
}
|
|
|
|
return iommu ? iommu->ir_domain : NULL;
|
|
}
|
|
|
|
static struct irq_domain *intel_get_irq_domain(struct irq_alloc_info *info)
|
|
{
|
|
struct intel_iommu *iommu;
|
|
|
|
if (!info)
|
|
return NULL;
|
|
|
|
switch (info->type) {
|
|
case X86_IRQ_ALLOC_TYPE_MSI:
|
|
case X86_IRQ_ALLOC_TYPE_MSIX:
|
|
iommu = map_dev_to_ir(info->msi_dev);
|
|
if (iommu)
|
|
return iommu->ir_msi_domain;
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
|
|
return NULL;
|
|
}
|
|
|
|
struct irq_remap_ops intel_irq_remap_ops = {
|
|
.prepare = intel_prepare_irq_remapping,
|
|
.enable = intel_enable_irq_remapping,
|
|
.disable = disable_irq_remapping,
|
|
.reenable = reenable_irq_remapping,
|
|
.enable_faulting = enable_drhd_fault_handling,
|
|
.get_ir_irq_domain = intel_get_ir_irq_domain,
|
|
.get_irq_domain = intel_get_irq_domain,
|
|
};
|
|
|
|
static void intel_ir_reconfigure_irte(struct irq_data *irqd, bool force)
|
|
{
|
|
struct intel_ir_data *ir_data = irqd->chip_data;
|
|
struct irte *irte = &ir_data->irte_entry;
|
|
struct irq_cfg *cfg = irqd_cfg(irqd);
|
|
|
|
/*
|
|
* Atomically updates the IRTE with the new destination, vector
|
|
* and flushes the interrupt entry cache.
|
|
*/
|
|
irte->vector = cfg->vector;
|
|
irte->dest_id = IRTE_DEST(cfg->dest_apicid);
|
|
|
|
/* Update the hardware only if the interrupt is in remapped mode. */
|
|
if (!force || ir_data->irq_2_iommu.mode == IRQ_REMAPPING)
|
|
modify_irte(&ir_data->irq_2_iommu, irte);
|
|
}
|
|
|
|
/*
|
|
* Migrate the IO-APIC irq in the presence of intr-remapping.
|
|
*
|
|
* For both level and edge triggered, irq migration is a simple atomic
|
|
* update(of vector and cpu destination) of IRTE and flush the hardware cache.
|
|
*
|
|
* For level triggered, we eliminate the io-apic RTE modification (with the
|
|
* updated vector information), by using a virtual vector (io-apic pin number).
|
|
* Real vector that is used for interrupting cpu will be coming from
|
|
* the interrupt-remapping table entry.
|
|
*
|
|
* As the migration is a simple atomic update of IRTE, the same mechanism
|
|
* is used to migrate MSI irq's in the presence of interrupt-remapping.
|
|
*/
|
|
static int
|
|
intel_ir_set_affinity(struct irq_data *data, const struct cpumask *mask,
|
|
bool force)
|
|
{
|
|
struct irq_data *parent = data->parent_data;
|
|
struct irq_cfg *cfg = irqd_cfg(data);
|
|
int ret;
|
|
|
|
ret = parent->chip->irq_set_affinity(parent, mask, force);
|
|
if (ret < 0 || ret == IRQ_SET_MASK_OK_DONE)
|
|
return ret;
|
|
|
|
intel_ir_reconfigure_irte(data, false);
|
|
/*
|
|
* After this point, all the interrupts will start arriving
|
|
* at the new destination. So, time to cleanup the previous
|
|
* vector allocation.
|
|
*/
|
|
send_cleanup_vector(cfg);
|
|
|
|
return IRQ_SET_MASK_OK_DONE;
|
|
}
|
|
|
|
static void intel_ir_compose_msi_msg(struct irq_data *irq_data,
|
|
struct msi_msg *msg)
|
|
{
|
|
struct intel_ir_data *ir_data = irq_data->chip_data;
|
|
|
|
*msg = ir_data->msi_entry;
|
|
}
|
|
|
|
static int intel_ir_set_vcpu_affinity(struct irq_data *data, void *info)
|
|
{
|
|
struct intel_ir_data *ir_data = data->chip_data;
|
|
struct vcpu_data *vcpu_pi_info = info;
|
|
|
|
/* stop posting interrupts, back to remapping mode */
|
|
if (!vcpu_pi_info) {
|
|
modify_irte(&ir_data->irq_2_iommu, &ir_data->irte_entry);
|
|
} else {
|
|
struct irte irte_pi;
|
|
|
|
/*
|
|
* We are not caching the posted interrupt entry. We
|
|
* copy the data from the remapped entry and modify
|
|
* the fields which are relevant for posted mode. The
|
|
* cached remapped entry is used for switching back to
|
|
* remapped mode.
|
|
*/
|
|
memset(&irte_pi, 0, sizeof(irte_pi));
|
|
dmar_copy_shared_irte(&irte_pi, &ir_data->irte_entry);
|
|
|
|
/* Update the posted mode fields */
|
|
irte_pi.p_pst = 1;
|
|
irte_pi.p_urgent = 0;
|
|
irte_pi.p_vector = vcpu_pi_info->vector;
|
|
irte_pi.pda_l = (vcpu_pi_info->pi_desc_addr >>
|
|
(32 - PDA_LOW_BIT)) & ~(-1UL << PDA_LOW_BIT);
|
|
irte_pi.pda_h = (vcpu_pi_info->pi_desc_addr >> 32) &
|
|
~(-1UL << PDA_HIGH_BIT);
|
|
|
|
modify_irte(&ir_data->irq_2_iommu, &irte_pi);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static struct irq_chip intel_ir_chip = {
|
|
.name = "INTEL-IR",
|
|
.irq_ack = ir_ack_apic_edge,
|
|
.irq_set_affinity = intel_ir_set_affinity,
|
|
.irq_compose_msi_msg = intel_ir_compose_msi_msg,
|
|
.irq_set_vcpu_affinity = intel_ir_set_vcpu_affinity,
|
|
};
|
|
|
|
static void intel_irq_remapping_prepare_irte(struct intel_ir_data *data,
|
|
struct irq_cfg *irq_cfg,
|
|
struct irq_alloc_info *info,
|
|
int index, int sub_handle)
|
|
{
|
|
struct IR_IO_APIC_route_entry *entry;
|
|
struct irte *irte = &data->irte_entry;
|
|
struct msi_msg *msg = &data->msi_entry;
|
|
|
|
prepare_irte(irte, irq_cfg->vector, irq_cfg->dest_apicid);
|
|
switch (info->type) {
|
|
case X86_IRQ_ALLOC_TYPE_IOAPIC:
|
|
/* Set source-id of interrupt request */
|
|
set_ioapic_sid(irte, info->ioapic_id);
|
|
apic_printk(APIC_VERBOSE, KERN_DEBUG "IOAPIC[%d]: Set IRTE entry (P:%d FPD:%d Dst_Mode:%d Redir_hint:%d Trig_Mode:%d Dlvry_Mode:%X Avail:%X Vector:%02X Dest:%08X SID:%04X SQ:%X SVT:%X)\n",
|
|
info->ioapic_id, irte->present, irte->fpd,
|
|
irte->dst_mode, irte->redir_hint,
|
|
irte->trigger_mode, irte->dlvry_mode,
|
|
irte->avail, irte->vector, irte->dest_id,
|
|
irte->sid, irte->sq, irte->svt);
|
|
|
|
entry = (struct IR_IO_APIC_route_entry *)info->ioapic_entry;
|
|
info->ioapic_entry = NULL;
|
|
memset(entry, 0, sizeof(*entry));
|
|
entry->index2 = (index >> 15) & 0x1;
|
|
entry->zero = 0;
|
|
entry->format = 1;
|
|
entry->index = (index & 0x7fff);
|
|
/*
|
|
* IO-APIC RTE will be configured with virtual vector.
|
|
* irq handler will do the explicit EOI to the io-apic.
|
|
*/
|
|
entry->vector = info->ioapic_pin;
|
|
entry->mask = 0; /* enable IRQ */
|
|
entry->trigger = info->ioapic_trigger;
|
|
entry->polarity = info->ioapic_polarity;
|
|
if (info->ioapic_trigger)
|
|
entry->mask = 1; /* Mask level triggered irqs. */
|
|
break;
|
|
|
|
case X86_IRQ_ALLOC_TYPE_HPET:
|
|
case X86_IRQ_ALLOC_TYPE_MSI:
|
|
case X86_IRQ_ALLOC_TYPE_MSIX:
|
|
if (info->type == X86_IRQ_ALLOC_TYPE_HPET)
|
|
set_hpet_sid(irte, info->hpet_id);
|
|
else
|
|
set_msi_sid(irte, info->msi_dev);
|
|
|
|
msg->address_hi = MSI_ADDR_BASE_HI;
|
|
msg->data = sub_handle;
|
|
msg->address_lo = MSI_ADDR_BASE_LO | MSI_ADDR_IR_EXT_INT |
|
|
MSI_ADDR_IR_SHV |
|
|
MSI_ADDR_IR_INDEX1(index) |
|
|
MSI_ADDR_IR_INDEX2(index);
|
|
break;
|
|
|
|
default:
|
|
BUG_ON(1);
|
|
break;
|
|
}
|
|
}
|
|
|
|
static void intel_free_irq_resources(struct irq_domain *domain,
|
|
unsigned int virq, unsigned int nr_irqs)
|
|
{
|
|
struct irq_data *irq_data;
|
|
struct intel_ir_data *data;
|
|
struct irq_2_iommu *irq_iommu;
|
|
unsigned long flags;
|
|
int i;
|
|
for (i = 0; i < nr_irqs; i++) {
|
|
irq_data = irq_domain_get_irq_data(domain, virq + i);
|
|
if (irq_data && irq_data->chip_data) {
|
|
data = irq_data->chip_data;
|
|
irq_iommu = &data->irq_2_iommu;
|
|
raw_spin_lock_irqsave(&irq_2_ir_lock, flags);
|
|
clear_entries(irq_iommu);
|
|
raw_spin_unlock_irqrestore(&irq_2_ir_lock, flags);
|
|
irq_domain_reset_irq_data(irq_data);
|
|
kfree(data);
|
|
}
|
|
}
|
|
}
|
|
|
|
static int intel_irq_remapping_alloc(struct irq_domain *domain,
|
|
unsigned int virq, unsigned int nr_irqs,
|
|
void *arg)
|
|
{
|
|
struct intel_iommu *iommu = domain->host_data;
|
|
struct irq_alloc_info *info = arg;
|
|
struct intel_ir_data *data, *ird;
|
|
struct irq_data *irq_data;
|
|
struct irq_cfg *irq_cfg;
|
|
int i, ret, index;
|
|
|
|
if (!info || !iommu)
|
|
return -EINVAL;
|
|
if (nr_irqs > 1 && info->type != X86_IRQ_ALLOC_TYPE_MSI &&
|
|
info->type != X86_IRQ_ALLOC_TYPE_MSIX)
|
|
return -EINVAL;
|
|
|
|
/*
|
|
* With IRQ remapping enabled, don't need contiguous CPU vectors
|
|
* to support multiple MSI interrupts.
|
|
*/
|
|
if (info->type == X86_IRQ_ALLOC_TYPE_MSI)
|
|
info->flags &= ~X86_IRQ_ALLOC_CONTIGUOUS_VECTORS;
|
|
|
|
ret = irq_domain_alloc_irqs_parent(domain, virq, nr_irqs, arg);
|
|
if (ret < 0)
|
|
return ret;
|
|
|
|
ret = -ENOMEM;
|
|
data = kzalloc(sizeof(*data), GFP_KERNEL);
|
|
if (!data)
|
|
goto out_free_parent;
|
|
|
|
down_read(&dmar_global_lock);
|
|
index = alloc_irte(iommu, virq, &data->irq_2_iommu, nr_irqs);
|
|
up_read(&dmar_global_lock);
|
|
if (index < 0) {
|
|
pr_warn("Failed to allocate IRTE\n");
|
|
kfree(data);
|
|
goto out_free_parent;
|
|
}
|
|
|
|
for (i = 0; i < nr_irqs; i++) {
|
|
irq_data = irq_domain_get_irq_data(domain, virq + i);
|
|
irq_cfg = irqd_cfg(irq_data);
|
|
if (!irq_data || !irq_cfg) {
|
|
ret = -EINVAL;
|
|
goto out_free_data;
|
|
}
|
|
|
|
if (i > 0) {
|
|
ird = kzalloc(sizeof(*ird), GFP_KERNEL);
|
|
if (!ird)
|
|
goto out_free_data;
|
|
/* Initialize the common data */
|
|
ird->irq_2_iommu = data->irq_2_iommu;
|
|
ird->irq_2_iommu.sub_handle = i;
|
|
} else {
|
|
ird = data;
|
|
}
|
|
|
|
irq_data->hwirq = (index << 16) + i;
|
|
irq_data->chip_data = ird;
|
|
irq_data->chip = &intel_ir_chip;
|
|
intel_irq_remapping_prepare_irte(ird, irq_cfg, info, index, i);
|
|
irq_set_status_flags(virq + i, IRQ_MOVE_PCNTXT);
|
|
}
|
|
return 0;
|
|
|
|
out_free_data:
|
|
intel_free_irq_resources(domain, virq, i);
|
|
out_free_parent:
|
|
irq_domain_free_irqs_common(domain, virq, nr_irqs);
|
|
return ret;
|
|
}
|
|
|
|
static void intel_irq_remapping_free(struct irq_domain *domain,
|
|
unsigned int virq, unsigned int nr_irqs)
|
|
{
|
|
intel_free_irq_resources(domain, virq, nr_irqs);
|
|
irq_domain_free_irqs_common(domain, virq, nr_irqs);
|
|
}
|
|
|
|
static int intel_irq_remapping_activate(struct irq_domain *domain,
|
|
struct irq_data *irq_data, bool early)
|
|
{
|
|
intel_ir_reconfigure_irte(irq_data, true);
|
|
return 0;
|
|
}
|
|
|
|
static void intel_irq_remapping_deactivate(struct irq_domain *domain,
|
|
struct irq_data *irq_data)
|
|
{
|
|
struct intel_ir_data *data = irq_data->chip_data;
|
|
struct irte entry;
|
|
|
|
memset(&entry, 0, sizeof(entry));
|
|
modify_irte(&data->irq_2_iommu, &entry);
|
|
}
|
|
|
|
static const struct irq_domain_ops intel_ir_domain_ops = {
|
|
.alloc = intel_irq_remapping_alloc,
|
|
.free = intel_irq_remapping_free,
|
|
.activate = intel_irq_remapping_activate,
|
|
.deactivate = intel_irq_remapping_deactivate,
|
|
};
|
|
|
|
/*
|
|
* Support of Interrupt Remapping Unit Hotplug
|
|
*/
|
|
static int dmar_ir_add(struct dmar_drhd_unit *dmaru, struct intel_iommu *iommu)
|
|
{
|
|
int ret;
|
|
int eim = x2apic_enabled();
|
|
|
|
if (eim && !ecap_eim_support(iommu->ecap)) {
|
|
pr_info("DRHD %Lx: EIM not supported by DRHD, ecap %Lx\n",
|
|
iommu->reg_phys, iommu->ecap);
|
|
return -ENODEV;
|
|
}
|
|
|
|
if (ir_parse_ioapic_hpet_scope(dmaru->hdr, iommu)) {
|
|
pr_warn("DRHD %Lx: failed to parse managed IOAPIC/HPET\n",
|
|
iommu->reg_phys);
|
|
return -ENODEV;
|
|
}
|
|
|
|
/* TODO: check all IOAPICs are covered by IOMMU */
|
|
|
|
/* Setup Interrupt-remapping now. */
|
|
ret = intel_setup_irq_remapping(iommu);
|
|
if (ret) {
|
|
pr_err("Failed to setup irq remapping for %s\n",
|
|
iommu->name);
|
|
intel_teardown_irq_remapping(iommu);
|
|
ir_remove_ioapic_hpet_scope(iommu);
|
|
} else {
|
|
iommu_enable_irq_remapping(iommu);
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
int dmar_ir_hotplug(struct dmar_drhd_unit *dmaru, bool insert)
|
|
{
|
|
int ret = 0;
|
|
struct intel_iommu *iommu = dmaru->iommu;
|
|
|
|
if (!irq_remapping_enabled)
|
|
return 0;
|
|
if (iommu == NULL)
|
|
return -EINVAL;
|
|
if (!ecap_ir_support(iommu->ecap))
|
|
return 0;
|
|
if (irq_remapping_cap(IRQ_POSTING_CAP) &&
|
|
!cap_pi_support(iommu->cap))
|
|
return -EBUSY;
|
|
|
|
if (insert) {
|
|
if (!iommu->ir_table)
|
|
ret = dmar_ir_add(dmaru, iommu);
|
|
} else {
|
|
if (iommu->ir_table) {
|
|
if (!bitmap_empty(iommu->ir_table->bitmap,
|
|
INTR_REMAP_TABLE_ENTRIES)) {
|
|
ret = -EBUSY;
|
|
} else {
|
|
iommu_disable_irq_remapping(iommu);
|
|
intel_teardown_irq_remapping(iommu);
|
|
ir_remove_ioapic_hpet_scope(iommu);
|
|
}
|
|
}
|
|
}
|
|
|
|
return ret;
|
|
}
|