linux/sound/pci/emu10k1/io.c
James Courtier-Dutton 184c1e2c4c [ALSA] emu10k1: Add Audio capture support for Audigy 2 ZS Notebook.
Implement functionallity in order to fixe ALSA bug#2058.

Signed-off-by: James Courtier-Dutton <James@superbug.co.uk>
Signed-off-by: Jaroslav Kysela <perex@suse.cz>
2007-02-09 09:02:17 +01:00

553 lines
16 KiB
C

/*
* Copyright (c) by Jaroslav Kysela <perex@suse.cz>
* Creative Labs, Inc.
* Routines for control of EMU10K1 chips
*
* BUGS:
* --
*
* TODO:
* --
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*
*/
#include <sound/driver.h>
#include <linux/time.h>
#include <sound/core.h>
#include <sound/emu10k1.h>
#include <linux/delay.h>
#include "p17v.h"
unsigned int snd_emu10k1_ptr_read(struct snd_emu10k1 * emu, unsigned int reg, unsigned int chn)
{
unsigned long flags;
unsigned int regptr, val;
unsigned int mask;
mask = emu->audigy ? A_PTR_ADDRESS_MASK : PTR_ADDRESS_MASK;
regptr = ((reg << 16) & mask) | (chn & PTR_CHANNELNUM_MASK);
if (reg & 0xff000000) {
unsigned char size, offset;
size = (reg >> 24) & 0x3f;
offset = (reg >> 16) & 0x1f;
mask = ((1 << size) - 1) << offset;
spin_lock_irqsave(&emu->emu_lock, flags);
outl(regptr, emu->port + PTR);
val = inl(emu->port + DATA);
spin_unlock_irqrestore(&emu->emu_lock, flags);
return (val & mask) >> offset;
} else {
spin_lock_irqsave(&emu->emu_lock, flags);
outl(regptr, emu->port + PTR);
val = inl(emu->port + DATA);
spin_unlock_irqrestore(&emu->emu_lock, flags);
return val;
}
}
EXPORT_SYMBOL(snd_emu10k1_ptr_read);
void snd_emu10k1_ptr_write(struct snd_emu10k1 *emu, unsigned int reg, unsigned int chn, unsigned int data)
{
unsigned int regptr;
unsigned long flags;
unsigned int mask;
mask = emu->audigy ? A_PTR_ADDRESS_MASK : PTR_ADDRESS_MASK;
regptr = ((reg << 16) & mask) | (chn & PTR_CHANNELNUM_MASK);
if (reg & 0xff000000) {
unsigned char size, offset;
size = (reg >> 24) & 0x3f;
offset = (reg >> 16) & 0x1f;
mask = ((1 << size) - 1) << offset;
data = (data << offset) & mask;
spin_lock_irqsave(&emu->emu_lock, flags);
outl(regptr, emu->port + PTR);
data |= inl(emu->port + DATA) & ~mask;
outl(data, emu->port + DATA);
spin_unlock_irqrestore(&emu->emu_lock, flags);
} else {
spin_lock_irqsave(&emu->emu_lock, flags);
outl(regptr, emu->port + PTR);
outl(data, emu->port + DATA);
spin_unlock_irqrestore(&emu->emu_lock, flags);
}
}
EXPORT_SYMBOL(snd_emu10k1_ptr_write);
unsigned int snd_emu10k1_ptr20_read(struct snd_emu10k1 * emu,
unsigned int reg,
unsigned int chn)
{
unsigned long flags;
unsigned int regptr, val;
regptr = (reg << 16) | chn;
spin_lock_irqsave(&emu->emu_lock, flags);
outl(regptr, emu->port + 0x20 + PTR);
val = inl(emu->port + 0x20 + DATA);
spin_unlock_irqrestore(&emu->emu_lock, flags);
return val;
}
void snd_emu10k1_ptr20_write(struct snd_emu10k1 *emu,
unsigned int reg,
unsigned int chn,
unsigned int data)
{
unsigned int regptr;
unsigned long flags;
regptr = (reg << 16) | chn;
spin_lock_irqsave(&emu->emu_lock, flags);
outl(regptr, emu->port + 0x20 + PTR);
outl(data, emu->port + 0x20 + DATA);
spin_unlock_irqrestore(&emu->emu_lock, flags);
}
int snd_emu10k1_spi_write(struct snd_emu10k1 * emu,
unsigned int data)
{
unsigned int reset, set;
unsigned int reg, tmp;
int n, result;
if (emu->card_capabilities->ca0108_chip)
reg = 0x3c; /* PTR20, reg 0x3c */
else {
/* For other chip types the SPI register
* is currently unknown. */
return 1;
}
if (data > 0xffff) /* Only 16bit values allowed */
return 1;
tmp = snd_emu10k1_ptr20_read(emu, reg, 0);
reset = (tmp & ~0x3ffff) | 0x20000; /* Set xxx20000 */
set = reset | 0x10000; /* Set xxx1xxxx */
snd_emu10k1_ptr20_write(emu, reg, 0, reset | data);
tmp = snd_emu10k1_ptr20_read(emu, reg, 0); /* write post */
snd_emu10k1_ptr20_write(emu, reg, 0, set | data);
result = 1;
/* Wait for status bit to return to 0 */
for (n = 0; n < 100; n++) {
udelay(10);
tmp = snd_emu10k1_ptr20_read(emu, reg, 0);
if (!(tmp & 0x10000)) {
result = 0;
break;
}
}
if (result) /* Timed out */
return 1;
snd_emu10k1_ptr20_write(emu, reg, 0, reset | data);
tmp = snd_emu10k1_ptr20_read(emu, reg, 0); /* Write post */
return 0;
}
/* The ADC does not support i2c read, so only write is implemented */
int snd_emu10k1_i2c_write(struct snd_emu10k1 *emu,
u32 reg,
u32 value)
{
u32 tmp;
int timeout = 0;
int status;
int retry;
if ((reg > 0x7f) || (value > 0x1ff)) {
snd_printk(KERN_ERR "i2c_write: invalid values.\n");
return -EINVAL;
}
tmp = reg << 25 | value << 16;
// snd_printk("I2C-write:reg=0x%x, value=0x%x\n", reg, value);
/* Not sure what this I2C channel controls. */
/* snd_emu10k1_ptr_write(emu, P17V_I2C_0, 0, tmp); */
/* This controls the I2C connected to the WM8775 ADC Codec */
snd_emu10k1_ptr20_write(emu, P17V_I2C_1, 0, tmp);
tmp = snd_emu10k1_ptr20_read(emu, P17V_I2C_1, 0); /* write post */
for (retry = 0; retry < 10; retry++) {
/* Send the data to i2c */
//tmp = snd_emu10k1_ptr_read(emu, P17V_I2C_ADDR, 0);
//tmp = tmp & ~(I2C_A_ADC_READ|I2C_A_ADC_LAST|I2C_A_ADC_START|I2C_A_ADC_ADD_MASK);
tmp = 0;
tmp = tmp | (I2C_A_ADC_LAST|I2C_A_ADC_START|I2C_A_ADC_ADD);
snd_emu10k1_ptr20_write(emu, P17V_I2C_ADDR, 0, tmp);
/* Wait till the transaction ends */
while (1) {
udelay(10);
status = snd_emu10k1_ptr20_read(emu, P17V_I2C_ADDR, 0);
// snd_printk("I2C:status=0x%x\n", status);
timeout++;
if ((status & I2C_A_ADC_START) == 0)
break;
if (timeout > 1000) {
snd_printk("emu10k1:I2C:timeout status=0x%x\n", status);
break;
}
}
//Read back and see if the transaction is successful
if ((status & I2C_A_ADC_ABORT) == 0)
break;
}
if (retry == 10) {
snd_printk(KERN_ERR "Writing to ADC failed!\n");
return -EINVAL;
}
return 0;
}
int snd_emu1010_fpga_write(struct snd_emu10k1 * emu, int reg, int value)
{
if (reg < 0 || reg > 0x3f)
return 1;
reg += 0x40; /* 0x40 upwards are registers. */
if (value < 0 || value > 0x3f) /* 0 to 0x3f are values */
return 1;
outl(reg, emu->port + A_IOCFG);
udelay(10);
outl(reg | 0x80, emu->port + A_IOCFG); /* High bit clocks the value into the fpga. */
udelay(10);
outl(value, emu->port + A_IOCFG);
udelay(10);
outl(value | 0x80 , emu->port + A_IOCFG); /* High bit clocks the value into the fpga. */
return 0;
}
int snd_emu1010_fpga_read(struct snd_emu10k1 * emu, int reg, int *value)
{
if (reg < 0 || reg > 0x3f)
return 1;
reg += 0x40; /* 0x40 upwards are registers. */
outl(reg, emu->port + A_IOCFG);
udelay(10);
outl(reg | 0x80, emu->port + A_IOCFG); /* High bit clocks the value into the fpga. */
udelay(10);
*value = ((inl(emu->port + A_IOCFG) >> 8) & 0x7f);
return 0;
}
/* Each Destination has one and only one Source,
* but one Source can feed any number of Destinations simultaneously.
*/
int snd_emu1010_fpga_link_dst_src_write(struct snd_emu10k1 * emu, int dst, int src)
{
snd_emu1010_fpga_write(emu, 0x00, ((dst >> 8) & 0x3f) );
snd_emu1010_fpga_write(emu, 0x01, (dst & 0x3f) );
snd_emu1010_fpga_write(emu, 0x02, ((src >> 8) & 0x3f) );
snd_emu1010_fpga_write(emu, 0x03, (src & 0x3f) );
return 0;
}
void snd_emu10k1_intr_enable(struct snd_emu10k1 *emu, unsigned int intrenb)
{
unsigned long flags;
unsigned int enable;
spin_lock_irqsave(&emu->emu_lock, flags);
enable = inl(emu->port + INTE) | intrenb;
outl(enable, emu->port + INTE);
spin_unlock_irqrestore(&emu->emu_lock, flags);
}
void snd_emu10k1_intr_disable(struct snd_emu10k1 *emu, unsigned int intrenb)
{
unsigned long flags;
unsigned int enable;
spin_lock_irqsave(&emu->emu_lock, flags);
enable = inl(emu->port + INTE) & ~intrenb;
outl(enable, emu->port + INTE);
spin_unlock_irqrestore(&emu->emu_lock, flags);
}
void snd_emu10k1_voice_intr_enable(struct snd_emu10k1 *emu, unsigned int voicenum)
{
unsigned long flags;
unsigned int val;
spin_lock_irqsave(&emu->emu_lock, flags);
/* voice interrupt */
if (voicenum >= 32) {
outl(CLIEH << 16, emu->port + PTR);
val = inl(emu->port + DATA);
val |= 1 << (voicenum - 32);
} else {
outl(CLIEL << 16, emu->port + PTR);
val = inl(emu->port + DATA);
val |= 1 << voicenum;
}
outl(val, emu->port + DATA);
spin_unlock_irqrestore(&emu->emu_lock, flags);
}
void snd_emu10k1_voice_intr_disable(struct snd_emu10k1 *emu, unsigned int voicenum)
{
unsigned long flags;
unsigned int val;
spin_lock_irqsave(&emu->emu_lock, flags);
/* voice interrupt */
if (voicenum >= 32) {
outl(CLIEH << 16, emu->port + PTR);
val = inl(emu->port + DATA);
val &= ~(1 << (voicenum - 32));
} else {
outl(CLIEL << 16, emu->port + PTR);
val = inl(emu->port + DATA);
val &= ~(1 << voicenum);
}
outl(val, emu->port + DATA);
spin_unlock_irqrestore(&emu->emu_lock, flags);
}
void snd_emu10k1_voice_intr_ack(struct snd_emu10k1 *emu, unsigned int voicenum)
{
unsigned long flags;
spin_lock_irqsave(&emu->emu_lock, flags);
/* voice interrupt */
if (voicenum >= 32) {
outl(CLIPH << 16, emu->port + PTR);
voicenum = 1 << (voicenum - 32);
} else {
outl(CLIPL << 16, emu->port + PTR);
voicenum = 1 << voicenum;
}
outl(voicenum, emu->port + DATA);
spin_unlock_irqrestore(&emu->emu_lock, flags);
}
void snd_emu10k1_voice_half_loop_intr_enable(struct snd_emu10k1 *emu, unsigned int voicenum)
{
unsigned long flags;
unsigned int val;
spin_lock_irqsave(&emu->emu_lock, flags);
/* voice interrupt */
if (voicenum >= 32) {
outl(HLIEH << 16, emu->port + PTR);
val = inl(emu->port + DATA);
val |= 1 << (voicenum - 32);
} else {
outl(HLIEL << 16, emu->port + PTR);
val = inl(emu->port + DATA);
val |= 1 << voicenum;
}
outl(val, emu->port + DATA);
spin_unlock_irqrestore(&emu->emu_lock, flags);
}
void snd_emu10k1_voice_half_loop_intr_disable(struct snd_emu10k1 *emu, unsigned int voicenum)
{
unsigned long flags;
unsigned int val;
spin_lock_irqsave(&emu->emu_lock, flags);
/* voice interrupt */
if (voicenum >= 32) {
outl(HLIEH << 16, emu->port + PTR);
val = inl(emu->port + DATA);
val &= ~(1 << (voicenum - 32));
} else {
outl(HLIEL << 16, emu->port + PTR);
val = inl(emu->port + DATA);
val &= ~(1 << voicenum);
}
outl(val, emu->port + DATA);
spin_unlock_irqrestore(&emu->emu_lock, flags);
}
void snd_emu10k1_voice_half_loop_intr_ack(struct snd_emu10k1 *emu, unsigned int voicenum)
{
unsigned long flags;
spin_lock_irqsave(&emu->emu_lock, flags);
/* voice interrupt */
if (voicenum >= 32) {
outl(HLIPH << 16, emu->port + PTR);
voicenum = 1 << (voicenum - 32);
} else {
outl(HLIPL << 16, emu->port + PTR);
voicenum = 1 << voicenum;
}
outl(voicenum, emu->port + DATA);
spin_unlock_irqrestore(&emu->emu_lock, flags);
}
void snd_emu10k1_voice_set_loop_stop(struct snd_emu10k1 *emu, unsigned int voicenum)
{
unsigned long flags;
unsigned int sol;
spin_lock_irqsave(&emu->emu_lock, flags);
/* voice interrupt */
if (voicenum >= 32) {
outl(SOLEH << 16, emu->port + PTR);
sol = inl(emu->port + DATA);
sol |= 1 << (voicenum - 32);
} else {
outl(SOLEL << 16, emu->port + PTR);
sol = inl(emu->port + DATA);
sol |= 1 << voicenum;
}
outl(sol, emu->port + DATA);
spin_unlock_irqrestore(&emu->emu_lock, flags);
}
void snd_emu10k1_voice_clear_loop_stop(struct snd_emu10k1 *emu, unsigned int voicenum)
{
unsigned long flags;
unsigned int sol;
spin_lock_irqsave(&emu->emu_lock, flags);
/* voice interrupt */
if (voicenum >= 32) {
outl(SOLEH << 16, emu->port + PTR);
sol = inl(emu->port + DATA);
sol &= ~(1 << (voicenum - 32));
} else {
outl(SOLEL << 16, emu->port + PTR);
sol = inl(emu->port + DATA);
sol &= ~(1 << voicenum);
}
outl(sol, emu->port + DATA);
spin_unlock_irqrestore(&emu->emu_lock, flags);
}
void snd_emu10k1_wait(struct snd_emu10k1 *emu, unsigned int wait)
{
volatile unsigned count;
unsigned int newtime = 0, curtime;
curtime = inl(emu->port + WC) >> 6;
while (wait-- > 0) {
count = 0;
while (count++ < 16384) {
newtime = inl(emu->port + WC) >> 6;
if (newtime != curtime)
break;
}
if (count >= 16384)
break;
curtime = newtime;
}
}
unsigned short snd_emu10k1_ac97_read(struct snd_ac97 *ac97, unsigned short reg)
{
struct snd_emu10k1 *emu = ac97->private_data;
unsigned long flags;
unsigned short val;
spin_lock_irqsave(&emu->emu_lock, flags);
outb(reg, emu->port + AC97ADDRESS);
val = inw(emu->port + AC97DATA);
spin_unlock_irqrestore(&emu->emu_lock, flags);
return val;
}
void snd_emu10k1_ac97_write(struct snd_ac97 *ac97, unsigned short reg, unsigned short data)
{
struct snd_emu10k1 *emu = ac97->private_data;
unsigned long flags;
spin_lock_irqsave(&emu->emu_lock, flags);
outb(reg, emu->port + AC97ADDRESS);
outw(data, emu->port + AC97DATA);
spin_unlock_irqrestore(&emu->emu_lock, flags);
}
/*
* convert rate to pitch
*/
unsigned int snd_emu10k1_rate_to_pitch(unsigned int rate)
{
static u32 logMagTable[128] = {
0x00000, 0x02dfc, 0x05b9e, 0x088e6, 0x0b5d6, 0x0e26f, 0x10eb3, 0x13aa2,
0x1663f, 0x1918a, 0x1bc84, 0x1e72e, 0x2118b, 0x23b9a, 0x2655d, 0x28ed5,
0x2b803, 0x2e0e8, 0x30985, 0x331db, 0x359eb, 0x381b6, 0x3a93d, 0x3d081,
0x3f782, 0x41e42, 0x444c1, 0x46b01, 0x49101, 0x4b6c4, 0x4dc49, 0x50191,
0x5269e, 0x54b6f, 0x57006, 0x59463, 0x5b888, 0x5dc74, 0x60029, 0x623a7,
0x646ee, 0x66a00, 0x68cdd, 0x6af86, 0x6d1fa, 0x6f43c, 0x7164b, 0x73829,
0x759d4, 0x77b4f, 0x79c9a, 0x7bdb5, 0x7dea1, 0x7ff5e, 0x81fed, 0x8404e,
0x86082, 0x88089, 0x8a064, 0x8c014, 0x8df98, 0x8fef1, 0x91e20, 0x93d26,
0x95c01, 0x97ab4, 0x9993e, 0x9b79f, 0x9d5d9, 0x9f3ec, 0xa11d8, 0xa2f9d,
0xa4d3c, 0xa6ab5, 0xa8808, 0xaa537, 0xac241, 0xadf26, 0xafbe7, 0xb1885,
0xb3500, 0xb5157, 0xb6d8c, 0xb899f, 0xba58f, 0xbc15e, 0xbdd0c, 0xbf899,
0xc1404, 0xc2f50, 0xc4a7b, 0xc6587, 0xc8073, 0xc9b3f, 0xcb5ed, 0xcd07c,
0xceaec, 0xd053f, 0xd1f73, 0xd398a, 0xd5384, 0xd6d60, 0xd8720, 0xda0c3,
0xdba4a, 0xdd3b4, 0xded03, 0xe0636, 0xe1f4e, 0xe384a, 0xe512c, 0xe69f3,
0xe829f, 0xe9b31, 0xeb3a9, 0xecc08, 0xee44c, 0xefc78, 0xf148a, 0xf2c83,
0xf4463, 0xf5c2a, 0xf73da, 0xf8b71, 0xfa2f0, 0xfba57, 0xfd1a7, 0xfe8df
};
static char logSlopeTable[128] = {
0x5c, 0x5c, 0x5b, 0x5a, 0x5a, 0x59, 0x58, 0x58,
0x57, 0x56, 0x56, 0x55, 0x55, 0x54, 0x53, 0x53,
0x52, 0x52, 0x51, 0x51, 0x50, 0x50, 0x4f, 0x4f,
0x4e, 0x4d, 0x4d, 0x4d, 0x4c, 0x4c, 0x4b, 0x4b,
0x4a, 0x4a, 0x49, 0x49, 0x48, 0x48, 0x47, 0x47,
0x47, 0x46, 0x46, 0x45, 0x45, 0x45, 0x44, 0x44,
0x43, 0x43, 0x43, 0x42, 0x42, 0x42, 0x41, 0x41,
0x41, 0x40, 0x40, 0x40, 0x3f, 0x3f, 0x3f, 0x3e,
0x3e, 0x3e, 0x3d, 0x3d, 0x3d, 0x3c, 0x3c, 0x3c,
0x3b, 0x3b, 0x3b, 0x3b, 0x3a, 0x3a, 0x3a, 0x39,
0x39, 0x39, 0x39, 0x38, 0x38, 0x38, 0x38, 0x37,
0x37, 0x37, 0x37, 0x36, 0x36, 0x36, 0x36, 0x35,
0x35, 0x35, 0x35, 0x34, 0x34, 0x34, 0x34, 0x34,
0x33, 0x33, 0x33, 0x33, 0x32, 0x32, 0x32, 0x32,
0x32, 0x31, 0x31, 0x31, 0x31, 0x31, 0x30, 0x30,
0x30, 0x30, 0x30, 0x2f, 0x2f, 0x2f, 0x2f, 0x2f
};
int i;
if (rate == 0)
return 0; /* Bail out if no leading "1" */
rate *= 11185; /* Scale 48000 to 0x20002380 */
for (i = 31; i > 0; i--) {
if (rate & 0x80000000) { /* Detect leading "1" */
return (((unsigned int) (i - 15) << 20) +
logMagTable[0x7f & (rate >> 24)] +
(0x7f & (rate >> 17)) *
logSlopeTable[0x7f & (rate >> 24)]);
}
rate <<= 1;
}
return 0; /* Should never reach this point */
}