aefa5688c0
upatepp can get called for a nohpte fault when we find from the linux page table that the translation was hashed before. In that case we are sure that there is no existing translation, hence we could avoid doing tlbie. We could possibly race with a parallel fault filling the TLB. But that should be ok because updatepp is only ever relaxing permissions. We also look at linux pte permission bits when filling hash pte permission bits. We also hold the linux pte busy bits while inserting/updating a hashpte entry, hence a paralle update of linux pte is not possible. On the other hand mprotect involves ptep_modify_prot_start which cause a hpte invalidate and not updatepp. Performance number: We use randbox_access_bench written by Anton. Kernel with THP disabled and smaller hash page table size. 86.60% random_access_b [kernel.kallsyms] [k] .native_hpte_updatepp 2.10% random_access_b random_access_bench [.] doit 1.99% random_access_b [kernel.kallsyms] [k] .do_raw_spin_lock 1.85% random_access_b [kernel.kallsyms] [k] .native_hpte_insert 1.26% random_access_b [kernel.kallsyms] [k] .native_flush_hash_range 1.18% random_access_b [kernel.kallsyms] [k] .__delay 0.69% random_access_b [kernel.kallsyms] [k] .native_hpte_remove 0.37% random_access_b [kernel.kallsyms] [k] .clear_user_page 0.34% random_access_b [kernel.kallsyms] [k] .__hash_page_64K 0.32% random_access_b [kernel.kallsyms] [k] fast_exception_return 0.30% random_access_b [kernel.kallsyms] [k] .hash_page_mm With Fix: 27.54% random_access_b random_access_bench [.] doit 22.90% random_access_b [kernel.kallsyms] [k] .native_hpte_insert 5.76% random_access_b [kernel.kallsyms] [k] .native_hpte_remove 5.20% random_access_b [kernel.kallsyms] [k] fast_exception_return 5.12% random_access_b [kernel.kallsyms] [k] .__hash_page_64K 4.80% random_access_b [kernel.kallsyms] [k] .hash_page_mm 3.31% random_access_b [kernel.kallsyms] [k] data_access_common 1.84% random_access_b [kernel.kallsyms] [k] .trace_hardirqs_on_caller Signed-off-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com> Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
608 lines
20 KiB
C
608 lines
20 KiB
C
#ifndef _ASM_POWERPC_MMU_HASH64_H_
|
|
#define _ASM_POWERPC_MMU_HASH64_H_
|
|
/*
|
|
* PowerPC64 memory management structures
|
|
*
|
|
* Dave Engebretsen & Mike Corrigan <{engebret|mikejc}@us.ibm.com>
|
|
* PPC64 rework.
|
|
*
|
|
* This program is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU General Public License
|
|
* as published by the Free Software Foundation; either version
|
|
* 2 of the License, or (at your option) any later version.
|
|
*/
|
|
|
|
#include <asm/asm-compat.h>
|
|
#include <asm/page.h>
|
|
|
|
/*
|
|
* This is necessary to get the definition of PGTABLE_RANGE which we
|
|
* need for various slices related matters. Note that this isn't the
|
|
* complete pgtable.h but only a portion of it.
|
|
*/
|
|
#include <asm/pgtable-ppc64.h>
|
|
#include <asm/bug.h>
|
|
#include <asm/processor.h>
|
|
|
|
/*
|
|
* SLB
|
|
*/
|
|
|
|
#define SLB_NUM_BOLTED 3
|
|
#define SLB_CACHE_ENTRIES 8
|
|
#define SLB_MIN_SIZE 32
|
|
|
|
/* Bits in the SLB ESID word */
|
|
#define SLB_ESID_V ASM_CONST(0x0000000008000000) /* valid */
|
|
|
|
/* Bits in the SLB VSID word */
|
|
#define SLB_VSID_SHIFT 12
|
|
#define SLB_VSID_SHIFT_1T 24
|
|
#define SLB_VSID_SSIZE_SHIFT 62
|
|
#define SLB_VSID_B ASM_CONST(0xc000000000000000)
|
|
#define SLB_VSID_B_256M ASM_CONST(0x0000000000000000)
|
|
#define SLB_VSID_B_1T ASM_CONST(0x4000000000000000)
|
|
#define SLB_VSID_KS ASM_CONST(0x0000000000000800)
|
|
#define SLB_VSID_KP ASM_CONST(0x0000000000000400)
|
|
#define SLB_VSID_N ASM_CONST(0x0000000000000200) /* no-execute */
|
|
#define SLB_VSID_L ASM_CONST(0x0000000000000100)
|
|
#define SLB_VSID_C ASM_CONST(0x0000000000000080) /* class */
|
|
#define SLB_VSID_LP ASM_CONST(0x0000000000000030)
|
|
#define SLB_VSID_LP_00 ASM_CONST(0x0000000000000000)
|
|
#define SLB_VSID_LP_01 ASM_CONST(0x0000000000000010)
|
|
#define SLB_VSID_LP_10 ASM_CONST(0x0000000000000020)
|
|
#define SLB_VSID_LP_11 ASM_CONST(0x0000000000000030)
|
|
#define SLB_VSID_LLP (SLB_VSID_L|SLB_VSID_LP)
|
|
|
|
#define SLB_VSID_KERNEL (SLB_VSID_KP)
|
|
#define SLB_VSID_USER (SLB_VSID_KP|SLB_VSID_KS|SLB_VSID_C)
|
|
|
|
#define SLBIE_C (0x08000000)
|
|
#define SLBIE_SSIZE_SHIFT 25
|
|
|
|
/*
|
|
* Hash table
|
|
*/
|
|
|
|
#define HPTES_PER_GROUP 8
|
|
|
|
#define HPTE_V_SSIZE_SHIFT 62
|
|
#define HPTE_V_AVPN_SHIFT 7
|
|
#define HPTE_V_AVPN ASM_CONST(0x3fffffffffffff80)
|
|
#define HPTE_V_AVPN_VAL(x) (((x) & HPTE_V_AVPN) >> HPTE_V_AVPN_SHIFT)
|
|
#define HPTE_V_COMPARE(x,y) (!(((x) ^ (y)) & 0xffffffffffffff80UL))
|
|
#define HPTE_V_BOLTED ASM_CONST(0x0000000000000010)
|
|
#define HPTE_V_LOCK ASM_CONST(0x0000000000000008)
|
|
#define HPTE_V_LARGE ASM_CONST(0x0000000000000004)
|
|
#define HPTE_V_SECONDARY ASM_CONST(0x0000000000000002)
|
|
#define HPTE_V_VALID ASM_CONST(0x0000000000000001)
|
|
|
|
#define HPTE_R_PP0 ASM_CONST(0x8000000000000000)
|
|
#define HPTE_R_TS ASM_CONST(0x4000000000000000)
|
|
#define HPTE_R_KEY_HI ASM_CONST(0x3000000000000000)
|
|
#define HPTE_R_RPN_SHIFT 12
|
|
#define HPTE_R_RPN ASM_CONST(0x0ffffffffffff000)
|
|
#define HPTE_R_PP ASM_CONST(0x0000000000000003)
|
|
#define HPTE_R_N ASM_CONST(0x0000000000000004)
|
|
#define HPTE_R_G ASM_CONST(0x0000000000000008)
|
|
#define HPTE_R_M ASM_CONST(0x0000000000000010)
|
|
#define HPTE_R_I ASM_CONST(0x0000000000000020)
|
|
#define HPTE_R_W ASM_CONST(0x0000000000000040)
|
|
#define HPTE_R_WIMG ASM_CONST(0x0000000000000078)
|
|
#define HPTE_R_C ASM_CONST(0x0000000000000080)
|
|
#define HPTE_R_R ASM_CONST(0x0000000000000100)
|
|
#define HPTE_R_KEY_LO ASM_CONST(0x0000000000000e00)
|
|
|
|
#define HPTE_V_1TB_SEG ASM_CONST(0x4000000000000000)
|
|
#define HPTE_V_VRMA_MASK ASM_CONST(0x4001ffffff000000)
|
|
|
|
/* Values for PP (assumes Ks=0, Kp=1) */
|
|
#define PP_RWXX 0 /* Supervisor read/write, User none */
|
|
#define PP_RWRX 1 /* Supervisor read/write, User read */
|
|
#define PP_RWRW 2 /* Supervisor read/write, User read/write */
|
|
#define PP_RXRX 3 /* Supervisor read, User read */
|
|
#define PP_RXXX (HPTE_R_PP0 | 2) /* Supervisor read, user none */
|
|
|
|
/* Fields for tlbiel instruction in architecture 2.06 */
|
|
#define TLBIEL_INVAL_SEL_MASK 0xc00 /* invalidation selector */
|
|
#define TLBIEL_INVAL_PAGE 0x000 /* invalidate a single page */
|
|
#define TLBIEL_INVAL_SET_LPID 0x800 /* invalidate a set for current LPID */
|
|
#define TLBIEL_INVAL_SET 0xc00 /* invalidate a set for all LPIDs */
|
|
#define TLBIEL_INVAL_SET_MASK 0xfff000 /* set number to inval. */
|
|
#define TLBIEL_INVAL_SET_SHIFT 12
|
|
|
|
#define POWER7_TLB_SETS 128 /* # sets in POWER7 TLB */
|
|
|
|
#ifndef __ASSEMBLY__
|
|
|
|
struct hash_pte {
|
|
__be64 v;
|
|
__be64 r;
|
|
};
|
|
|
|
extern struct hash_pte *htab_address;
|
|
extern unsigned long htab_size_bytes;
|
|
extern unsigned long htab_hash_mask;
|
|
|
|
/*
|
|
* Page size definition
|
|
*
|
|
* shift : is the "PAGE_SHIFT" value for that page size
|
|
* sllp : is a bit mask with the value of SLB L || LP to be or'ed
|
|
* directly to a slbmte "vsid" value
|
|
* penc : is the HPTE encoding mask for the "LP" field:
|
|
*
|
|
*/
|
|
struct mmu_psize_def
|
|
{
|
|
unsigned int shift; /* number of bits */
|
|
int penc[MMU_PAGE_COUNT]; /* HPTE encoding */
|
|
unsigned int tlbiel; /* tlbiel supported for that page size */
|
|
unsigned long avpnm; /* bits to mask out in AVPN in the HPTE */
|
|
unsigned long sllp; /* SLB L||LP (exact mask to use in slbmte) */
|
|
};
|
|
extern struct mmu_psize_def mmu_psize_defs[MMU_PAGE_COUNT];
|
|
|
|
static inline int shift_to_mmu_psize(unsigned int shift)
|
|
{
|
|
int psize;
|
|
|
|
for (psize = 0; psize < MMU_PAGE_COUNT; ++psize)
|
|
if (mmu_psize_defs[psize].shift == shift)
|
|
return psize;
|
|
return -1;
|
|
}
|
|
|
|
static inline unsigned int mmu_psize_to_shift(unsigned int mmu_psize)
|
|
{
|
|
if (mmu_psize_defs[mmu_psize].shift)
|
|
return mmu_psize_defs[mmu_psize].shift;
|
|
BUG();
|
|
}
|
|
|
|
#endif /* __ASSEMBLY__ */
|
|
|
|
/*
|
|
* Segment sizes.
|
|
* These are the values used by hardware in the B field of
|
|
* SLB entries and the first dword of MMU hashtable entries.
|
|
* The B field is 2 bits; the values 2 and 3 are unused and reserved.
|
|
*/
|
|
#define MMU_SEGSIZE_256M 0
|
|
#define MMU_SEGSIZE_1T 1
|
|
|
|
/*
|
|
* encode page number shift.
|
|
* in order to fit the 78 bit va in a 64 bit variable we shift the va by
|
|
* 12 bits. This enable us to address upto 76 bit va.
|
|
* For hpt hash from a va we can ignore the page size bits of va and for
|
|
* hpte encoding we ignore up to 23 bits of va. So ignoring lower 12 bits ensure
|
|
* we work in all cases including 4k page size.
|
|
*/
|
|
#define VPN_SHIFT 12
|
|
|
|
/*
|
|
* HPTE Large Page (LP) details
|
|
*/
|
|
#define LP_SHIFT 12
|
|
#define LP_BITS 8
|
|
#define LP_MASK(i) ((0xFF >> (i)) << LP_SHIFT)
|
|
|
|
#ifndef __ASSEMBLY__
|
|
|
|
static inline int slb_vsid_shift(int ssize)
|
|
{
|
|
if (ssize == MMU_SEGSIZE_256M)
|
|
return SLB_VSID_SHIFT;
|
|
return SLB_VSID_SHIFT_1T;
|
|
}
|
|
|
|
static inline int segment_shift(int ssize)
|
|
{
|
|
if (ssize == MMU_SEGSIZE_256M)
|
|
return SID_SHIFT;
|
|
return SID_SHIFT_1T;
|
|
}
|
|
|
|
/*
|
|
* The current system page and segment sizes
|
|
*/
|
|
extern int mmu_linear_psize;
|
|
extern int mmu_virtual_psize;
|
|
extern int mmu_vmalloc_psize;
|
|
extern int mmu_vmemmap_psize;
|
|
extern int mmu_io_psize;
|
|
extern int mmu_kernel_ssize;
|
|
extern int mmu_highuser_ssize;
|
|
extern u16 mmu_slb_size;
|
|
extern unsigned long tce_alloc_start, tce_alloc_end;
|
|
|
|
/*
|
|
* If the processor supports 64k normal pages but not 64k cache
|
|
* inhibited pages, we have to be prepared to switch processes
|
|
* to use 4k pages when they create cache-inhibited mappings.
|
|
* If this is the case, mmu_ci_restrictions will be set to 1.
|
|
*/
|
|
extern int mmu_ci_restrictions;
|
|
|
|
/*
|
|
* This computes the AVPN and B fields of the first dword of a HPTE,
|
|
* for use when we want to match an existing PTE. The bottom 7 bits
|
|
* of the returned value are zero.
|
|
*/
|
|
static inline unsigned long hpte_encode_avpn(unsigned long vpn, int psize,
|
|
int ssize)
|
|
{
|
|
unsigned long v;
|
|
/*
|
|
* The AVA field omits the low-order 23 bits of the 78 bits VA.
|
|
* These bits are not needed in the PTE, because the
|
|
* low-order b of these bits are part of the byte offset
|
|
* into the virtual page and, if b < 23, the high-order
|
|
* 23-b of these bits are always used in selecting the
|
|
* PTEGs to be searched
|
|
*/
|
|
v = (vpn >> (23 - VPN_SHIFT)) & ~(mmu_psize_defs[psize].avpnm);
|
|
v <<= HPTE_V_AVPN_SHIFT;
|
|
v |= ((unsigned long) ssize) << HPTE_V_SSIZE_SHIFT;
|
|
return v;
|
|
}
|
|
|
|
/*
|
|
* This function sets the AVPN and L fields of the HPTE appropriately
|
|
* using the base page size and actual page size.
|
|
*/
|
|
static inline unsigned long hpte_encode_v(unsigned long vpn, int base_psize,
|
|
int actual_psize, int ssize)
|
|
{
|
|
unsigned long v;
|
|
v = hpte_encode_avpn(vpn, base_psize, ssize);
|
|
if (actual_psize != MMU_PAGE_4K)
|
|
v |= HPTE_V_LARGE;
|
|
return v;
|
|
}
|
|
|
|
/*
|
|
* This function sets the ARPN, and LP fields of the HPTE appropriately
|
|
* for the page size. We assume the pa is already "clean" that is properly
|
|
* aligned for the requested page size
|
|
*/
|
|
static inline unsigned long hpte_encode_r(unsigned long pa, int base_psize,
|
|
int actual_psize)
|
|
{
|
|
/* A 4K page needs no special encoding */
|
|
if (actual_psize == MMU_PAGE_4K)
|
|
return pa & HPTE_R_RPN;
|
|
else {
|
|
unsigned int penc = mmu_psize_defs[base_psize].penc[actual_psize];
|
|
unsigned int shift = mmu_psize_defs[actual_psize].shift;
|
|
return (pa & ~((1ul << shift) - 1)) | (penc << LP_SHIFT);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Build a VPN_SHIFT bit shifted va given VSID, EA and segment size.
|
|
*/
|
|
static inline unsigned long hpt_vpn(unsigned long ea,
|
|
unsigned long vsid, int ssize)
|
|
{
|
|
unsigned long mask;
|
|
int s_shift = segment_shift(ssize);
|
|
|
|
mask = (1ul << (s_shift - VPN_SHIFT)) - 1;
|
|
return (vsid << (s_shift - VPN_SHIFT)) | ((ea >> VPN_SHIFT) & mask);
|
|
}
|
|
|
|
/*
|
|
* This hashes a virtual address
|
|
*/
|
|
static inline unsigned long hpt_hash(unsigned long vpn,
|
|
unsigned int shift, int ssize)
|
|
{
|
|
int mask;
|
|
unsigned long hash, vsid;
|
|
|
|
/* VPN_SHIFT can be atmost 12 */
|
|
if (ssize == MMU_SEGSIZE_256M) {
|
|
mask = (1ul << (SID_SHIFT - VPN_SHIFT)) - 1;
|
|
hash = (vpn >> (SID_SHIFT - VPN_SHIFT)) ^
|
|
((vpn & mask) >> (shift - VPN_SHIFT));
|
|
} else {
|
|
mask = (1ul << (SID_SHIFT_1T - VPN_SHIFT)) - 1;
|
|
vsid = vpn >> (SID_SHIFT_1T - VPN_SHIFT);
|
|
hash = vsid ^ (vsid << 25) ^
|
|
((vpn & mask) >> (shift - VPN_SHIFT)) ;
|
|
}
|
|
return hash & 0x7fffffffffUL;
|
|
}
|
|
|
|
#define HPTE_LOCAL_UPDATE 0x1
|
|
#define HPTE_NOHPTE_UPDATE 0x2
|
|
|
|
extern int __hash_page_4K(unsigned long ea, unsigned long access,
|
|
unsigned long vsid, pte_t *ptep, unsigned long trap,
|
|
unsigned long flags, int ssize, int subpage_prot);
|
|
extern int __hash_page_64K(unsigned long ea, unsigned long access,
|
|
unsigned long vsid, pte_t *ptep, unsigned long trap,
|
|
unsigned long flags, int ssize);
|
|
struct mm_struct;
|
|
unsigned int hash_page_do_lazy_icache(unsigned int pp, pte_t pte, int trap);
|
|
extern int hash_page_mm(struct mm_struct *mm, unsigned long ea,
|
|
unsigned long access, unsigned long trap,
|
|
unsigned long flags);
|
|
extern int hash_page(unsigned long ea, unsigned long access, unsigned long trap,
|
|
unsigned long dsisr);
|
|
int __hash_page_huge(unsigned long ea, unsigned long access, unsigned long vsid,
|
|
pte_t *ptep, unsigned long trap, unsigned long flags,
|
|
int ssize, unsigned int shift, unsigned int mmu_psize);
|
|
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
|
|
extern int __hash_page_thp(unsigned long ea, unsigned long access,
|
|
unsigned long vsid, pmd_t *pmdp, unsigned long trap,
|
|
unsigned long flags, int ssize, unsigned int psize);
|
|
#else
|
|
static inline int __hash_page_thp(unsigned long ea, unsigned long access,
|
|
unsigned long vsid, pmd_t *pmdp,
|
|
unsigned long trap, unsigned long flags,
|
|
int ssize, unsigned int psize)
|
|
{
|
|
BUG();
|
|
return -1;
|
|
}
|
|
#endif
|
|
extern void hash_failure_debug(unsigned long ea, unsigned long access,
|
|
unsigned long vsid, unsigned long trap,
|
|
int ssize, int psize, int lpsize,
|
|
unsigned long pte);
|
|
extern int htab_bolt_mapping(unsigned long vstart, unsigned long vend,
|
|
unsigned long pstart, unsigned long prot,
|
|
int psize, int ssize);
|
|
int htab_remove_mapping(unsigned long vstart, unsigned long vend,
|
|
int psize, int ssize);
|
|
extern void add_gpage(u64 addr, u64 page_size, unsigned long number_of_pages);
|
|
extern void demote_segment_4k(struct mm_struct *mm, unsigned long addr);
|
|
|
|
extern void hpte_init_native(void);
|
|
extern void hpte_init_lpar(void);
|
|
extern void hpte_init_beat(void);
|
|
extern void hpte_init_beat_v3(void);
|
|
|
|
extern void slb_initialize(void);
|
|
extern void slb_flush_and_rebolt(void);
|
|
|
|
extern void slb_vmalloc_update(void);
|
|
extern void slb_set_size(u16 size);
|
|
#endif /* __ASSEMBLY__ */
|
|
|
|
/*
|
|
* VSID allocation (256MB segment)
|
|
*
|
|
* We first generate a 37-bit "proto-VSID". Proto-VSIDs are generated
|
|
* from mmu context id and effective segment id of the address.
|
|
*
|
|
* For user processes max context id is limited to ((1ul << 19) - 5)
|
|
* for kernel space, we use the top 4 context ids to map address as below
|
|
* NOTE: each context only support 64TB now.
|
|
* 0x7fffc - [ 0xc000000000000000 - 0xc0003fffffffffff ]
|
|
* 0x7fffd - [ 0xd000000000000000 - 0xd0003fffffffffff ]
|
|
* 0x7fffe - [ 0xe000000000000000 - 0xe0003fffffffffff ]
|
|
* 0x7ffff - [ 0xf000000000000000 - 0xf0003fffffffffff ]
|
|
*
|
|
* The proto-VSIDs are then scrambled into real VSIDs with the
|
|
* multiplicative hash:
|
|
*
|
|
* VSID = (proto-VSID * VSID_MULTIPLIER) % VSID_MODULUS
|
|
*
|
|
* VSID_MULTIPLIER is prime, so in particular it is
|
|
* co-prime to VSID_MODULUS, making this a 1:1 scrambling function.
|
|
* Because the modulus is 2^n-1 we can compute it efficiently without
|
|
* a divide or extra multiply (see below). The scramble function gives
|
|
* robust scattering in the hash table (at least based on some initial
|
|
* results).
|
|
*
|
|
* We also consider VSID 0 special. We use VSID 0 for slb entries mapping
|
|
* bad address. This enables us to consolidate bad address handling in
|
|
* hash_page.
|
|
*
|
|
* We also need to avoid the last segment of the last context, because that
|
|
* would give a protovsid of 0x1fffffffff. That will result in a VSID 0
|
|
* because of the modulo operation in vsid scramble. But the vmemmap
|
|
* (which is what uses region 0xf) will never be close to 64TB in size
|
|
* (it's 56 bytes per page of system memory).
|
|
*/
|
|
|
|
#define CONTEXT_BITS 19
|
|
#define ESID_BITS 18
|
|
#define ESID_BITS_1T 6
|
|
|
|
/*
|
|
* 256MB segment
|
|
* The proto-VSID space has 2^(CONTEX_BITS + ESID_BITS) - 1 segments
|
|
* available for user + kernel mapping. The top 4 contexts are used for
|
|
* kernel mapping. Each segment contains 2^28 bytes. Each
|
|
* context maps 2^46 bytes (64TB) so we can support 2^19-1 contexts
|
|
* (19 == 37 + 28 - 46).
|
|
*/
|
|
#define MAX_USER_CONTEXT ((ASM_CONST(1) << CONTEXT_BITS) - 5)
|
|
|
|
/*
|
|
* This should be computed such that protovosid * vsid_mulitplier
|
|
* doesn't overflow 64 bits. It should also be co-prime to vsid_modulus
|
|
*/
|
|
#define VSID_MULTIPLIER_256M ASM_CONST(12538073) /* 24-bit prime */
|
|
#define VSID_BITS_256M (CONTEXT_BITS + ESID_BITS)
|
|
#define VSID_MODULUS_256M ((1UL<<VSID_BITS_256M)-1)
|
|
|
|
#define VSID_MULTIPLIER_1T ASM_CONST(12538073) /* 24-bit prime */
|
|
#define VSID_BITS_1T (CONTEXT_BITS + ESID_BITS_1T)
|
|
#define VSID_MODULUS_1T ((1UL<<VSID_BITS_1T)-1)
|
|
|
|
|
|
#define USER_VSID_RANGE (1UL << (ESID_BITS + SID_SHIFT))
|
|
|
|
/*
|
|
* This macro generates asm code to compute the VSID scramble
|
|
* function. Used in slb_allocate() and do_stab_bolted. The function
|
|
* computed is: (protovsid*VSID_MULTIPLIER) % VSID_MODULUS
|
|
*
|
|
* rt = register continaing the proto-VSID and into which the
|
|
* VSID will be stored
|
|
* rx = scratch register (clobbered)
|
|
*
|
|
* - rt and rx must be different registers
|
|
* - The answer will end up in the low VSID_BITS bits of rt. The higher
|
|
* bits may contain other garbage, so you may need to mask the
|
|
* result.
|
|
*/
|
|
#define ASM_VSID_SCRAMBLE(rt, rx, size) \
|
|
lis rx,VSID_MULTIPLIER_##size@h; \
|
|
ori rx,rx,VSID_MULTIPLIER_##size@l; \
|
|
mulld rt,rt,rx; /* rt = rt * MULTIPLIER */ \
|
|
\
|
|
srdi rx,rt,VSID_BITS_##size; \
|
|
clrldi rt,rt,(64-VSID_BITS_##size); \
|
|
add rt,rt,rx; /* add high and low bits */ \
|
|
/* NOTE: explanation based on VSID_BITS_##size = 36 \
|
|
* Now, r3 == VSID (mod 2^36-1), and lies between 0 and \
|
|
* 2^36-1+2^28-1. That in particular means that if r3 >= \
|
|
* 2^36-1, then r3+1 has the 2^36 bit set. So, if r3+1 has \
|
|
* the bit clear, r3 already has the answer we want, if it \
|
|
* doesn't, the answer is the low 36 bits of r3+1. So in all \
|
|
* cases the answer is the low 36 bits of (r3 + ((r3+1) >> 36))*/\
|
|
addi rx,rt,1; \
|
|
srdi rx,rx,VSID_BITS_##size; /* extract 2^VSID_BITS bit */ \
|
|
add rt,rt,rx
|
|
|
|
/* 4 bits per slice and we have one slice per 1TB */
|
|
#define SLICE_ARRAY_SIZE (PGTABLE_RANGE >> 41)
|
|
|
|
#ifndef __ASSEMBLY__
|
|
|
|
#ifdef CONFIG_PPC_SUBPAGE_PROT
|
|
/*
|
|
* For the sub-page protection option, we extend the PGD with one of
|
|
* these. Basically we have a 3-level tree, with the top level being
|
|
* the protptrs array. To optimize speed and memory consumption when
|
|
* only addresses < 4GB are being protected, pointers to the first
|
|
* four pages of sub-page protection words are stored in the low_prot
|
|
* array.
|
|
* Each page of sub-page protection words protects 1GB (4 bytes
|
|
* protects 64k). For the 3-level tree, each page of pointers then
|
|
* protects 8TB.
|
|
*/
|
|
struct subpage_prot_table {
|
|
unsigned long maxaddr; /* only addresses < this are protected */
|
|
unsigned int **protptrs[(TASK_SIZE_USER64 >> 43)];
|
|
unsigned int *low_prot[4];
|
|
};
|
|
|
|
#define SBP_L1_BITS (PAGE_SHIFT - 2)
|
|
#define SBP_L2_BITS (PAGE_SHIFT - 3)
|
|
#define SBP_L1_COUNT (1 << SBP_L1_BITS)
|
|
#define SBP_L2_COUNT (1 << SBP_L2_BITS)
|
|
#define SBP_L2_SHIFT (PAGE_SHIFT + SBP_L1_BITS)
|
|
#define SBP_L3_SHIFT (SBP_L2_SHIFT + SBP_L2_BITS)
|
|
|
|
extern void subpage_prot_free(struct mm_struct *mm);
|
|
extern void subpage_prot_init_new_context(struct mm_struct *mm);
|
|
#else
|
|
static inline void subpage_prot_free(struct mm_struct *mm) {}
|
|
static inline void subpage_prot_init_new_context(struct mm_struct *mm) { }
|
|
#endif /* CONFIG_PPC_SUBPAGE_PROT */
|
|
|
|
typedef unsigned long mm_context_id_t;
|
|
struct spinlock;
|
|
|
|
typedef struct {
|
|
mm_context_id_t id;
|
|
u16 user_psize; /* page size index */
|
|
|
|
#ifdef CONFIG_PPC_MM_SLICES
|
|
u64 low_slices_psize; /* SLB page size encodings */
|
|
unsigned char high_slices_psize[SLICE_ARRAY_SIZE];
|
|
#else
|
|
u16 sllp; /* SLB page size encoding */
|
|
#endif
|
|
unsigned long vdso_base;
|
|
#ifdef CONFIG_PPC_SUBPAGE_PROT
|
|
struct subpage_prot_table spt;
|
|
#endif /* CONFIG_PPC_SUBPAGE_PROT */
|
|
#ifdef CONFIG_PPC_ICSWX
|
|
struct spinlock *cop_lockp; /* guard acop and cop_pid */
|
|
unsigned long acop; /* mask of enabled coprocessor types */
|
|
unsigned int cop_pid; /* pid value used with coprocessors */
|
|
#endif /* CONFIG_PPC_ICSWX */
|
|
#ifdef CONFIG_PPC_64K_PAGES
|
|
/* for 4K PTE fragment support */
|
|
void *pte_frag;
|
|
#endif
|
|
} mm_context_t;
|
|
|
|
|
|
#if 0
|
|
/*
|
|
* The code below is equivalent to this function for arguments
|
|
* < 2^VSID_BITS, which is all this should ever be called
|
|
* with. However gcc is not clever enough to compute the
|
|
* modulus (2^n-1) without a second multiply.
|
|
*/
|
|
#define vsid_scramble(protovsid, size) \
|
|
((((protovsid) * VSID_MULTIPLIER_##size) % VSID_MODULUS_##size))
|
|
|
|
#else /* 1 */
|
|
#define vsid_scramble(protovsid, size) \
|
|
({ \
|
|
unsigned long x; \
|
|
x = (protovsid) * VSID_MULTIPLIER_##size; \
|
|
x = (x >> VSID_BITS_##size) + (x & VSID_MODULUS_##size); \
|
|
(x + ((x+1) >> VSID_BITS_##size)) & VSID_MODULUS_##size; \
|
|
})
|
|
#endif /* 1 */
|
|
|
|
/* Returns the segment size indicator for a user address */
|
|
static inline int user_segment_size(unsigned long addr)
|
|
{
|
|
/* Use 1T segments if possible for addresses >= 1T */
|
|
if (addr >= (1UL << SID_SHIFT_1T))
|
|
return mmu_highuser_ssize;
|
|
return MMU_SEGSIZE_256M;
|
|
}
|
|
|
|
static inline unsigned long get_vsid(unsigned long context, unsigned long ea,
|
|
int ssize)
|
|
{
|
|
/*
|
|
* Bad address. We return VSID 0 for that
|
|
*/
|
|
if ((ea & ~REGION_MASK) >= PGTABLE_RANGE)
|
|
return 0;
|
|
|
|
if (ssize == MMU_SEGSIZE_256M)
|
|
return vsid_scramble((context << ESID_BITS)
|
|
| (ea >> SID_SHIFT), 256M);
|
|
return vsid_scramble((context << ESID_BITS_1T)
|
|
| (ea >> SID_SHIFT_1T), 1T);
|
|
}
|
|
|
|
/*
|
|
* This is only valid for addresses >= PAGE_OFFSET
|
|
*
|
|
* For kernel space, we use the top 4 context ids to map address as below
|
|
* 0x7fffc - [ 0xc000000000000000 - 0xc0003fffffffffff ]
|
|
* 0x7fffd - [ 0xd000000000000000 - 0xd0003fffffffffff ]
|
|
* 0x7fffe - [ 0xe000000000000000 - 0xe0003fffffffffff ]
|
|
* 0x7ffff - [ 0xf000000000000000 - 0xf0003fffffffffff ]
|
|
*/
|
|
static inline unsigned long get_kernel_vsid(unsigned long ea, int ssize)
|
|
{
|
|
unsigned long context;
|
|
|
|
/*
|
|
* kernel take the top 4 context from the available range
|
|
*/
|
|
context = (MAX_USER_CONTEXT) + ((ea >> 60) - 0xc) + 1;
|
|
return get_vsid(context, ea, ssize);
|
|
}
|
|
#endif /* __ASSEMBLY__ */
|
|
|
|
#endif /* _ASM_POWERPC_MMU_HASH64_H_ */
|