2810 lines
61 KiB
C
2810 lines
61 KiB
C
/*
|
|
* Kernel-based Virtual Machine driver for Linux
|
|
*
|
|
* This module enables machines with Intel VT-x extensions to run virtual
|
|
* machines without emulation or binary translation.
|
|
*
|
|
* Copyright (C) 2006 Qumranet, Inc.
|
|
* Copyright 2010 Red Hat, Inc. and/or its affiliates.
|
|
*
|
|
* Authors:
|
|
* Avi Kivity <avi@qumranet.com>
|
|
* Yaniv Kamay <yaniv@qumranet.com>
|
|
*
|
|
* This work is licensed under the terms of the GNU GPL, version 2. See
|
|
* the COPYING file in the top-level directory.
|
|
*
|
|
*/
|
|
|
|
#include "iodev.h"
|
|
|
|
#include <linux/kvm_host.h>
|
|
#include <linux/kvm.h>
|
|
#include <linux/module.h>
|
|
#include <linux/errno.h>
|
|
#include <linux/percpu.h>
|
|
#include <linux/mm.h>
|
|
#include <linux/miscdevice.h>
|
|
#include <linux/vmalloc.h>
|
|
#include <linux/reboot.h>
|
|
#include <linux/debugfs.h>
|
|
#include <linux/highmem.h>
|
|
#include <linux/file.h>
|
|
#include <linux/syscore_ops.h>
|
|
#include <linux/cpu.h>
|
|
#include <linux/sched.h>
|
|
#include <linux/cpumask.h>
|
|
#include <linux/smp.h>
|
|
#include <linux/anon_inodes.h>
|
|
#include <linux/profile.h>
|
|
#include <linux/kvm_para.h>
|
|
#include <linux/pagemap.h>
|
|
#include <linux/mman.h>
|
|
#include <linux/swap.h>
|
|
#include <linux/bitops.h>
|
|
#include <linux/spinlock.h>
|
|
#include <linux/compat.h>
|
|
#include <linux/srcu.h>
|
|
#include <linux/hugetlb.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/sort.h>
|
|
#include <linux/bsearch.h>
|
|
|
|
#include <asm/processor.h>
|
|
#include <asm/io.h>
|
|
#include <asm/uaccess.h>
|
|
#include <asm/pgtable.h>
|
|
|
|
#include "coalesced_mmio.h"
|
|
#include "async_pf.h"
|
|
|
|
#define CREATE_TRACE_POINTS
|
|
#include <trace/events/kvm.h>
|
|
|
|
MODULE_AUTHOR("Qumranet");
|
|
MODULE_LICENSE("GPL");
|
|
|
|
/*
|
|
* Ordering of locks:
|
|
*
|
|
* kvm->lock --> kvm->slots_lock --> kvm->irq_lock
|
|
*/
|
|
|
|
DEFINE_RAW_SPINLOCK(kvm_lock);
|
|
LIST_HEAD(vm_list);
|
|
|
|
static cpumask_var_t cpus_hardware_enabled;
|
|
static int kvm_usage_count = 0;
|
|
static atomic_t hardware_enable_failed;
|
|
|
|
struct kmem_cache *kvm_vcpu_cache;
|
|
EXPORT_SYMBOL_GPL(kvm_vcpu_cache);
|
|
|
|
static __read_mostly struct preempt_ops kvm_preempt_ops;
|
|
|
|
struct dentry *kvm_debugfs_dir;
|
|
|
|
static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl,
|
|
unsigned long arg);
|
|
#ifdef CONFIG_COMPAT
|
|
static long kvm_vcpu_compat_ioctl(struct file *file, unsigned int ioctl,
|
|
unsigned long arg);
|
|
#endif
|
|
static int hardware_enable_all(void);
|
|
static void hardware_disable_all(void);
|
|
|
|
static void kvm_io_bus_destroy(struct kvm_io_bus *bus);
|
|
|
|
bool kvm_rebooting;
|
|
EXPORT_SYMBOL_GPL(kvm_rebooting);
|
|
|
|
static bool largepages_enabled = true;
|
|
|
|
static struct page *hwpoison_page;
|
|
static pfn_t hwpoison_pfn;
|
|
|
|
struct page *fault_page;
|
|
pfn_t fault_pfn;
|
|
|
|
inline int kvm_is_mmio_pfn(pfn_t pfn)
|
|
{
|
|
if (pfn_valid(pfn)) {
|
|
int reserved;
|
|
struct page *tail = pfn_to_page(pfn);
|
|
struct page *head = compound_trans_head(tail);
|
|
reserved = PageReserved(head);
|
|
if (head != tail) {
|
|
/*
|
|
* "head" is not a dangling pointer
|
|
* (compound_trans_head takes care of that)
|
|
* but the hugepage may have been splitted
|
|
* from under us (and we may not hold a
|
|
* reference count on the head page so it can
|
|
* be reused before we run PageReferenced), so
|
|
* we've to check PageTail before returning
|
|
* what we just read.
|
|
*/
|
|
smp_rmb();
|
|
if (PageTail(tail))
|
|
return reserved;
|
|
}
|
|
return PageReserved(tail);
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
/*
|
|
* Switches to specified vcpu, until a matching vcpu_put()
|
|
*/
|
|
void vcpu_load(struct kvm_vcpu *vcpu)
|
|
{
|
|
int cpu;
|
|
|
|
mutex_lock(&vcpu->mutex);
|
|
if (unlikely(vcpu->pid != current->pids[PIDTYPE_PID].pid)) {
|
|
/* The thread running this VCPU changed. */
|
|
struct pid *oldpid = vcpu->pid;
|
|
struct pid *newpid = get_task_pid(current, PIDTYPE_PID);
|
|
rcu_assign_pointer(vcpu->pid, newpid);
|
|
synchronize_rcu();
|
|
put_pid(oldpid);
|
|
}
|
|
cpu = get_cpu();
|
|
preempt_notifier_register(&vcpu->preempt_notifier);
|
|
kvm_arch_vcpu_load(vcpu, cpu);
|
|
put_cpu();
|
|
}
|
|
|
|
void vcpu_put(struct kvm_vcpu *vcpu)
|
|
{
|
|
preempt_disable();
|
|
kvm_arch_vcpu_put(vcpu);
|
|
preempt_notifier_unregister(&vcpu->preempt_notifier);
|
|
preempt_enable();
|
|
mutex_unlock(&vcpu->mutex);
|
|
}
|
|
|
|
static void ack_flush(void *_completed)
|
|
{
|
|
}
|
|
|
|
static bool make_all_cpus_request(struct kvm *kvm, unsigned int req)
|
|
{
|
|
int i, cpu, me;
|
|
cpumask_var_t cpus;
|
|
bool called = true;
|
|
struct kvm_vcpu *vcpu;
|
|
|
|
zalloc_cpumask_var(&cpus, GFP_ATOMIC);
|
|
|
|
me = get_cpu();
|
|
kvm_for_each_vcpu(i, vcpu, kvm) {
|
|
kvm_make_request(req, vcpu);
|
|
cpu = vcpu->cpu;
|
|
|
|
/* Set ->requests bit before we read ->mode */
|
|
smp_mb();
|
|
|
|
if (cpus != NULL && cpu != -1 && cpu != me &&
|
|
kvm_vcpu_exiting_guest_mode(vcpu) != OUTSIDE_GUEST_MODE)
|
|
cpumask_set_cpu(cpu, cpus);
|
|
}
|
|
if (unlikely(cpus == NULL))
|
|
smp_call_function_many(cpu_online_mask, ack_flush, NULL, 1);
|
|
else if (!cpumask_empty(cpus))
|
|
smp_call_function_many(cpus, ack_flush, NULL, 1);
|
|
else
|
|
called = false;
|
|
put_cpu();
|
|
free_cpumask_var(cpus);
|
|
return called;
|
|
}
|
|
|
|
void kvm_flush_remote_tlbs(struct kvm *kvm)
|
|
{
|
|
long dirty_count = kvm->tlbs_dirty;
|
|
|
|
smp_mb();
|
|
if (make_all_cpus_request(kvm, KVM_REQ_TLB_FLUSH))
|
|
++kvm->stat.remote_tlb_flush;
|
|
cmpxchg(&kvm->tlbs_dirty, dirty_count, 0);
|
|
}
|
|
|
|
void kvm_reload_remote_mmus(struct kvm *kvm)
|
|
{
|
|
make_all_cpus_request(kvm, KVM_REQ_MMU_RELOAD);
|
|
}
|
|
|
|
int kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id)
|
|
{
|
|
struct page *page;
|
|
int r;
|
|
|
|
mutex_init(&vcpu->mutex);
|
|
vcpu->cpu = -1;
|
|
vcpu->kvm = kvm;
|
|
vcpu->vcpu_id = id;
|
|
vcpu->pid = NULL;
|
|
init_waitqueue_head(&vcpu->wq);
|
|
kvm_async_pf_vcpu_init(vcpu);
|
|
|
|
page = alloc_page(GFP_KERNEL | __GFP_ZERO);
|
|
if (!page) {
|
|
r = -ENOMEM;
|
|
goto fail;
|
|
}
|
|
vcpu->run = page_address(page);
|
|
|
|
r = kvm_arch_vcpu_init(vcpu);
|
|
if (r < 0)
|
|
goto fail_free_run;
|
|
return 0;
|
|
|
|
fail_free_run:
|
|
free_page((unsigned long)vcpu->run);
|
|
fail:
|
|
return r;
|
|
}
|
|
EXPORT_SYMBOL_GPL(kvm_vcpu_init);
|
|
|
|
void kvm_vcpu_uninit(struct kvm_vcpu *vcpu)
|
|
{
|
|
put_pid(vcpu->pid);
|
|
kvm_arch_vcpu_uninit(vcpu);
|
|
free_page((unsigned long)vcpu->run);
|
|
}
|
|
EXPORT_SYMBOL_GPL(kvm_vcpu_uninit);
|
|
|
|
#if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
|
|
static inline struct kvm *mmu_notifier_to_kvm(struct mmu_notifier *mn)
|
|
{
|
|
return container_of(mn, struct kvm, mmu_notifier);
|
|
}
|
|
|
|
static void kvm_mmu_notifier_invalidate_page(struct mmu_notifier *mn,
|
|
struct mm_struct *mm,
|
|
unsigned long address)
|
|
{
|
|
struct kvm *kvm = mmu_notifier_to_kvm(mn);
|
|
int need_tlb_flush, idx;
|
|
|
|
/*
|
|
* When ->invalidate_page runs, the linux pte has been zapped
|
|
* already but the page is still allocated until
|
|
* ->invalidate_page returns. So if we increase the sequence
|
|
* here the kvm page fault will notice if the spte can't be
|
|
* established because the page is going to be freed. If
|
|
* instead the kvm page fault establishes the spte before
|
|
* ->invalidate_page runs, kvm_unmap_hva will release it
|
|
* before returning.
|
|
*
|
|
* The sequence increase only need to be seen at spin_unlock
|
|
* time, and not at spin_lock time.
|
|
*
|
|
* Increasing the sequence after the spin_unlock would be
|
|
* unsafe because the kvm page fault could then establish the
|
|
* pte after kvm_unmap_hva returned, without noticing the page
|
|
* is going to be freed.
|
|
*/
|
|
idx = srcu_read_lock(&kvm->srcu);
|
|
spin_lock(&kvm->mmu_lock);
|
|
|
|
kvm->mmu_notifier_seq++;
|
|
need_tlb_flush = kvm_unmap_hva(kvm, address) | kvm->tlbs_dirty;
|
|
/* we've to flush the tlb before the pages can be freed */
|
|
if (need_tlb_flush)
|
|
kvm_flush_remote_tlbs(kvm);
|
|
|
|
spin_unlock(&kvm->mmu_lock);
|
|
srcu_read_unlock(&kvm->srcu, idx);
|
|
}
|
|
|
|
static void kvm_mmu_notifier_change_pte(struct mmu_notifier *mn,
|
|
struct mm_struct *mm,
|
|
unsigned long address,
|
|
pte_t pte)
|
|
{
|
|
struct kvm *kvm = mmu_notifier_to_kvm(mn);
|
|
int idx;
|
|
|
|
idx = srcu_read_lock(&kvm->srcu);
|
|
spin_lock(&kvm->mmu_lock);
|
|
kvm->mmu_notifier_seq++;
|
|
kvm_set_spte_hva(kvm, address, pte);
|
|
spin_unlock(&kvm->mmu_lock);
|
|
srcu_read_unlock(&kvm->srcu, idx);
|
|
}
|
|
|
|
static void kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier *mn,
|
|
struct mm_struct *mm,
|
|
unsigned long start,
|
|
unsigned long end)
|
|
{
|
|
struct kvm *kvm = mmu_notifier_to_kvm(mn);
|
|
int need_tlb_flush = 0, idx;
|
|
|
|
idx = srcu_read_lock(&kvm->srcu);
|
|
spin_lock(&kvm->mmu_lock);
|
|
/*
|
|
* The count increase must become visible at unlock time as no
|
|
* spte can be established without taking the mmu_lock and
|
|
* count is also read inside the mmu_lock critical section.
|
|
*/
|
|
kvm->mmu_notifier_count++;
|
|
for (; start < end; start += PAGE_SIZE)
|
|
need_tlb_flush |= kvm_unmap_hva(kvm, start);
|
|
need_tlb_flush |= kvm->tlbs_dirty;
|
|
/* we've to flush the tlb before the pages can be freed */
|
|
if (need_tlb_flush)
|
|
kvm_flush_remote_tlbs(kvm);
|
|
|
|
spin_unlock(&kvm->mmu_lock);
|
|
srcu_read_unlock(&kvm->srcu, idx);
|
|
}
|
|
|
|
static void kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier *mn,
|
|
struct mm_struct *mm,
|
|
unsigned long start,
|
|
unsigned long end)
|
|
{
|
|
struct kvm *kvm = mmu_notifier_to_kvm(mn);
|
|
|
|
spin_lock(&kvm->mmu_lock);
|
|
/*
|
|
* This sequence increase will notify the kvm page fault that
|
|
* the page that is going to be mapped in the spte could have
|
|
* been freed.
|
|
*/
|
|
kvm->mmu_notifier_seq++;
|
|
smp_wmb();
|
|
/*
|
|
* The above sequence increase must be visible before the
|
|
* below count decrease, which is ensured by the smp_wmb above
|
|
* in conjunction with the smp_rmb in mmu_notifier_retry().
|
|
*/
|
|
kvm->mmu_notifier_count--;
|
|
spin_unlock(&kvm->mmu_lock);
|
|
|
|
BUG_ON(kvm->mmu_notifier_count < 0);
|
|
}
|
|
|
|
static int kvm_mmu_notifier_clear_flush_young(struct mmu_notifier *mn,
|
|
struct mm_struct *mm,
|
|
unsigned long address)
|
|
{
|
|
struct kvm *kvm = mmu_notifier_to_kvm(mn);
|
|
int young, idx;
|
|
|
|
idx = srcu_read_lock(&kvm->srcu);
|
|
spin_lock(&kvm->mmu_lock);
|
|
|
|
young = kvm_age_hva(kvm, address);
|
|
if (young)
|
|
kvm_flush_remote_tlbs(kvm);
|
|
|
|
spin_unlock(&kvm->mmu_lock);
|
|
srcu_read_unlock(&kvm->srcu, idx);
|
|
|
|
return young;
|
|
}
|
|
|
|
static int kvm_mmu_notifier_test_young(struct mmu_notifier *mn,
|
|
struct mm_struct *mm,
|
|
unsigned long address)
|
|
{
|
|
struct kvm *kvm = mmu_notifier_to_kvm(mn);
|
|
int young, idx;
|
|
|
|
idx = srcu_read_lock(&kvm->srcu);
|
|
spin_lock(&kvm->mmu_lock);
|
|
young = kvm_test_age_hva(kvm, address);
|
|
spin_unlock(&kvm->mmu_lock);
|
|
srcu_read_unlock(&kvm->srcu, idx);
|
|
|
|
return young;
|
|
}
|
|
|
|
static void kvm_mmu_notifier_release(struct mmu_notifier *mn,
|
|
struct mm_struct *mm)
|
|
{
|
|
struct kvm *kvm = mmu_notifier_to_kvm(mn);
|
|
int idx;
|
|
|
|
idx = srcu_read_lock(&kvm->srcu);
|
|
kvm_arch_flush_shadow(kvm);
|
|
srcu_read_unlock(&kvm->srcu, idx);
|
|
}
|
|
|
|
static const struct mmu_notifier_ops kvm_mmu_notifier_ops = {
|
|
.invalidate_page = kvm_mmu_notifier_invalidate_page,
|
|
.invalidate_range_start = kvm_mmu_notifier_invalidate_range_start,
|
|
.invalidate_range_end = kvm_mmu_notifier_invalidate_range_end,
|
|
.clear_flush_young = kvm_mmu_notifier_clear_flush_young,
|
|
.test_young = kvm_mmu_notifier_test_young,
|
|
.change_pte = kvm_mmu_notifier_change_pte,
|
|
.release = kvm_mmu_notifier_release,
|
|
};
|
|
|
|
static int kvm_init_mmu_notifier(struct kvm *kvm)
|
|
{
|
|
kvm->mmu_notifier.ops = &kvm_mmu_notifier_ops;
|
|
return mmu_notifier_register(&kvm->mmu_notifier, current->mm);
|
|
}
|
|
|
|
#else /* !(CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER) */
|
|
|
|
static int kvm_init_mmu_notifier(struct kvm *kvm)
|
|
{
|
|
return 0;
|
|
}
|
|
|
|
#endif /* CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER */
|
|
|
|
static void kvm_init_memslots_id(struct kvm *kvm)
|
|
{
|
|
int i;
|
|
struct kvm_memslots *slots = kvm->memslots;
|
|
|
|
for (i = 0; i < KVM_MEM_SLOTS_NUM; i++)
|
|
slots->id_to_index[i] = slots->memslots[i].id = i;
|
|
}
|
|
|
|
static struct kvm *kvm_create_vm(unsigned long type)
|
|
{
|
|
int r, i;
|
|
struct kvm *kvm = kvm_arch_alloc_vm();
|
|
|
|
if (!kvm)
|
|
return ERR_PTR(-ENOMEM);
|
|
|
|
r = kvm_arch_init_vm(kvm, type);
|
|
if (r)
|
|
goto out_err_nodisable;
|
|
|
|
r = hardware_enable_all();
|
|
if (r)
|
|
goto out_err_nodisable;
|
|
|
|
#ifdef CONFIG_HAVE_KVM_IRQCHIP
|
|
INIT_HLIST_HEAD(&kvm->mask_notifier_list);
|
|
INIT_HLIST_HEAD(&kvm->irq_ack_notifier_list);
|
|
#endif
|
|
|
|
r = -ENOMEM;
|
|
kvm->memslots = kzalloc(sizeof(struct kvm_memslots), GFP_KERNEL);
|
|
if (!kvm->memslots)
|
|
goto out_err_nosrcu;
|
|
kvm_init_memslots_id(kvm);
|
|
if (init_srcu_struct(&kvm->srcu))
|
|
goto out_err_nosrcu;
|
|
for (i = 0; i < KVM_NR_BUSES; i++) {
|
|
kvm->buses[i] = kzalloc(sizeof(struct kvm_io_bus),
|
|
GFP_KERNEL);
|
|
if (!kvm->buses[i])
|
|
goto out_err;
|
|
}
|
|
|
|
spin_lock_init(&kvm->mmu_lock);
|
|
kvm->mm = current->mm;
|
|
atomic_inc(&kvm->mm->mm_count);
|
|
kvm_eventfd_init(kvm);
|
|
mutex_init(&kvm->lock);
|
|
mutex_init(&kvm->irq_lock);
|
|
mutex_init(&kvm->slots_lock);
|
|
atomic_set(&kvm->users_count, 1);
|
|
|
|
r = kvm_init_mmu_notifier(kvm);
|
|
if (r)
|
|
goto out_err;
|
|
|
|
raw_spin_lock(&kvm_lock);
|
|
list_add(&kvm->vm_list, &vm_list);
|
|
raw_spin_unlock(&kvm_lock);
|
|
|
|
return kvm;
|
|
|
|
out_err:
|
|
cleanup_srcu_struct(&kvm->srcu);
|
|
out_err_nosrcu:
|
|
hardware_disable_all();
|
|
out_err_nodisable:
|
|
for (i = 0; i < KVM_NR_BUSES; i++)
|
|
kfree(kvm->buses[i]);
|
|
kfree(kvm->memslots);
|
|
kvm_arch_free_vm(kvm);
|
|
return ERR_PTR(r);
|
|
}
|
|
|
|
static void kvm_destroy_dirty_bitmap(struct kvm_memory_slot *memslot)
|
|
{
|
|
if (!memslot->dirty_bitmap)
|
|
return;
|
|
|
|
if (2 * kvm_dirty_bitmap_bytes(memslot) > PAGE_SIZE)
|
|
vfree(memslot->dirty_bitmap_head);
|
|
else
|
|
kfree(memslot->dirty_bitmap_head);
|
|
|
|
memslot->dirty_bitmap = NULL;
|
|
memslot->dirty_bitmap_head = NULL;
|
|
}
|
|
|
|
/*
|
|
* Free any memory in @free but not in @dont.
|
|
*/
|
|
static void kvm_free_physmem_slot(struct kvm_memory_slot *free,
|
|
struct kvm_memory_slot *dont)
|
|
{
|
|
if (!dont || free->rmap != dont->rmap)
|
|
vfree(free->rmap);
|
|
|
|
if (!dont || free->dirty_bitmap != dont->dirty_bitmap)
|
|
kvm_destroy_dirty_bitmap(free);
|
|
|
|
kvm_arch_free_memslot(free, dont);
|
|
|
|
free->npages = 0;
|
|
free->rmap = NULL;
|
|
}
|
|
|
|
void kvm_free_physmem(struct kvm *kvm)
|
|
{
|
|
struct kvm_memslots *slots = kvm->memslots;
|
|
struct kvm_memory_slot *memslot;
|
|
|
|
kvm_for_each_memslot(memslot, slots)
|
|
kvm_free_physmem_slot(memslot, NULL);
|
|
|
|
kfree(kvm->memslots);
|
|
}
|
|
|
|
static void kvm_destroy_vm(struct kvm *kvm)
|
|
{
|
|
int i;
|
|
struct mm_struct *mm = kvm->mm;
|
|
|
|
kvm_arch_sync_events(kvm);
|
|
raw_spin_lock(&kvm_lock);
|
|
list_del(&kvm->vm_list);
|
|
raw_spin_unlock(&kvm_lock);
|
|
kvm_free_irq_routing(kvm);
|
|
for (i = 0; i < KVM_NR_BUSES; i++)
|
|
kvm_io_bus_destroy(kvm->buses[i]);
|
|
kvm_coalesced_mmio_free(kvm);
|
|
#if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
|
|
mmu_notifier_unregister(&kvm->mmu_notifier, kvm->mm);
|
|
#else
|
|
kvm_arch_flush_shadow(kvm);
|
|
#endif
|
|
kvm_arch_destroy_vm(kvm);
|
|
kvm_free_physmem(kvm);
|
|
cleanup_srcu_struct(&kvm->srcu);
|
|
kvm_arch_free_vm(kvm);
|
|
hardware_disable_all();
|
|
mmdrop(mm);
|
|
}
|
|
|
|
void kvm_get_kvm(struct kvm *kvm)
|
|
{
|
|
atomic_inc(&kvm->users_count);
|
|
}
|
|
EXPORT_SYMBOL_GPL(kvm_get_kvm);
|
|
|
|
void kvm_put_kvm(struct kvm *kvm)
|
|
{
|
|
if (atomic_dec_and_test(&kvm->users_count))
|
|
kvm_destroy_vm(kvm);
|
|
}
|
|
EXPORT_SYMBOL_GPL(kvm_put_kvm);
|
|
|
|
|
|
static int kvm_vm_release(struct inode *inode, struct file *filp)
|
|
{
|
|
struct kvm *kvm = filp->private_data;
|
|
|
|
kvm_irqfd_release(kvm);
|
|
|
|
kvm_put_kvm(kvm);
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Allocation size is twice as large as the actual dirty bitmap size.
|
|
* This makes it possible to do double buffering: see x86's
|
|
* kvm_vm_ioctl_get_dirty_log().
|
|
*/
|
|
static int kvm_create_dirty_bitmap(struct kvm_memory_slot *memslot)
|
|
{
|
|
#ifndef CONFIG_S390
|
|
unsigned long dirty_bytes = 2 * kvm_dirty_bitmap_bytes(memslot);
|
|
|
|
if (dirty_bytes > PAGE_SIZE)
|
|
memslot->dirty_bitmap = vzalloc(dirty_bytes);
|
|
else
|
|
memslot->dirty_bitmap = kzalloc(dirty_bytes, GFP_KERNEL);
|
|
|
|
if (!memslot->dirty_bitmap)
|
|
return -ENOMEM;
|
|
|
|
memslot->dirty_bitmap_head = memslot->dirty_bitmap;
|
|
memslot->nr_dirty_pages = 0;
|
|
#endif /* !CONFIG_S390 */
|
|
return 0;
|
|
}
|
|
|
|
static int cmp_memslot(const void *slot1, const void *slot2)
|
|
{
|
|
struct kvm_memory_slot *s1, *s2;
|
|
|
|
s1 = (struct kvm_memory_slot *)slot1;
|
|
s2 = (struct kvm_memory_slot *)slot2;
|
|
|
|
if (s1->npages < s2->npages)
|
|
return 1;
|
|
if (s1->npages > s2->npages)
|
|
return -1;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Sort the memslots base on its size, so the larger slots
|
|
* will get better fit.
|
|
*/
|
|
static void sort_memslots(struct kvm_memslots *slots)
|
|
{
|
|
int i;
|
|
|
|
sort(slots->memslots, KVM_MEM_SLOTS_NUM,
|
|
sizeof(struct kvm_memory_slot), cmp_memslot, NULL);
|
|
|
|
for (i = 0; i < KVM_MEM_SLOTS_NUM; i++)
|
|
slots->id_to_index[slots->memslots[i].id] = i;
|
|
}
|
|
|
|
void update_memslots(struct kvm_memslots *slots, struct kvm_memory_slot *new)
|
|
{
|
|
if (new) {
|
|
int id = new->id;
|
|
struct kvm_memory_slot *old = id_to_memslot(slots, id);
|
|
unsigned long npages = old->npages;
|
|
|
|
*old = *new;
|
|
if (new->npages != npages)
|
|
sort_memslots(slots);
|
|
}
|
|
|
|
slots->generation++;
|
|
}
|
|
|
|
/*
|
|
* Allocate some memory and give it an address in the guest physical address
|
|
* space.
|
|
*
|
|
* Discontiguous memory is allowed, mostly for framebuffers.
|
|
*
|
|
* Must be called holding mmap_sem for write.
|
|
*/
|
|
int __kvm_set_memory_region(struct kvm *kvm,
|
|
struct kvm_userspace_memory_region *mem,
|
|
int user_alloc)
|
|
{
|
|
int r;
|
|
gfn_t base_gfn;
|
|
unsigned long npages;
|
|
unsigned long i;
|
|
struct kvm_memory_slot *memslot;
|
|
struct kvm_memory_slot old, new;
|
|
struct kvm_memslots *slots, *old_memslots;
|
|
|
|
r = -EINVAL;
|
|
/* General sanity checks */
|
|
if (mem->memory_size & (PAGE_SIZE - 1))
|
|
goto out;
|
|
if (mem->guest_phys_addr & (PAGE_SIZE - 1))
|
|
goto out;
|
|
/* We can read the guest memory with __xxx_user() later on. */
|
|
if (user_alloc &&
|
|
((mem->userspace_addr & (PAGE_SIZE - 1)) ||
|
|
!access_ok(VERIFY_WRITE,
|
|
(void __user *)(unsigned long)mem->userspace_addr,
|
|
mem->memory_size)))
|
|
goto out;
|
|
if (mem->slot >= KVM_MEM_SLOTS_NUM)
|
|
goto out;
|
|
if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr)
|
|
goto out;
|
|
|
|
memslot = id_to_memslot(kvm->memslots, mem->slot);
|
|
base_gfn = mem->guest_phys_addr >> PAGE_SHIFT;
|
|
npages = mem->memory_size >> PAGE_SHIFT;
|
|
|
|
r = -EINVAL;
|
|
if (npages > KVM_MEM_MAX_NR_PAGES)
|
|
goto out;
|
|
|
|
if (!npages)
|
|
mem->flags &= ~KVM_MEM_LOG_DIRTY_PAGES;
|
|
|
|
new = old = *memslot;
|
|
|
|
new.id = mem->slot;
|
|
new.base_gfn = base_gfn;
|
|
new.npages = npages;
|
|
new.flags = mem->flags;
|
|
|
|
/* Disallow changing a memory slot's size. */
|
|
r = -EINVAL;
|
|
if (npages && old.npages && npages != old.npages)
|
|
goto out_free;
|
|
|
|
/* Check for overlaps */
|
|
r = -EEXIST;
|
|
for (i = 0; i < KVM_MEMORY_SLOTS; ++i) {
|
|
struct kvm_memory_slot *s = &kvm->memslots->memslots[i];
|
|
|
|
if (s == memslot || !s->npages)
|
|
continue;
|
|
if (!((base_gfn + npages <= s->base_gfn) ||
|
|
(base_gfn >= s->base_gfn + s->npages)))
|
|
goto out_free;
|
|
}
|
|
|
|
/* Free page dirty bitmap if unneeded */
|
|
if (!(new.flags & KVM_MEM_LOG_DIRTY_PAGES))
|
|
new.dirty_bitmap = NULL;
|
|
|
|
r = -ENOMEM;
|
|
|
|
/* Allocate if a slot is being created */
|
|
if (npages && !old.npages) {
|
|
new.user_alloc = user_alloc;
|
|
new.userspace_addr = mem->userspace_addr;
|
|
#ifndef CONFIG_S390
|
|
new.rmap = vzalloc(npages * sizeof(*new.rmap));
|
|
if (!new.rmap)
|
|
goto out_free;
|
|
#endif /* not defined CONFIG_S390 */
|
|
if (kvm_arch_create_memslot(&new, npages))
|
|
goto out_free;
|
|
}
|
|
|
|
/* Allocate page dirty bitmap if needed */
|
|
if ((new.flags & KVM_MEM_LOG_DIRTY_PAGES) && !new.dirty_bitmap) {
|
|
if (kvm_create_dirty_bitmap(&new) < 0)
|
|
goto out_free;
|
|
/* destroy any largepage mappings for dirty tracking */
|
|
}
|
|
|
|
if (!npages) {
|
|
struct kvm_memory_slot *slot;
|
|
|
|
r = -ENOMEM;
|
|
slots = kmemdup(kvm->memslots, sizeof(struct kvm_memslots),
|
|
GFP_KERNEL);
|
|
if (!slots)
|
|
goto out_free;
|
|
slot = id_to_memslot(slots, mem->slot);
|
|
slot->flags |= KVM_MEMSLOT_INVALID;
|
|
|
|
update_memslots(slots, NULL);
|
|
|
|
old_memslots = kvm->memslots;
|
|
rcu_assign_pointer(kvm->memslots, slots);
|
|
synchronize_srcu_expedited(&kvm->srcu);
|
|
/* From this point no new shadow pages pointing to a deleted
|
|
* memslot will be created.
|
|
*
|
|
* validation of sp->gfn happens in:
|
|
* - gfn_to_hva (kvm_read_guest, gfn_to_pfn)
|
|
* - kvm_is_visible_gfn (mmu_check_roots)
|
|
*/
|
|
kvm_arch_flush_shadow(kvm);
|
|
kfree(old_memslots);
|
|
}
|
|
|
|
r = kvm_arch_prepare_memory_region(kvm, &new, old, mem, user_alloc);
|
|
if (r)
|
|
goto out_free;
|
|
|
|
/* map/unmap the pages in iommu page table */
|
|
if (npages) {
|
|
r = kvm_iommu_map_pages(kvm, &new);
|
|
if (r)
|
|
goto out_free;
|
|
} else
|
|
kvm_iommu_unmap_pages(kvm, &old);
|
|
|
|
r = -ENOMEM;
|
|
slots = kmemdup(kvm->memslots, sizeof(struct kvm_memslots),
|
|
GFP_KERNEL);
|
|
if (!slots)
|
|
goto out_free;
|
|
|
|
/* actual memory is freed via old in kvm_free_physmem_slot below */
|
|
if (!npages) {
|
|
new.rmap = NULL;
|
|
new.dirty_bitmap = NULL;
|
|
memset(&new.arch, 0, sizeof(new.arch));
|
|
}
|
|
|
|
update_memslots(slots, &new);
|
|
old_memslots = kvm->memslots;
|
|
rcu_assign_pointer(kvm->memslots, slots);
|
|
synchronize_srcu_expedited(&kvm->srcu);
|
|
|
|
kvm_arch_commit_memory_region(kvm, mem, old, user_alloc);
|
|
|
|
/*
|
|
* If the new memory slot is created, we need to clear all
|
|
* mmio sptes.
|
|
*/
|
|
if (npages && old.base_gfn != mem->guest_phys_addr >> PAGE_SHIFT)
|
|
kvm_arch_flush_shadow(kvm);
|
|
|
|
kvm_free_physmem_slot(&old, &new);
|
|
kfree(old_memslots);
|
|
|
|
return 0;
|
|
|
|
out_free:
|
|
kvm_free_physmem_slot(&new, &old);
|
|
out:
|
|
return r;
|
|
|
|
}
|
|
EXPORT_SYMBOL_GPL(__kvm_set_memory_region);
|
|
|
|
int kvm_set_memory_region(struct kvm *kvm,
|
|
struct kvm_userspace_memory_region *mem,
|
|
int user_alloc)
|
|
{
|
|
int r;
|
|
|
|
mutex_lock(&kvm->slots_lock);
|
|
r = __kvm_set_memory_region(kvm, mem, user_alloc);
|
|
mutex_unlock(&kvm->slots_lock);
|
|
return r;
|
|
}
|
|
EXPORT_SYMBOL_GPL(kvm_set_memory_region);
|
|
|
|
int kvm_vm_ioctl_set_memory_region(struct kvm *kvm,
|
|
struct
|
|
kvm_userspace_memory_region *mem,
|
|
int user_alloc)
|
|
{
|
|
if (mem->slot >= KVM_MEMORY_SLOTS)
|
|
return -EINVAL;
|
|
return kvm_set_memory_region(kvm, mem, user_alloc);
|
|
}
|
|
|
|
int kvm_get_dirty_log(struct kvm *kvm,
|
|
struct kvm_dirty_log *log, int *is_dirty)
|
|
{
|
|
struct kvm_memory_slot *memslot;
|
|
int r, i;
|
|
unsigned long n;
|
|
unsigned long any = 0;
|
|
|
|
r = -EINVAL;
|
|
if (log->slot >= KVM_MEMORY_SLOTS)
|
|
goto out;
|
|
|
|
memslot = id_to_memslot(kvm->memslots, log->slot);
|
|
r = -ENOENT;
|
|
if (!memslot->dirty_bitmap)
|
|
goto out;
|
|
|
|
n = kvm_dirty_bitmap_bytes(memslot);
|
|
|
|
for (i = 0; !any && i < n/sizeof(long); ++i)
|
|
any = memslot->dirty_bitmap[i];
|
|
|
|
r = -EFAULT;
|
|
if (copy_to_user(log->dirty_bitmap, memslot->dirty_bitmap, n))
|
|
goto out;
|
|
|
|
if (any)
|
|
*is_dirty = 1;
|
|
|
|
r = 0;
|
|
out:
|
|
return r;
|
|
}
|
|
|
|
bool kvm_largepages_enabled(void)
|
|
{
|
|
return largepages_enabled;
|
|
}
|
|
|
|
void kvm_disable_largepages(void)
|
|
{
|
|
largepages_enabled = false;
|
|
}
|
|
EXPORT_SYMBOL_GPL(kvm_disable_largepages);
|
|
|
|
int is_error_page(struct page *page)
|
|
{
|
|
return page == bad_page || page == hwpoison_page || page == fault_page;
|
|
}
|
|
EXPORT_SYMBOL_GPL(is_error_page);
|
|
|
|
int is_error_pfn(pfn_t pfn)
|
|
{
|
|
return pfn == bad_pfn || pfn == hwpoison_pfn || pfn == fault_pfn;
|
|
}
|
|
EXPORT_SYMBOL_GPL(is_error_pfn);
|
|
|
|
int is_hwpoison_pfn(pfn_t pfn)
|
|
{
|
|
return pfn == hwpoison_pfn;
|
|
}
|
|
EXPORT_SYMBOL_GPL(is_hwpoison_pfn);
|
|
|
|
int is_fault_pfn(pfn_t pfn)
|
|
{
|
|
return pfn == fault_pfn;
|
|
}
|
|
EXPORT_SYMBOL_GPL(is_fault_pfn);
|
|
|
|
int is_noslot_pfn(pfn_t pfn)
|
|
{
|
|
return pfn == bad_pfn;
|
|
}
|
|
EXPORT_SYMBOL_GPL(is_noslot_pfn);
|
|
|
|
int is_invalid_pfn(pfn_t pfn)
|
|
{
|
|
return pfn == hwpoison_pfn || pfn == fault_pfn;
|
|
}
|
|
EXPORT_SYMBOL_GPL(is_invalid_pfn);
|
|
|
|
static inline unsigned long bad_hva(void)
|
|
{
|
|
return PAGE_OFFSET;
|
|
}
|
|
|
|
int kvm_is_error_hva(unsigned long addr)
|
|
{
|
|
return addr == bad_hva();
|
|
}
|
|
EXPORT_SYMBOL_GPL(kvm_is_error_hva);
|
|
|
|
struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
|
|
{
|
|
return __gfn_to_memslot(kvm_memslots(kvm), gfn);
|
|
}
|
|
EXPORT_SYMBOL_GPL(gfn_to_memslot);
|
|
|
|
int kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn)
|
|
{
|
|
struct kvm_memory_slot *memslot = gfn_to_memslot(kvm, gfn);
|
|
|
|
if (!memslot || memslot->id >= KVM_MEMORY_SLOTS ||
|
|
memslot->flags & KVM_MEMSLOT_INVALID)
|
|
return 0;
|
|
|
|
return 1;
|
|
}
|
|
EXPORT_SYMBOL_GPL(kvm_is_visible_gfn);
|
|
|
|
unsigned long kvm_host_page_size(struct kvm *kvm, gfn_t gfn)
|
|
{
|
|
struct vm_area_struct *vma;
|
|
unsigned long addr, size;
|
|
|
|
size = PAGE_SIZE;
|
|
|
|
addr = gfn_to_hva(kvm, gfn);
|
|
if (kvm_is_error_hva(addr))
|
|
return PAGE_SIZE;
|
|
|
|
down_read(¤t->mm->mmap_sem);
|
|
vma = find_vma(current->mm, addr);
|
|
if (!vma)
|
|
goto out;
|
|
|
|
size = vma_kernel_pagesize(vma);
|
|
|
|
out:
|
|
up_read(¤t->mm->mmap_sem);
|
|
|
|
return size;
|
|
}
|
|
|
|
static unsigned long gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
|
|
gfn_t *nr_pages)
|
|
{
|
|
if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
|
|
return bad_hva();
|
|
|
|
if (nr_pages)
|
|
*nr_pages = slot->npages - (gfn - slot->base_gfn);
|
|
|
|
return gfn_to_hva_memslot(slot, gfn);
|
|
}
|
|
|
|
unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn)
|
|
{
|
|
return gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, NULL);
|
|
}
|
|
EXPORT_SYMBOL_GPL(gfn_to_hva);
|
|
|
|
static pfn_t get_fault_pfn(void)
|
|
{
|
|
get_page(fault_page);
|
|
return fault_pfn;
|
|
}
|
|
|
|
int get_user_page_nowait(struct task_struct *tsk, struct mm_struct *mm,
|
|
unsigned long start, int write, struct page **page)
|
|
{
|
|
int flags = FOLL_TOUCH | FOLL_NOWAIT | FOLL_HWPOISON | FOLL_GET;
|
|
|
|
if (write)
|
|
flags |= FOLL_WRITE;
|
|
|
|
return __get_user_pages(tsk, mm, start, 1, flags, page, NULL, NULL);
|
|
}
|
|
|
|
static inline int check_user_page_hwpoison(unsigned long addr)
|
|
{
|
|
int rc, flags = FOLL_TOUCH | FOLL_HWPOISON | FOLL_WRITE;
|
|
|
|
rc = __get_user_pages(current, current->mm, addr, 1,
|
|
flags, NULL, NULL, NULL);
|
|
return rc == -EHWPOISON;
|
|
}
|
|
|
|
static pfn_t hva_to_pfn(struct kvm *kvm, unsigned long addr, bool atomic,
|
|
bool *async, bool write_fault, bool *writable)
|
|
{
|
|
struct page *page[1];
|
|
int npages = 0;
|
|
pfn_t pfn;
|
|
|
|
/* we can do it either atomically or asynchronously, not both */
|
|
BUG_ON(atomic && async);
|
|
|
|
BUG_ON(!write_fault && !writable);
|
|
|
|
if (writable)
|
|
*writable = true;
|
|
|
|
if (atomic || async)
|
|
npages = __get_user_pages_fast(addr, 1, 1, page);
|
|
|
|
if (unlikely(npages != 1) && !atomic) {
|
|
might_sleep();
|
|
|
|
if (writable)
|
|
*writable = write_fault;
|
|
|
|
if (async) {
|
|
down_read(¤t->mm->mmap_sem);
|
|
npages = get_user_page_nowait(current, current->mm,
|
|
addr, write_fault, page);
|
|
up_read(¤t->mm->mmap_sem);
|
|
} else
|
|
npages = get_user_pages_fast(addr, 1, write_fault,
|
|
page);
|
|
|
|
/* map read fault as writable if possible */
|
|
if (unlikely(!write_fault) && npages == 1) {
|
|
struct page *wpage[1];
|
|
|
|
npages = __get_user_pages_fast(addr, 1, 1, wpage);
|
|
if (npages == 1) {
|
|
*writable = true;
|
|
put_page(page[0]);
|
|
page[0] = wpage[0];
|
|
}
|
|
npages = 1;
|
|
}
|
|
}
|
|
|
|
if (unlikely(npages != 1)) {
|
|
struct vm_area_struct *vma;
|
|
|
|
if (atomic)
|
|
return get_fault_pfn();
|
|
|
|
down_read(¤t->mm->mmap_sem);
|
|
if (npages == -EHWPOISON ||
|
|
(!async && check_user_page_hwpoison(addr))) {
|
|
up_read(¤t->mm->mmap_sem);
|
|
get_page(hwpoison_page);
|
|
return page_to_pfn(hwpoison_page);
|
|
}
|
|
|
|
vma = find_vma_intersection(current->mm, addr, addr+1);
|
|
|
|
if (vma == NULL)
|
|
pfn = get_fault_pfn();
|
|
else if ((vma->vm_flags & VM_PFNMAP)) {
|
|
pfn = ((addr - vma->vm_start) >> PAGE_SHIFT) +
|
|
vma->vm_pgoff;
|
|
BUG_ON(!kvm_is_mmio_pfn(pfn));
|
|
} else {
|
|
if (async && (vma->vm_flags & VM_WRITE))
|
|
*async = true;
|
|
pfn = get_fault_pfn();
|
|
}
|
|
up_read(¤t->mm->mmap_sem);
|
|
} else
|
|
pfn = page_to_pfn(page[0]);
|
|
|
|
return pfn;
|
|
}
|
|
|
|
pfn_t hva_to_pfn_atomic(struct kvm *kvm, unsigned long addr)
|
|
{
|
|
return hva_to_pfn(kvm, addr, true, NULL, true, NULL);
|
|
}
|
|
EXPORT_SYMBOL_GPL(hva_to_pfn_atomic);
|
|
|
|
static pfn_t __gfn_to_pfn(struct kvm *kvm, gfn_t gfn, bool atomic, bool *async,
|
|
bool write_fault, bool *writable)
|
|
{
|
|
unsigned long addr;
|
|
|
|
if (async)
|
|
*async = false;
|
|
|
|
addr = gfn_to_hva(kvm, gfn);
|
|
if (kvm_is_error_hva(addr)) {
|
|
get_page(bad_page);
|
|
return page_to_pfn(bad_page);
|
|
}
|
|
|
|
return hva_to_pfn(kvm, addr, atomic, async, write_fault, writable);
|
|
}
|
|
|
|
pfn_t gfn_to_pfn_atomic(struct kvm *kvm, gfn_t gfn)
|
|
{
|
|
return __gfn_to_pfn(kvm, gfn, true, NULL, true, NULL);
|
|
}
|
|
EXPORT_SYMBOL_GPL(gfn_to_pfn_atomic);
|
|
|
|
pfn_t gfn_to_pfn_async(struct kvm *kvm, gfn_t gfn, bool *async,
|
|
bool write_fault, bool *writable)
|
|
{
|
|
return __gfn_to_pfn(kvm, gfn, false, async, write_fault, writable);
|
|
}
|
|
EXPORT_SYMBOL_GPL(gfn_to_pfn_async);
|
|
|
|
pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn)
|
|
{
|
|
return __gfn_to_pfn(kvm, gfn, false, NULL, true, NULL);
|
|
}
|
|
EXPORT_SYMBOL_GPL(gfn_to_pfn);
|
|
|
|
pfn_t gfn_to_pfn_prot(struct kvm *kvm, gfn_t gfn, bool write_fault,
|
|
bool *writable)
|
|
{
|
|
return __gfn_to_pfn(kvm, gfn, false, NULL, write_fault, writable);
|
|
}
|
|
EXPORT_SYMBOL_GPL(gfn_to_pfn_prot);
|
|
|
|
pfn_t gfn_to_pfn_memslot(struct kvm *kvm,
|
|
struct kvm_memory_slot *slot, gfn_t gfn)
|
|
{
|
|
unsigned long addr = gfn_to_hva_memslot(slot, gfn);
|
|
return hva_to_pfn(kvm, addr, false, NULL, true, NULL);
|
|
}
|
|
|
|
int gfn_to_page_many_atomic(struct kvm *kvm, gfn_t gfn, struct page **pages,
|
|
int nr_pages)
|
|
{
|
|
unsigned long addr;
|
|
gfn_t entry;
|
|
|
|
addr = gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, &entry);
|
|
if (kvm_is_error_hva(addr))
|
|
return -1;
|
|
|
|
if (entry < nr_pages)
|
|
return 0;
|
|
|
|
return __get_user_pages_fast(addr, nr_pages, 1, pages);
|
|
}
|
|
EXPORT_SYMBOL_GPL(gfn_to_page_many_atomic);
|
|
|
|
struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn)
|
|
{
|
|
pfn_t pfn;
|
|
|
|
pfn = gfn_to_pfn(kvm, gfn);
|
|
if (!kvm_is_mmio_pfn(pfn))
|
|
return pfn_to_page(pfn);
|
|
|
|
WARN_ON(kvm_is_mmio_pfn(pfn));
|
|
|
|
get_page(bad_page);
|
|
return bad_page;
|
|
}
|
|
|
|
EXPORT_SYMBOL_GPL(gfn_to_page);
|
|
|
|
void kvm_release_page_clean(struct page *page)
|
|
{
|
|
kvm_release_pfn_clean(page_to_pfn(page));
|
|
}
|
|
EXPORT_SYMBOL_GPL(kvm_release_page_clean);
|
|
|
|
void kvm_release_pfn_clean(pfn_t pfn)
|
|
{
|
|
if (!kvm_is_mmio_pfn(pfn))
|
|
put_page(pfn_to_page(pfn));
|
|
}
|
|
EXPORT_SYMBOL_GPL(kvm_release_pfn_clean);
|
|
|
|
void kvm_release_page_dirty(struct page *page)
|
|
{
|
|
kvm_release_pfn_dirty(page_to_pfn(page));
|
|
}
|
|
EXPORT_SYMBOL_GPL(kvm_release_page_dirty);
|
|
|
|
void kvm_release_pfn_dirty(pfn_t pfn)
|
|
{
|
|
kvm_set_pfn_dirty(pfn);
|
|
kvm_release_pfn_clean(pfn);
|
|
}
|
|
EXPORT_SYMBOL_GPL(kvm_release_pfn_dirty);
|
|
|
|
void kvm_set_page_dirty(struct page *page)
|
|
{
|
|
kvm_set_pfn_dirty(page_to_pfn(page));
|
|
}
|
|
EXPORT_SYMBOL_GPL(kvm_set_page_dirty);
|
|
|
|
void kvm_set_pfn_dirty(pfn_t pfn)
|
|
{
|
|
if (!kvm_is_mmio_pfn(pfn)) {
|
|
struct page *page = pfn_to_page(pfn);
|
|
if (!PageReserved(page))
|
|
SetPageDirty(page);
|
|
}
|
|
}
|
|
EXPORT_SYMBOL_GPL(kvm_set_pfn_dirty);
|
|
|
|
void kvm_set_pfn_accessed(pfn_t pfn)
|
|
{
|
|
if (!kvm_is_mmio_pfn(pfn))
|
|
mark_page_accessed(pfn_to_page(pfn));
|
|
}
|
|
EXPORT_SYMBOL_GPL(kvm_set_pfn_accessed);
|
|
|
|
void kvm_get_pfn(pfn_t pfn)
|
|
{
|
|
if (!kvm_is_mmio_pfn(pfn))
|
|
get_page(pfn_to_page(pfn));
|
|
}
|
|
EXPORT_SYMBOL_GPL(kvm_get_pfn);
|
|
|
|
static int next_segment(unsigned long len, int offset)
|
|
{
|
|
if (len > PAGE_SIZE - offset)
|
|
return PAGE_SIZE - offset;
|
|
else
|
|
return len;
|
|
}
|
|
|
|
int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
|
|
int len)
|
|
{
|
|
int r;
|
|
unsigned long addr;
|
|
|
|
addr = gfn_to_hva(kvm, gfn);
|
|
if (kvm_is_error_hva(addr))
|
|
return -EFAULT;
|
|
r = __copy_from_user(data, (void __user *)addr + offset, len);
|
|
if (r)
|
|
return -EFAULT;
|
|
return 0;
|
|
}
|
|
EXPORT_SYMBOL_GPL(kvm_read_guest_page);
|
|
|
|
int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len)
|
|
{
|
|
gfn_t gfn = gpa >> PAGE_SHIFT;
|
|
int seg;
|
|
int offset = offset_in_page(gpa);
|
|
int ret;
|
|
|
|
while ((seg = next_segment(len, offset)) != 0) {
|
|
ret = kvm_read_guest_page(kvm, gfn, data, offset, seg);
|
|
if (ret < 0)
|
|
return ret;
|
|
offset = 0;
|
|
len -= seg;
|
|
data += seg;
|
|
++gfn;
|
|
}
|
|
return 0;
|
|
}
|
|
EXPORT_SYMBOL_GPL(kvm_read_guest);
|
|
|
|
int kvm_read_guest_atomic(struct kvm *kvm, gpa_t gpa, void *data,
|
|
unsigned long len)
|
|
{
|
|
int r;
|
|
unsigned long addr;
|
|
gfn_t gfn = gpa >> PAGE_SHIFT;
|
|
int offset = offset_in_page(gpa);
|
|
|
|
addr = gfn_to_hva(kvm, gfn);
|
|
if (kvm_is_error_hva(addr))
|
|
return -EFAULT;
|
|
pagefault_disable();
|
|
r = __copy_from_user_inatomic(data, (void __user *)addr + offset, len);
|
|
pagefault_enable();
|
|
if (r)
|
|
return -EFAULT;
|
|
return 0;
|
|
}
|
|
EXPORT_SYMBOL(kvm_read_guest_atomic);
|
|
|
|
int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn, const void *data,
|
|
int offset, int len)
|
|
{
|
|
int r;
|
|
unsigned long addr;
|
|
|
|
addr = gfn_to_hva(kvm, gfn);
|
|
if (kvm_is_error_hva(addr))
|
|
return -EFAULT;
|
|
r = __copy_to_user((void __user *)addr + offset, data, len);
|
|
if (r)
|
|
return -EFAULT;
|
|
mark_page_dirty(kvm, gfn);
|
|
return 0;
|
|
}
|
|
EXPORT_SYMBOL_GPL(kvm_write_guest_page);
|
|
|
|
int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
|
|
unsigned long len)
|
|
{
|
|
gfn_t gfn = gpa >> PAGE_SHIFT;
|
|
int seg;
|
|
int offset = offset_in_page(gpa);
|
|
int ret;
|
|
|
|
while ((seg = next_segment(len, offset)) != 0) {
|
|
ret = kvm_write_guest_page(kvm, gfn, data, offset, seg);
|
|
if (ret < 0)
|
|
return ret;
|
|
offset = 0;
|
|
len -= seg;
|
|
data += seg;
|
|
++gfn;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
|
|
gpa_t gpa)
|
|
{
|
|
struct kvm_memslots *slots = kvm_memslots(kvm);
|
|
int offset = offset_in_page(gpa);
|
|
gfn_t gfn = gpa >> PAGE_SHIFT;
|
|
|
|
ghc->gpa = gpa;
|
|
ghc->generation = slots->generation;
|
|
ghc->memslot = gfn_to_memslot(kvm, gfn);
|
|
ghc->hva = gfn_to_hva_many(ghc->memslot, gfn, NULL);
|
|
if (!kvm_is_error_hva(ghc->hva))
|
|
ghc->hva += offset;
|
|
else
|
|
return -EFAULT;
|
|
|
|
return 0;
|
|
}
|
|
EXPORT_SYMBOL_GPL(kvm_gfn_to_hva_cache_init);
|
|
|
|
int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
|
|
void *data, unsigned long len)
|
|
{
|
|
struct kvm_memslots *slots = kvm_memslots(kvm);
|
|
int r;
|
|
|
|
if (slots->generation != ghc->generation)
|
|
kvm_gfn_to_hva_cache_init(kvm, ghc, ghc->gpa);
|
|
|
|
if (kvm_is_error_hva(ghc->hva))
|
|
return -EFAULT;
|
|
|
|
r = __copy_to_user((void __user *)ghc->hva, data, len);
|
|
if (r)
|
|
return -EFAULT;
|
|
mark_page_dirty_in_slot(kvm, ghc->memslot, ghc->gpa >> PAGE_SHIFT);
|
|
|
|
return 0;
|
|
}
|
|
EXPORT_SYMBOL_GPL(kvm_write_guest_cached);
|
|
|
|
int kvm_read_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
|
|
void *data, unsigned long len)
|
|
{
|
|
struct kvm_memslots *slots = kvm_memslots(kvm);
|
|
int r;
|
|
|
|
if (slots->generation != ghc->generation)
|
|
kvm_gfn_to_hva_cache_init(kvm, ghc, ghc->gpa);
|
|
|
|
if (kvm_is_error_hva(ghc->hva))
|
|
return -EFAULT;
|
|
|
|
r = __copy_from_user(data, (void __user *)ghc->hva, len);
|
|
if (r)
|
|
return -EFAULT;
|
|
|
|
return 0;
|
|
}
|
|
EXPORT_SYMBOL_GPL(kvm_read_guest_cached);
|
|
|
|
int kvm_clear_guest_page(struct kvm *kvm, gfn_t gfn, int offset, int len)
|
|
{
|
|
return kvm_write_guest_page(kvm, gfn, (const void *) empty_zero_page,
|
|
offset, len);
|
|
}
|
|
EXPORT_SYMBOL_GPL(kvm_clear_guest_page);
|
|
|
|
int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len)
|
|
{
|
|
gfn_t gfn = gpa >> PAGE_SHIFT;
|
|
int seg;
|
|
int offset = offset_in_page(gpa);
|
|
int ret;
|
|
|
|
while ((seg = next_segment(len, offset)) != 0) {
|
|
ret = kvm_clear_guest_page(kvm, gfn, offset, seg);
|
|
if (ret < 0)
|
|
return ret;
|
|
offset = 0;
|
|
len -= seg;
|
|
++gfn;
|
|
}
|
|
return 0;
|
|
}
|
|
EXPORT_SYMBOL_GPL(kvm_clear_guest);
|
|
|
|
void mark_page_dirty_in_slot(struct kvm *kvm, struct kvm_memory_slot *memslot,
|
|
gfn_t gfn)
|
|
{
|
|
if (memslot && memslot->dirty_bitmap) {
|
|
unsigned long rel_gfn = gfn - memslot->base_gfn;
|
|
|
|
if (!test_and_set_bit_le(rel_gfn, memslot->dirty_bitmap))
|
|
memslot->nr_dirty_pages++;
|
|
}
|
|
}
|
|
|
|
void mark_page_dirty(struct kvm *kvm, gfn_t gfn)
|
|
{
|
|
struct kvm_memory_slot *memslot;
|
|
|
|
memslot = gfn_to_memslot(kvm, gfn);
|
|
mark_page_dirty_in_slot(kvm, memslot, gfn);
|
|
}
|
|
|
|
/*
|
|
* The vCPU has executed a HLT instruction with in-kernel mode enabled.
|
|
*/
|
|
void kvm_vcpu_block(struct kvm_vcpu *vcpu)
|
|
{
|
|
DEFINE_WAIT(wait);
|
|
|
|
for (;;) {
|
|
prepare_to_wait(&vcpu->wq, &wait, TASK_INTERRUPTIBLE);
|
|
|
|
if (kvm_arch_vcpu_runnable(vcpu)) {
|
|
kvm_make_request(KVM_REQ_UNHALT, vcpu);
|
|
break;
|
|
}
|
|
if (kvm_cpu_has_pending_timer(vcpu))
|
|
break;
|
|
if (signal_pending(current))
|
|
break;
|
|
|
|
schedule();
|
|
}
|
|
|
|
finish_wait(&vcpu->wq, &wait);
|
|
}
|
|
|
|
void kvm_resched(struct kvm_vcpu *vcpu)
|
|
{
|
|
if (!need_resched())
|
|
return;
|
|
cond_resched();
|
|
}
|
|
EXPORT_SYMBOL_GPL(kvm_resched);
|
|
|
|
void kvm_vcpu_on_spin(struct kvm_vcpu *me)
|
|
{
|
|
struct kvm *kvm = me->kvm;
|
|
struct kvm_vcpu *vcpu;
|
|
int last_boosted_vcpu = me->kvm->last_boosted_vcpu;
|
|
int yielded = 0;
|
|
int pass;
|
|
int i;
|
|
|
|
/*
|
|
* We boost the priority of a VCPU that is runnable but not
|
|
* currently running, because it got preempted by something
|
|
* else and called schedule in __vcpu_run. Hopefully that
|
|
* VCPU is holding the lock that we need and will release it.
|
|
* We approximate round-robin by starting at the last boosted VCPU.
|
|
*/
|
|
for (pass = 0; pass < 2 && !yielded; pass++) {
|
|
kvm_for_each_vcpu(i, vcpu, kvm) {
|
|
struct task_struct *task = NULL;
|
|
struct pid *pid;
|
|
if (!pass && i < last_boosted_vcpu) {
|
|
i = last_boosted_vcpu;
|
|
continue;
|
|
} else if (pass && i > last_boosted_vcpu)
|
|
break;
|
|
if (vcpu == me)
|
|
continue;
|
|
if (waitqueue_active(&vcpu->wq))
|
|
continue;
|
|
rcu_read_lock();
|
|
pid = rcu_dereference(vcpu->pid);
|
|
if (pid)
|
|
task = get_pid_task(vcpu->pid, PIDTYPE_PID);
|
|
rcu_read_unlock();
|
|
if (!task)
|
|
continue;
|
|
if (task->flags & PF_VCPU) {
|
|
put_task_struct(task);
|
|
continue;
|
|
}
|
|
if (yield_to(task, 1)) {
|
|
put_task_struct(task);
|
|
kvm->last_boosted_vcpu = i;
|
|
yielded = 1;
|
|
break;
|
|
}
|
|
put_task_struct(task);
|
|
}
|
|
}
|
|
}
|
|
EXPORT_SYMBOL_GPL(kvm_vcpu_on_spin);
|
|
|
|
static int kvm_vcpu_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
|
|
{
|
|
struct kvm_vcpu *vcpu = vma->vm_file->private_data;
|
|
struct page *page;
|
|
|
|
if (vmf->pgoff == 0)
|
|
page = virt_to_page(vcpu->run);
|
|
#ifdef CONFIG_X86
|
|
else if (vmf->pgoff == KVM_PIO_PAGE_OFFSET)
|
|
page = virt_to_page(vcpu->arch.pio_data);
|
|
#endif
|
|
#ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
|
|
else if (vmf->pgoff == KVM_COALESCED_MMIO_PAGE_OFFSET)
|
|
page = virt_to_page(vcpu->kvm->coalesced_mmio_ring);
|
|
#endif
|
|
else
|
|
return kvm_arch_vcpu_fault(vcpu, vmf);
|
|
get_page(page);
|
|
vmf->page = page;
|
|
return 0;
|
|
}
|
|
|
|
static const struct vm_operations_struct kvm_vcpu_vm_ops = {
|
|
.fault = kvm_vcpu_fault,
|
|
};
|
|
|
|
static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma)
|
|
{
|
|
vma->vm_ops = &kvm_vcpu_vm_ops;
|
|
return 0;
|
|
}
|
|
|
|
static int kvm_vcpu_release(struct inode *inode, struct file *filp)
|
|
{
|
|
struct kvm_vcpu *vcpu = filp->private_data;
|
|
|
|
kvm_put_kvm(vcpu->kvm);
|
|
return 0;
|
|
}
|
|
|
|
static struct file_operations kvm_vcpu_fops = {
|
|
.release = kvm_vcpu_release,
|
|
.unlocked_ioctl = kvm_vcpu_ioctl,
|
|
#ifdef CONFIG_COMPAT
|
|
.compat_ioctl = kvm_vcpu_compat_ioctl,
|
|
#endif
|
|
.mmap = kvm_vcpu_mmap,
|
|
.llseek = noop_llseek,
|
|
};
|
|
|
|
/*
|
|
* Allocates an inode for the vcpu.
|
|
*/
|
|
static int create_vcpu_fd(struct kvm_vcpu *vcpu)
|
|
{
|
|
return anon_inode_getfd("kvm-vcpu", &kvm_vcpu_fops, vcpu, O_RDWR);
|
|
}
|
|
|
|
/*
|
|
* Creates some virtual cpus. Good luck creating more than one.
|
|
*/
|
|
static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, u32 id)
|
|
{
|
|
int r;
|
|
struct kvm_vcpu *vcpu, *v;
|
|
|
|
vcpu = kvm_arch_vcpu_create(kvm, id);
|
|
if (IS_ERR(vcpu))
|
|
return PTR_ERR(vcpu);
|
|
|
|
preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops);
|
|
|
|
r = kvm_arch_vcpu_setup(vcpu);
|
|
if (r)
|
|
goto vcpu_destroy;
|
|
|
|
mutex_lock(&kvm->lock);
|
|
if (!kvm_vcpu_compatible(vcpu)) {
|
|
r = -EINVAL;
|
|
goto unlock_vcpu_destroy;
|
|
}
|
|
if (atomic_read(&kvm->online_vcpus) == KVM_MAX_VCPUS) {
|
|
r = -EINVAL;
|
|
goto unlock_vcpu_destroy;
|
|
}
|
|
|
|
kvm_for_each_vcpu(r, v, kvm)
|
|
if (v->vcpu_id == id) {
|
|
r = -EEXIST;
|
|
goto unlock_vcpu_destroy;
|
|
}
|
|
|
|
BUG_ON(kvm->vcpus[atomic_read(&kvm->online_vcpus)]);
|
|
|
|
/* Now it's all set up, let userspace reach it */
|
|
kvm_get_kvm(kvm);
|
|
r = create_vcpu_fd(vcpu);
|
|
if (r < 0) {
|
|
kvm_put_kvm(kvm);
|
|
goto unlock_vcpu_destroy;
|
|
}
|
|
|
|
kvm->vcpus[atomic_read(&kvm->online_vcpus)] = vcpu;
|
|
smp_wmb();
|
|
atomic_inc(&kvm->online_vcpus);
|
|
|
|
mutex_unlock(&kvm->lock);
|
|
return r;
|
|
|
|
unlock_vcpu_destroy:
|
|
mutex_unlock(&kvm->lock);
|
|
vcpu_destroy:
|
|
kvm_arch_vcpu_destroy(vcpu);
|
|
return r;
|
|
}
|
|
|
|
static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset)
|
|
{
|
|
if (sigset) {
|
|
sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP));
|
|
vcpu->sigset_active = 1;
|
|
vcpu->sigset = *sigset;
|
|
} else
|
|
vcpu->sigset_active = 0;
|
|
return 0;
|
|
}
|
|
|
|
static long kvm_vcpu_ioctl(struct file *filp,
|
|
unsigned int ioctl, unsigned long arg)
|
|
{
|
|
struct kvm_vcpu *vcpu = filp->private_data;
|
|
void __user *argp = (void __user *)arg;
|
|
int r;
|
|
struct kvm_fpu *fpu = NULL;
|
|
struct kvm_sregs *kvm_sregs = NULL;
|
|
|
|
if (vcpu->kvm->mm != current->mm)
|
|
return -EIO;
|
|
|
|
#if defined(CONFIG_S390) || defined(CONFIG_PPC)
|
|
/*
|
|
* Special cases: vcpu ioctls that are asynchronous to vcpu execution,
|
|
* so vcpu_load() would break it.
|
|
*/
|
|
if (ioctl == KVM_S390_INTERRUPT || ioctl == KVM_INTERRUPT)
|
|
return kvm_arch_vcpu_ioctl(filp, ioctl, arg);
|
|
#endif
|
|
|
|
|
|
vcpu_load(vcpu);
|
|
switch (ioctl) {
|
|
case KVM_RUN:
|
|
r = -EINVAL;
|
|
if (arg)
|
|
goto out;
|
|
r = kvm_arch_vcpu_ioctl_run(vcpu, vcpu->run);
|
|
trace_kvm_userspace_exit(vcpu->run->exit_reason, r);
|
|
break;
|
|
case KVM_GET_REGS: {
|
|
struct kvm_regs *kvm_regs;
|
|
|
|
r = -ENOMEM;
|
|
kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL);
|
|
if (!kvm_regs)
|
|
goto out;
|
|
r = kvm_arch_vcpu_ioctl_get_regs(vcpu, kvm_regs);
|
|
if (r)
|
|
goto out_free1;
|
|
r = -EFAULT;
|
|
if (copy_to_user(argp, kvm_regs, sizeof(struct kvm_regs)))
|
|
goto out_free1;
|
|
r = 0;
|
|
out_free1:
|
|
kfree(kvm_regs);
|
|
break;
|
|
}
|
|
case KVM_SET_REGS: {
|
|
struct kvm_regs *kvm_regs;
|
|
|
|
r = -ENOMEM;
|
|
kvm_regs = memdup_user(argp, sizeof(*kvm_regs));
|
|
if (IS_ERR(kvm_regs)) {
|
|
r = PTR_ERR(kvm_regs);
|
|
goto out;
|
|
}
|
|
r = kvm_arch_vcpu_ioctl_set_regs(vcpu, kvm_regs);
|
|
if (r)
|
|
goto out_free2;
|
|
r = 0;
|
|
out_free2:
|
|
kfree(kvm_regs);
|
|
break;
|
|
}
|
|
case KVM_GET_SREGS: {
|
|
kvm_sregs = kzalloc(sizeof(struct kvm_sregs), GFP_KERNEL);
|
|
r = -ENOMEM;
|
|
if (!kvm_sregs)
|
|
goto out;
|
|
r = kvm_arch_vcpu_ioctl_get_sregs(vcpu, kvm_sregs);
|
|
if (r)
|
|
goto out;
|
|
r = -EFAULT;
|
|
if (copy_to_user(argp, kvm_sregs, sizeof(struct kvm_sregs)))
|
|
goto out;
|
|
r = 0;
|
|
break;
|
|
}
|
|
case KVM_SET_SREGS: {
|
|
kvm_sregs = memdup_user(argp, sizeof(*kvm_sregs));
|
|
if (IS_ERR(kvm_sregs)) {
|
|
r = PTR_ERR(kvm_sregs);
|
|
goto out;
|
|
}
|
|
r = kvm_arch_vcpu_ioctl_set_sregs(vcpu, kvm_sregs);
|
|
if (r)
|
|
goto out;
|
|
r = 0;
|
|
break;
|
|
}
|
|
case KVM_GET_MP_STATE: {
|
|
struct kvm_mp_state mp_state;
|
|
|
|
r = kvm_arch_vcpu_ioctl_get_mpstate(vcpu, &mp_state);
|
|
if (r)
|
|
goto out;
|
|
r = -EFAULT;
|
|
if (copy_to_user(argp, &mp_state, sizeof mp_state))
|
|
goto out;
|
|
r = 0;
|
|
break;
|
|
}
|
|
case KVM_SET_MP_STATE: {
|
|
struct kvm_mp_state mp_state;
|
|
|
|
r = -EFAULT;
|
|
if (copy_from_user(&mp_state, argp, sizeof mp_state))
|
|
goto out;
|
|
r = kvm_arch_vcpu_ioctl_set_mpstate(vcpu, &mp_state);
|
|
if (r)
|
|
goto out;
|
|
r = 0;
|
|
break;
|
|
}
|
|
case KVM_TRANSLATE: {
|
|
struct kvm_translation tr;
|
|
|
|
r = -EFAULT;
|
|
if (copy_from_user(&tr, argp, sizeof tr))
|
|
goto out;
|
|
r = kvm_arch_vcpu_ioctl_translate(vcpu, &tr);
|
|
if (r)
|
|
goto out;
|
|
r = -EFAULT;
|
|
if (copy_to_user(argp, &tr, sizeof tr))
|
|
goto out;
|
|
r = 0;
|
|
break;
|
|
}
|
|
case KVM_SET_GUEST_DEBUG: {
|
|
struct kvm_guest_debug dbg;
|
|
|
|
r = -EFAULT;
|
|
if (copy_from_user(&dbg, argp, sizeof dbg))
|
|
goto out;
|
|
r = kvm_arch_vcpu_ioctl_set_guest_debug(vcpu, &dbg);
|
|
if (r)
|
|
goto out;
|
|
r = 0;
|
|
break;
|
|
}
|
|
case KVM_SET_SIGNAL_MASK: {
|
|
struct kvm_signal_mask __user *sigmask_arg = argp;
|
|
struct kvm_signal_mask kvm_sigmask;
|
|
sigset_t sigset, *p;
|
|
|
|
p = NULL;
|
|
if (argp) {
|
|
r = -EFAULT;
|
|
if (copy_from_user(&kvm_sigmask, argp,
|
|
sizeof kvm_sigmask))
|
|
goto out;
|
|
r = -EINVAL;
|
|
if (kvm_sigmask.len != sizeof sigset)
|
|
goto out;
|
|
r = -EFAULT;
|
|
if (copy_from_user(&sigset, sigmask_arg->sigset,
|
|
sizeof sigset))
|
|
goto out;
|
|
p = &sigset;
|
|
}
|
|
r = kvm_vcpu_ioctl_set_sigmask(vcpu, p);
|
|
break;
|
|
}
|
|
case KVM_GET_FPU: {
|
|
fpu = kzalloc(sizeof(struct kvm_fpu), GFP_KERNEL);
|
|
r = -ENOMEM;
|
|
if (!fpu)
|
|
goto out;
|
|
r = kvm_arch_vcpu_ioctl_get_fpu(vcpu, fpu);
|
|
if (r)
|
|
goto out;
|
|
r = -EFAULT;
|
|
if (copy_to_user(argp, fpu, sizeof(struct kvm_fpu)))
|
|
goto out;
|
|
r = 0;
|
|
break;
|
|
}
|
|
case KVM_SET_FPU: {
|
|
fpu = memdup_user(argp, sizeof(*fpu));
|
|
if (IS_ERR(fpu)) {
|
|
r = PTR_ERR(fpu);
|
|
goto out;
|
|
}
|
|
r = kvm_arch_vcpu_ioctl_set_fpu(vcpu, fpu);
|
|
if (r)
|
|
goto out;
|
|
r = 0;
|
|
break;
|
|
}
|
|
default:
|
|
r = kvm_arch_vcpu_ioctl(filp, ioctl, arg);
|
|
}
|
|
out:
|
|
vcpu_put(vcpu);
|
|
kfree(fpu);
|
|
kfree(kvm_sregs);
|
|
return r;
|
|
}
|
|
|
|
#ifdef CONFIG_COMPAT
|
|
static long kvm_vcpu_compat_ioctl(struct file *filp,
|
|
unsigned int ioctl, unsigned long arg)
|
|
{
|
|
struct kvm_vcpu *vcpu = filp->private_data;
|
|
void __user *argp = compat_ptr(arg);
|
|
int r;
|
|
|
|
if (vcpu->kvm->mm != current->mm)
|
|
return -EIO;
|
|
|
|
switch (ioctl) {
|
|
case KVM_SET_SIGNAL_MASK: {
|
|
struct kvm_signal_mask __user *sigmask_arg = argp;
|
|
struct kvm_signal_mask kvm_sigmask;
|
|
compat_sigset_t csigset;
|
|
sigset_t sigset;
|
|
|
|
if (argp) {
|
|
r = -EFAULT;
|
|
if (copy_from_user(&kvm_sigmask, argp,
|
|
sizeof kvm_sigmask))
|
|
goto out;
|
|
r = -EINVAL;
|
|
if (kvm_sigmask.len != sizeof csigset)
|
|
goto out;
|
|
r = -EFAULT;
|
|
if (copy_from_user(&csigset, sigmask_arg->sigset,
|
|
sizeof csigset))
|
|
goto out;
|
|
}
|
|
sigset_from_compat(&sigset, &csigset);
|
|
r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset);
|
|
break;
|
|
}
|
|
default:
|
|
r = kvm_vcpu_ioctl(filp, ioctl, arg);
|
|
}
|
|
|
|
out:
|
|
return r;
|
|
}
|
|
#endif
|
|
|
|
static long kvm_vm_ioctl(struct file *filp,
|
|
unsigned int ioctl, unsigned long arg)
|
|
{
|
|
struct kvm *kvm = filp->private_data;
|
|
void __user *argp = (void __user *)arg;
|
|
int r;
|
|
|
|
if (kvm->mm != current->mm)
|
|
return -EIO;
|
|
switch (ioctl) {
|
|
case KVM_CREATE_VCPU:
|
|
r = kvm_vm_ioctl_create_vcpu(kvm, arg);
|
|
if (r < 0)
|
|
goto out;
|
|
break;
|
|
case KVM_SET_USER_MEMORY_REGION: {
|
|
struct kvm_userspace_memory_region kvm_userspace_mem;
|
|
|
|
r = -EFAULT;
|
|
if (copy_from_user(&kvm_userspace_mem, argp,
|
|
sizeof kvm_userspace_mem))
|
|
goto out;
|
|
|
|
r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem, 1);
|
|
if (r)
|
|
goto out;
|
|
break;
|
|
}
|
|
case KVM_GET_DIRTY_LOG: {
|
|
struct kvm_dirty_log log;
|
|
|
|
r = -EFAULT;
|
|
if (copy_from_user(&log, argp, sizeof log))
|
|
goto out;
|
|
r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
|
|
if (r)
|
|
goto out;
|
|
break;
|
|
}
|
|
#ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
|
|
case KVM_REGISTER_COALESCED_MMIO: {
|
|
struct kvm_coalesced_mmio_zone zone;
|
|
r = -EFAULT;
|
|
if (copy_from_user(&zone, argp, sizeof zone))
|
|
goto out;
|
|
r = kvm_vm_ioctl_register_coalesced_mmio(kvm, &zone);
|
|
if (r)
|
|
goto out;
|
|
r = 0;
|
|
break;
|
|
}
|
|
case KVM_UNREGISTER_COALESCED_MMIO: {
|
|
struct kvm_coalesced_mmio_zone zone;
|
|
r = -EFAULT;
|
|
if (copy_from_user(&zone, argp, sizeof zone))
|
|
goto out;
|
|
r = kvm_vm_ioctl_unregister_coalesced_mmio(kvm, &zone);
|
|
if (r)
|
|
goto out;
|
|
r = 0;
|
|
break;
|
|
}
|
|
#endif
|
|
case KVM_IRQFD: {
|
|
struct kvm_irqfd data;
|
|
|
|
r = -EFAULT;
|
|
if (copy_from_user(&data, argp, sizeof data))
|
|
goto out;
|
|
r = kvm_irqfd(kvm, data.fd, data.gsi, data.flags);
|
|
break;
|
|
}
|
|
case KVM_IOEVENTFD: {
|
|
struct kvm_ioeventfd data;
|
|
|
|
r = -EFAULT;
|
|
if (copy_from_user(&data, argp, sizeof data))
|
|
goto out;
|
|
r = kvm_ioeventfd(kvm, &data);
|
|
break;
|
|
}
|
|
#ifdef CONFIG_KVM_APIC_ARCHITECTURE
|
|
case KVM_SET_BOOT_CPU_ID:
|
|
r = 0;
|
|
mutex_lock(&kvm->lock);
|
|
if (atomic_read(&kvm->online_vcpus) != 0)
|
|
r = -EBUSY;
|
|
else
|
|
kvm->bsp_vcpu_id = arg;
|
|
mutex_unlock(&kvm->lock);
|
|
break;
|
|
#endif
|
|
default:
|
|
r = kvm_arch_vm_ioctl(filp, ioctl, arg);
|
|
if (r == -ENOTTY)
|
|
r = kvm_vm_ioctl_assigned_device(kvm, ioctl, arg);
|
|
}
|
|
out:
|
|
return r;
|
|
}
|
|
|
|
#ifdef CONFIG_COMPAT
|
|
struct compat_kvm_dirty_log {
|
|
__u32 slot;
|
|
__u32 padding1;
|
|
union {
|
|
compat_uptr_t dirty_bitmap; /* one bit per page */
|
|
__u64 padding2;
|
|
};
|
|
};
|
|
|
|
static long kvm_vm_compat_ioctl(struct file *filp,
|
|
unsigned int ioctl, unsigned long arg)
|
|
{
|
|
struct kvm *kvm = filp->private_data;
|
|
int r;
|
|
|
|
if (kvm->mm != current->mm)
|
|
return -EIO;
|
|
switch (ioctl) {
|
|
case KVM_GET_DIRTY_LOG: {
|
|
struct compat_kvm_dirty_log compat_log;
|
|
struct kvm_dirty_log log;
|
|
|
|
r = -EFAULT;
|
|
if (copy_from_user(&compat_log, (void __user *)arg,
|
|
sizeof(compat_log)))
|
|
goto out;
|
|
log.slot = compat_log.slot;
|
|
log.padding1 = compat_log.padding1;
|
|
log.padding2 = compat_log.padding2;
|
|
log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap);
|
|
|
|
r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
|
|
if (r)
|
|
goto out;
|
|
break;
|
|
}
|
|
default:
|
|
r = kvm_vm_ioctl(filp, ioctl, arg);
|
|
}
|
|
|
|
out:
|
|
return r;
|
|
}
|
|
#endif
|
|
|
|
static int kvm_vm_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
|
|
{
|
|
struct page *page[1];
|
|
unsigned long addr;
|
|
int npages;
|
|
gfn_t gfn = vmf->pgoff;
|
|
struct kvm *kvm = vma->vm_file->private_data;
|
|
|
|
addr = gfn_to_hva(kvm, gfn);
|
|
if (kvm_is_error_hva(addr))
|
|
return VM_FAULT_SIGBUS;
|
|
|
|
npages = get_user_pages(current, current->mm, addr, 1, 1, 0, page,
|
|
NULL);
|
|
if (unlikely(npages != 1))
|
|
return VM_FAULT_SIGBUS;
|
|
|
|
vmf->page = page[0];
|
|
return 0;
|
|
}
|
|
|
|
static const struct vm_operations_struct kvm_vm_vm_ops = {
|
|
.fault = kvm_vm_fault,
|
|
};
|
|
|
|
static int kvm_vm_mmap(struct file *file, struct vm_area_struct *vma)
|
|
{
|
|
vma->vm_ops = &kvm_vm_vm_ops;
|
|
return 0;
|
|
}
|
|
|
|
static struct file_operations kvm_vm_fops = {
|
|
.release = kvm_vm_release,
|
|
.unlocked_ioctl = kvm_vm_ioctl,
|
|
#ifdef CONFIG_COMPAT
|
|
.compat_ioctl = kvm_vm_compat_ioctl,
|
|
#endif
|
|
.mmap = kvm_vm_mmap,
|
|
.llseek = noop_llseek,
|
|
};
|
|
|
|
static int kvm_dev_ioctl_create_vm(unsigned long type)
|
|
{
|
|
int r;
|
|
struct kvm *kvm;
|
|
|
|
kvm = kvm_create_vm(type);
|
|
if (IS_ERR(kvm))
|
|
return PTR_ERR(kvm);
|
|
#ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
|
|
r = kvm_coalesced_mmio_init(kvm);
|
|
if (r < 0) {
|
|
kvm_put_kvm(kvm);
|
|
return r;
|
|
}
|
|
#endif
|
|
r = anon_inode_getfd("kvm-vm", &kvm_vm_fops, kvm, O_RDWR);
|
|
if (r < 0)
|
|
kvm_put_kvm(kvm);
|
|
|
|
return r;
|
|
}
|
|
|
|
static long kvm_dev_ioctl_check_extension_generic(long arg)
|
|
{
|
|
switch (arg) {
|
|
case KVM_CAP_USER_MEMORY:
|
|
case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
|
|
case KVM_CAP_JOIN_MEMORY_REGIONS_WORKS:
|
|
#ifdef CONFIG_KVM_APIC_ARCHITECTURE
|
|
case KVM_CAP_SET_BOOT_CPU_ID:
|
|
#endif
|
|
case KVM_CAP_INTERNAL_ERROR_DATA:
|
|
return 1;
|
|
#ifdef CONFIG_HAVE_KVM_IRQCHIP
|
|
case KVM_CAP_IRQ_ROUTING:
|
|
return KVM_MAX_IRQ_ROUTES;
|
|
#endif
|
|
default:
|
|
break;
|
|
}
|
|
return kvm_dev_ioctl_check_extension(arg);
|
|
}
|
|
|
|
static long kvm_dev_ioctl(struct file *filp,
|
|
unsigned int ioctl, unsigned long arg)
|
|
{
|
|
long r = -EINVAL;
|
|
|
|
switch (ioctl) {
|
|
case KVM_GET_API_VERSION:
|
|
r = -EINVAL;
|
|
if (arg)
|
|
goto out;
|
|
r = KVM_API_VERSION;
|
|
break;
|
|
case KVM_CREATE_VM:
|
|
r = kvm_dev_ioctl_create_vm(arg);
|
|
break;
|
|
case KVM_CHECK_EXTENSION:
|
|
r = kvm_dev_ioctl_check_extension_generic(arg);
|
|
break;
|
|
case KVM_GET_VCPU_MMAP_SIZE:
|
|
r = -EINVAL;
|
|
if (arg)
|
|
goto out;
|
|
r = PAGE_SIZE; /* struct kvm_run */
|
|
#ifdef CONFIG_X86
|
|
r += PAGE_SIZE; /* pio data page */
|
|
#endif
|
|
#ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
|
|
r += PAGE_SIZE; /* coalesced mmio ring page */
|
|
#endif
|
|
break;
|
|
case KVM_TRACE_ENABLE:
|
|
case KVM_TRACE_PAUSE:
|
|
case KVM_TRACE_DISABLE:
|
|
r = -EOPNOTSUPP;
|
|
break;
|
|
default:
|
|
return kvm_arch_dev_ioctl(filp, ioctl, arg);
|
|
}
|
|
out:
|
|
return r;
|
|
}
|
|
|
|
static struct file_operations kvm_chardev_ops = {
|
|
.unlocked_ioctl = kvm_dev_ioctl,
|
|
.compat_ioctl = kvm_dev_ioctl,
|
|
.llseek = noop_llseek,
|
|
};
|
|
|
|
static struct miscdevice kvm_dev = {
|
|
KVM_MINOR,
|
|
"kvm",
|
|
&kvm_chardev_ops,
|
|
};
|
|
|
|
static void hardware_enable_nolock(void *junk)
|
|
{
|
|
int cpu = raw_smp_processor_id();
|
|
int r;
|
|
|
|
if (cpumask_test_cpu(cpu, cpus_hardware_enabled))
|
|
return;
|
|
|
|
cpumask_set_cpu(cpu, cpus_hardware_enabled);
|
|
|
|
r = kvm_arch_hardware_enable(NULL);
|
|
|
|
if (r) {
|
|
cpumask_clear_cpu(cpu, cpus_hardware_enabled);
|
|
atomic_inc(&hardware_enable_failed);
|
|
printk(KERN_INFO "kvm: enabling virtualization on "
|
|
"CPU%d failed\n", cpu);
|
|
}
|
|
}
|
|
|
|
static void hardware_enable(void *junk)
|
|
{
|
|
raw_spin_lock(&kvm_lock);
|
|
hardware_enable_nolock(junk);
|
|
raw_spin_unlock(&kvm_lock);
|
|
}
|
|
|
|
static void hardware_disable_nolock(void *junk)
|
|
{
|
|
int cpu = raw_smp_processor_id();
|
|
|
|
if (!cpumask_test_cpu(cpu, cpus_hardware_enabled))
|
|
return;
|
|
cpumask_clear_cpu(cpu, cpus_hardware_enabled);
|
|
kvm_arch_hardware_disable(NULL);
|
|
}
|
|
|
|
static void hardware_disable(void *junk)
|
|
{
|
|
raw_spin_lock(&kvm_lock);
|
|
hardware_disable_nolock(junk);
|
|
raw_spin_unlock(&kvm_lock);
|
|
}
|
|
|
|
static void hardware_disable_all_nolock(void)
|
|
{
|
|
BUG_ON(!kvm_usage_count);
|
|
|
|
kvm_usage_count--;
|
|
if (!kvm_usage_count)
|
|
on_each_cpu(hardware_disable_nolock, NULL, 1);
|
|
}
|
|
|
|
static void hardware_disable_all(void)
|
|
{
|
|
raw_spin_lock(&kvm_lock);
|
|
hardware_disable_all_nolock();
|
|
raw_spin_unlock(&kvm_lock);
|
|
}
|
|
|
|
static int hardware_enable_all(void)
|
|
{
|
|
int r = 0;
|
|
|
|
raw_spin_lock(&kvm_lock);
|
|
|
|
kvm_usage_count++;
|
|
if (kvm_usage_count == 1) {
|
|
atomic_set(&hardware_enable_failed, 0);
|
|
on_each_cpu(hardware_enable_nolock, NULL, 1);
|
|
|
|
if (atomic_read(&hardware_enable_failed)) {
|
|
hardware_disable_all_nolock();
|
|
r = -EBUSY;
|
|
}
|
|
}
|
|
|
|
raw_spin_unlock(&kvm_lock);
|
|
|
|
return r;
|
|
}
|
|
|
|
static int kvm_cpu_hotplug(struct notifier_block *notifier, unsigned long val,
|
|
void *v)
|
|
{
|
|
int cpu = (long)v;
|
|
|
|
if (!kvm_usage_count)
|
|
return NOTIFY_OK;
|
|
|
|
val &= ~CPU_TASKS_FROZEN;
|
|
switch (val) {
|
|
case CPU_DYING:
|
|
printk(KERN_INFO "kvm: disabling virtualization on CPU%d\n",
|
|
cpu);
|
|
hardware_disable(NULL);
|
|
break;
|
|
case CPU_STARTING:
|
|
printk(KERN_INFO "kvm: enabling virtualization on CPU%d\n",
|
|
cpu);
|
|
hardware_enable(NULL);
|
|
break;
|
|
}
|
|
return NOTIFY_OK;
|
|
}
|
|
|
|
|
|
asmlinkage void kvm_spurious_fault(void)
|
|
{
|
|
/* Fault while not rebooting. We want the trace. */
|
|
BUG();
|
|
}
|
|
EXPORT_SYMBOL_GPL(kvm_spurious_fault);
|
|
|
|
static int kvm_reboot(struct notifier_block *notifier, unsigned long val,
|
|
void *v)
|
|
{
|
|
/*
|
|
* Some (well, at least mine) BIOSes hang on reboot if
|
|
* in vmx root mode.
|
|
*
|
|
* And Intel TXT required VMX off for all cpu when system shutdown.
|
|
*/
|
|
printk(KERN_INFO "kvm: exiting hardware virtualization\n");
|
|
kvm_rebooting = true;
|
|
on_each_cpu(hardware_disable_nolock, NULL, 1);
|
|
return NOTIFY_OK;
|
|
}
|
|
|
|
static struct notifier_block kvm_reboot_notifier = {
|
|
.notifier_call = kvm_reboot,
|
|
.priority = 0,
|
|
};
|
|
|
|
static void kvm_io_bus_destroy(struct kvm_io_bus *bus)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < bus->dev_count; i++) {
|
|
struct kvm_io_device *pos = bus->range[i].dev;
|
|
|
|
kvm_iodevice_destructor(pos);
|
|
}
|
|
kfree(bus);
|
|
}
|
|
|
|
int kvm_io_bus_sort_cmp(const void *p1, const void *p2)
|
|
{
|
|
const struct kvm_io_range *r1 = p1;
|
|
const struct kvm_io_range *r2 = p2;
|
|
|
|
if (r1->addr < r2->addr)
|
|
return -1;
|
|
if (r1->addr + r1->len > r2->addr + r2->len)
|
|
return 1;
|
|
return 0;
|
|
}
|
|
|
|
int kvm_io_bus_insert_dev(struct kvm_io_bus *bus, struct kvm_io_device *dev,
|
|
gpa_t addr, int len)
|
|
{
|
|
if (bus->dev_count == NR_IOBUS_DEVS)
|
|
return -ENOSPC;
|
|
|
|
bus->range[bus->dev_count++] = (struct kvm_io_range) {
|
|
.addr = addr,
|
|
.len = len,
|
|
.dev = dev,
|
|
};
|
|
|
|
sort(bus->range, bus->dev_count, sizeof(struct kvm_io_range),
|
|
kvm_io_bus_sort_cmp, NULL);
|
|
|
|
return 0;
|
|
}
|
|
|
|
int kvm_io_bus_get_first_dev(struct kvm_io_bus *bus,
|
|
gpa_t addr, int len)
|
|
{
|
|
struct kvm_io_range *range, key;
|
|
int off;
|
|
|
|
key = (struct kvm_io_range) {
|
|
.addr = addr,
|
|
.len = len,
|
|
};
|
|
|
|
range = bsearch(&key, bus->range, bus->dev_count,
|
|
sizeof(struct kvm_io_range), kvm_io_bus_sort_cmp);
|
|
if (range == NULL)
|
|
return -ENOENT;
|
|
|
|
off = range - bus->range;
|
|
|
|
while (off > 0 && kvm_io_bus_sort_cmp(&key, &bus->range[off-1]) == 0)
|
|
off--;
|
|
|
|
return off;
|
|
}
|
|
|
|
/* kvm_io_bus_write - called under kvm->slots_lock */
|
|
int kvm_io_bus_write(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
|
|
int len, const void *val)
|
|
{
|
|
int idx;
|
|
struct kvm_io_bus *bus;
|
|
struct kvm_io_range range;
|
|
|
|
range = (struct kvm_io_range) {
|
|
.addr = addr,
|
|
.len = len,
|
|
};
|
|
|
|
bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu);
|
|
idx = kvm_io_bus_get_first_dev(bus, addr, len);
|
|
if (idx < 0)
|
|
return -EOPNOTSUPP;
|
|
|
|
while (idx < bus->dev_count &&
|
|
kvm_io_bus_sort_cmp(&range, &bus->range[idx]) == 0) {
|
|
if (!kvm_iodevice_write(bus->range[idx].dev, addr, len, val))
|
|
return 0;
|
|
idx++;
|
|
}
|
|
|
|
return -EOPNOTSUPP;
|
|
}
|
|
|
|
/* kvm_io_bus_read - called under kvm->slots_lock */
|
|
int kvm_io_bus_read(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
|
|
int len, void *val)
|
|
{
|
|
int idx;
|
|
struct kvm_io_bus *bus;
|
|
struct kvm_io_range range;
|
|
|
|
range = (struct kvm_io_range) {
|
|
.addr = addr,
|
|
.len = len,
|
|
};
|
|
|
|
bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu);
|
|
idx = kvm_io_bus_get_first_dev(bus, addr, len);
|
|
if (idx < 0)
|
|
return -EOPNOTSUPP;
|
|
|
|
while (idx < bus->dev_count &&
|
|
kvm_io_bus_sort_cmp(&range, &bus->range[idx]) == 0) {
|
|
if (!kvm_iodevice_read(bus->range[idx].dev, addr, len, val))
|
|
return 0;
|
|
idx++;
|
|
}
|
|
|
|
return -EOPNOTSUPP;
|
|
}
|
|
|
|
/* Caller must hold slots_lock. */
|
|
int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
|
|
int len, struct kvm_io_device *dev)
|
|
{
|
|
struct kvm_io_bus *new_bus, *bus;
|
|
|
|
bus = kvm->buses[bus_idx];
|
|
if (bus->dev_count > NR_IOBUS_DEVS-1)
|
|
return -ENOSPC;
|
|
|
|
new_bus = kmemdup(bus, sizeof(struct kvm_io_bus), GFP_KERNEL);
|
|
if (!new_bus)
|
|
return -ENOMEM;
|
|
kvm_io_bus_insert_dev(new_bus, dev, addr, len);
|
|
rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
|
|
synchronize_srcu_expedited(&kvm->srcu);
|
|
kfree(bus);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* Caller must hold slots_lock. */
|
|
int kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx,
|
|
struct kvm_io_device *dev)
|
|
{
|
|
int i, r;
|
|
struct kvm_io_bus *new_bus, *bus;
|
|
|
|
bus = kvm->buses[bus_idx];
|
|
|
|
new_bus = kmemdup(bus, sizeof(*bus), GFP_KERNEL);
|
|
if (!new_bus)
|
|
return -ENOMEM;
|
|
|
|
r = -ENOENT;
|
|
for (i = 0; i < new_bus->dev_count; i++)
|
|
if (new_bus->range[i].dev == dev) {
|
|
r = 0;
|
|
new_bus->dev_count--;
|
|
new_bus->range[i] = new_bus->range[new_bus->dev_count];
|
|
sort(new_bus->range, new_bus->dev_count,
|
|
sizeof(struct kvm_io_range),
|
|
kvm_io_bus_sort_cmp, NULL);
|
|
break;
|
|
}
|
|
|
|
if (r) {
|
|
kfree(new_bus);
|
|
return r;
|
|
}
|
|
|
|
rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
|
|
synchronize_srcu_expedited(&kvm->srcu);
|
|
kfree(bus);
|
|
return r;
|
|
}
|
|
|
|
static struct notifier_block kvm_cpu_notifier = {
|
|
.notifier_call = kvm_cpu_hotplug,
|
|
};
|
|
|
|
static int vm_stat_get(void *_offset, u64 *val)
|
|
{
|
|
unsigned offset = (long)_offset;
|
|
struct kvm *kvm;
|
|
|
|
*val = 0;
|
|
raw_spin_lock(&kvm_lock);
|
|
list_for_each_entry(kvm, &vm_list, vm_list)
|
|
*val += *(u32 *)((void *)kvm + offset);
|
|
raw_spin_unlock(&kvm_lock);
|
|
return 0;
|
|
}
|
|
|
|
DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops, vm_stat_get, NULL, "%llu\n");
|
|
|
|
static int vcpu_stat_get(void *_offset, u64 *val)
|
|
{
|
|
unsigned offset = (long)_offset;
|
|
struct kvm *kvm;
|
|
struct kvm_vcpu *vcpu;
|
|
int i;
|
|
|
|
*val = 0;
|
|
raw_spin_lock(&kvm_lock);
|
|
list_for_each_entry(kvm, &vm_list, vm_list)
|
|
kvm_for_each_vcpu(i, vcpu, kvm)
|
|
*val += *(u32 *)((void *)vcpu + offset);
|
|
|
|
raw_spin_unlock(&kvm_lock);
|
|
return 0;
|
|
}
|
|
|
|
DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops, vcpu_stat_get, NULL, "%llu\n");
|
|
|
|
static const struct file_operations *stat_fops[] = {
|
|
[KVM_STAT_VCPU] = &vcpu_stat_fops,
|
|
[KVM_STAT_VM] = &vm_stat_fops,
|
|
};
|
|
|
|
static int kvm_init_debug(void)
|
|
{
|
|
int r = -EFAULT;
|
|
struct kvm_stats_debugfs_item *p;
|
|
|
|
kvm_debugfs_dir = debugfs_create_dir("kvm", NULL);
|
|
if (kvm_debugfs_dir == NULL)
|
|
goto out;
|
|
|
|
for (p = debugfs_entries; p->name; ++p) {
|
|
p->dentry = debugfs_create_file(p->name, 0444, kvm_debugfs_dir,
|
|
(void *)(long)p->offset,
|
|
stat_fops[p->kind]);
|
|
if (p->dentry == NULL)
|
|
goto out_dir;
|
|
}
|
|
|
|
return 0;
|
|
|
|
out_dir:
|
|
debugfs_remove_recursive(kvm_debugfs_dir);
|
|
out:
|
|
return r;
|
|
}
|
|
|
|
static void kvm_exit_debug(void)
|
|
{
|
|
struct kvm_stats_debugfs_item *p;
|
|
|
|
for (p = debugfs_entries; p->name; ++p)
|
|
debugfs_remove(p->dentry);
|
|
debugfs_remove(kvm_debugfs_dir);
|
|
}
|
|
|
|
static int kvm_suspend(void)
|
|
{
|
|
if (kvm_usage_count)
|
|
hardware_disable_nolock(NULL);
|
|
return 0;
|
|
}
|
|
|
|
static void kvm_resume(void)
|
|
{
|
|
if (kvm_usage_count) {
|
|
WARN_ON(raw_spin_is_locked(&kvm_lock));
|
|
hardware_enable_nolock(NULL);
|
|
}
|
|
}
|
|
|
|
static struct syscore_ops kvm_syscore_ops = {
|
|
.suspend = kvm_suspend,
|
|
.resume = kvm_resume,
|
|
};
|
|
|
|
struct page *bad_page;
|
|
pfn_t bad_pfn;
|
|
|
|
static inline
|
|
struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn)
|
|
{
|
|
return container_of(pn, struct kvm_vcpu, preempt_notifier);
|
|
}
|
|
|
|
static void kvm_sched_in(struct preempt_notifier *pn, int cpu)
|
|
{
|
|
struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
|
|
|
|
kvm_arch_vcpu_load(vcpu, cpu);
|
|
}
|
|
|
|
static void kvm_sched_out(struct preempt_notifier *pn,
|
|
struct task_struct *next)
|
|
{
|
|
struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
|
|
|
|
kvm_arch_vcpu_put(vcpu);
|
|
}
|
|
|
|
int kvm_init(void *opaque, unsigned vcpu_size, unsigned vcpu_align,
|
|
struct module *module)
|
|
{
|
|
int r;
|
|
int cpu;
|
|
|
|
r = kvm_arch_init(opaque);
|
|
if (r)
|
|
goto out_fail;
|
|
|
|
bad_page = alloc_page(GFP_KERNEL | __GFP_ZERO);
|
|
|
|
if (bad_page == NULL) {
|
|
r = -ENOMEM;
|
|
goto out;
|
|
}
|
|
|
|
bad_pfn = page_to_pfn(bad_page);
|
|
|
|
hwpoison_page = alloc_page(GFP_KERNEL | __GFP_ZERO);
|
|
|
|
if (hwpoison_page == NULL) {
|
|
r = -ENOMEM;
|
|
goto out_free_0;
|
|
}
|
|
|
|
hwpoison_pfn = page_to_pfn(hwpoison_page);
|
|
|
|
fault_page = alloc_page(GFP_KERNEL | __GFP_ZERO);
|
|
|
|
if (fault_page == NULL) {
|
|
r = -ENOMEM;
|
|
goto out_free_0;
|
|
}
|
|
|
|
fault_pfn = page_to_pfn(fault_page);
|
|
|
|
if (!zalloc_cpumask_var(&cpus_hardware_enabled, GFP_KERNEL)) {
|
|
r = -ENOMEM;
|
|
goto out_free_0;
|
|
}
|
|
|
|
r = kvm_arch_hardware_setup();
|
|
if (r < 0)
|
|
goto out_free_0a;
|
|
|
|
for_each_online_cpu(cpu) {
|
|
smp_call_function_single(cpu,
|
|
kvm_arch_check_processor_compat,
|
|
&r, 1);
|
|
if (r < 0)
|
|
goto out_free_1;
|
|
}
|
|
|
|
r = register_cpu_notifier(&kvm_cpu_notifier);
|
|
if (r)
|
|
goto out_free_2;
|
|
register_reboot_notifier(&kvm_reboot_notifier);
|
|
|
|
/* A kmem cache lets us meet the alignment requirements of fx_save. */
|
|
if (!vcpu_align)
|
|
vcpu_align = __alignof__(struct kvm_vcpu);
|
|
kvm_vcpu_cache = kmem_cache_create("kvm_vcpu", vcpu_size, vcpu_align,
|
|
0, NULL);
|
|
if (!kvm_vcpu_cache) {
|
|
r = -ENOMEM;
|
|
goto out_free_3;
|
|
}
|
|
|
|
r = kvm_async_pf_init();
|
|
if (r)
|
|
goto out_free;
|
|
|
|
kvm_chardev_ops.owner = module;
|
|
kvm_vm_fops.owner = module;
|
|
kvm_vcpu_fops.owner = module;
|
|
|
|
r = misc_register(&kvm_dev);
|
|
if (r) {
|
|
printk(KERN_ERR "kvm: misc device register failed\n");
|
|
goto out_unreg;
|
|
}
|
|
|
|
register_syscore_ops(&kvm_syscore_ops);
|
|
|
|
kvm_preempt_ops.sched_in = kvm_sched_in;
|
|
kvm_preempt_ops.sched_out = kvm_sched_out;
|
|
|
|
r = kvm_init_debug();
|
|
if (r) {
|
|
printk(KERN_ERR "kvm: create debugfs files failed\n");
|
|
goto out_undebugfs;
|
|
}
|
|
|
|
return 0;
|
|
|
|
out_undebugfs:
|
|
unregister_syscore_ops(&kvm_syscore_ops);
|
|
out_unreg:
|
|
kvm_async_pf_deinit();
|
|
out_free:
|
|
kmem_cache_destroy(kvm_vcpu_cache);
|
|
out_free_3:
|
|
unregister_reboot_notifier(&kvm_reboot_notifier);
|
|
unregister_cpu_notifier(&kvm_cpu_notifier);
|
|
out_free_2:
|
|
out_free_1:
|
|
kvm_arch_hardware_unsetup();
|
|
out_free_0a:
|
|
free_cpumask_var(cpus_hardware_enabled);
|
|
out_free_0:
|
|
if (fault_page)
|
|
__free_page(fault_page);
|
|
if (hwpoison_page)
|
|
__free_page(hwpoison_page);
|
|
__free_page(bad_page);
|
|
out:
|
|
kvm_arch_exit();
|
|
out_fail:
|
|
return r;
|
|
}
|
|
EXPORT_SYMBOL_GPL(kvm_init);
|
|
|
|
void kvm_exit(void)
|
|
{
|
|
kvm_exit_debug();
|
|
misc_deregister(&kvm_dev);
|
|
kmem_cache_destroy(kvm_vcpu_cache);
|
|
kvm_async_pf_deinit();
|
|
unregister_syscore_ops(&kvm_syscore_ops);
|
|
unregister_reboot_notifier(&kvm_reboot_notifier);
|
|
unregister_cpu_notifier(&kvm_cpu_notifier);
|
|
on_each_cpu(hardware_disable_nolock, NULL, 1);
|
|
kvm_arch_hardware_unsetup();
|
|
kvm_arch_exit();
|
|
free_cpumask_var(cpus_hardware_enabled);
|
|
__free_page(hwpoison_page);
|
|
__free_page(bad_page);
|
|
}
|
|
EXPORT_SYMBOL_GPL(kvm_exit);
|