linux/arch/blackfin/kernel/kgdb.c

776 lines
20 KiB
C

/*
* arch/blackfin/kernel/kgdb.c - Blackfin kgdb pieces
*
* Copyright 2005-2008 Analog Devices Inc.
*
* Licensed under the GPL-2 or later.
*/
#include <linux/string.h>
#include <linux/kernel.h>
#include <linux/sched.h>
#include <linux/smp.h>
#include <linux/spinlock.h>
#include <linux/delay.h>
#include <linux/ptrace.h> /* for linux pt_regs struct */
#include <linux/kgdb.h>
#include <linux/console.h>
#include <linux/init.h>
#include <linux/errno.h>
#include <linux/irq.h>
#include <linux/uaccess.h>
#include <asm/system.h>
#include <asm/traps.h>
#include <asm/blackfin.h>
#include <asm/dma.h>
/* Put the error code here just in case the user cares. */
int gdb_bfin_errcode;
/* Likewise, the vector number here (since GDB only gets the signal
number through the usual means, and that's not very specific). */
int gdb_bfin_vector = -1;
#if KGDB_MAX_NO_CPUS != 8
#error change the definition of slavecpulocks
#endif
#define IN_MEM(addr, size, l1_addr, l1_size) \
({ \
unsigned long __addr = (unsigned long)(addr); \
(l1_size && __addr >= l1_addr && __addr + (size) <= l1_addr + l1_size); \
})
#define ASYNC_BANK_SIZE \
(ASYNC_BANK0_SIZE + ASYNC_BANK1_SIZE + \
ASYNC_BANK2_SIZE + ASYNC_BANK3_SIZE)
void pt_regs_to_gdb_regs(unsigned long *gdb_regs, struct pt_regs *regs)
{
gdb_regs[BFIN_R0] = regs->r0;
gdb_regs[BFIN_R1] = regs->r1;
gdb_regs[BFIN_R2] = regs->r2;
gdb_regs[BFIN_R3] = regs->r3;
gdb_regs[BFIN_R4] = regs->r4;
gdb_regs[BFIN_R5] = regs->r5;
gdb_regs[BFIN_R6] = regs->r6;
gdb_regs[BFIN_R7] = regs->r7;
gdb_regs[BFIN_P0] = regs->p0;
gdb_regs[BFIN_P1] = regs->p1;
gdb_regs[BFIN_P2] = regs->p2;
gdb_regs[BFIN_P3] = regs->p3;
gdb_regs[BFIN_P4] = regs->p4;
gdb_regs[BFIN_P5] = regs->p5;
gdb_regs[BFIN_SP] = regs->reserved;
gdb_regs[BFIN_FP] = regs->fp;
gdb_regs[BFIN_I0] = regs->i0;
gdb_regs[BFIN_I1] = regs->i1;
gdb_regs[BFIN_I2] = regs->i2;
gdb_regs[BFIN_I3] = regs->i3;
gdb_regs[BFIN_M0] = regs->m0;
gdb_regs[BFIN_M1] = regs->m1;
gdb_regs[BFIN_M2] = regs->m2;
gdb_regs[BFIN_M3] = regs->m3;
gdb_regs[BFIN_B0] = regs->b0;
gdb_regs[BFIN_B1] = regs->b1;
gdb_regs[BFIN_B2] = regs->b2;
gdb_regs[BFIN_B3] = regs->b3;
gdb_regs[BFIN_L0] = regs->l0;
gdb_regs[BFIN_L1] = regs->l1;
gdb_regs[BFIN_L2] = regs->l2;
gdb_regs[BFIN_L3] = regs->l3;
gdb_regs[BFIN_A0_DOT_X] = regs->a0x;
gdb_regs[BFIN_A0_DOT_W] = regs->a0w;
gdb_regs[BFIN_A1_DOT_X] = regs->a1x;
gdb_regs[BFIN_A1_DOT_W] = regs->a1w;
gdb_regs[BFIN_ASTAT] = regs->astat;
gdb_regs[BFIN_RETS] = regs->rets;
gdb_regs[BFIN_LC0] = regs->lc0;
gdb_regs[BFIN_LT0] = regs->lt0;
gdb_regs[BFIN_LB0] = regs->lb0;
gdb_regs[BFIN_LC1] = regs->lc1;
gdb_regs[BFIN_LT1] = regs->lt1;
gdb_regs[BFIN_LB1] = regs->lb1;
gdb_regs[BFIN_CYCLES] = 0;
gdb_regs[BFIN_CYCLES2] = 0;
gdb_regs[BFIN_USP] = regs->usp;
gdb_regs[BFIN_SEQSTAT] = regs->seqstat;
gdb_regs[BFIN_SYSCFG] = regs->syscfg;
gdb_regs[BFIN_RETI] = regs->pc;
gdb_regs[BFIN_RETX] = regs->retx;
gdb_regs[BFIN_RETN] = regs->retn;
gdb_regs[BFIN_RETE] = regs->rete;
gdb_regs[BFIN_PC] = regs->pc;
gdb_regs[BFIN_CC] = 0;
gdb_regs[BFIN_EXTRA1] = 0;
gdb_regs[BFIN_EXTRA2] = 0;
gdb_regs[BFIN_EXTRA3] = 0;
gdb_regs[BFIN_IPEND] = regs->ipend;
}
/*
* Extracts ebp, esp and eip values understandable by gdb from the values
* saved by switch_to.
* thread.esp points to ebp. flags and ebp are pushed in switch_to hence esp
* prior to entering switch_to is 8 greater than the value that is saved.
* If switch_to changes, change following code appropriately.
*/
void sleeping_thread_to_gdb_regs(unsigned long *gdb_regs, struct task_struct *p)
{
gdb_regs[BFIN_SP] = p->thread.ksp;
gdb_regs[BFIN_PC] = p->thread.pc;
gdb_regs[BFIN_SEQSTAT] = p->thread.seqstat;
}
void gdb_regs_to_pt_regs(unsigned long *gdb_regs, struct pt_regs *regs)
{
regs->r0 = gdb_regs[BFIN_R0];
regs->r1 = gdb_regs[BFIN_R1];
regs->r2 = gdb_regs[BFIN_R2];
regs->r3 = gdb_regs[BFIN_R3];
regs->r4 = gdb_regs[BFIN_R4];
regs->r5 = gdb_regs[BFIN_R5];
regs->r6 = gdb_regs[BFIN_R6];
regs->r7 = gdb_regs[BFIN_R7];
regs->p0 = gdb_regs[BFIN_P0];
regs->p1 = gdb_regs[BFIN_P1];
regs->p2 = gdb_regs[BFIN_P2];
regs->p3 = gdb_regs[BFIN_P3];
regs->p4 = gdb_regs[BFIN_P4];
regs->p5 = gdb_regs[BFIN_P5];
regs->fp = gdb_regs[BFIN_FP];
regs->i0 = gdb_regs[BFIN_I0];
regs->i1 = gdb_regs[BFIN_I1];
regs->i2 = gdb_regs[BFIN_I2];
regs->i3 = gdb_regs[BFIN_I3];
regs->m0 = gdb_regs[BFIN_M0];
regs->m1 = gdb_regs[BFIN_M1];
regs->m2 = gdb_regs[BFIN_M2];
regs->m3 = gdb_regs[BFIN_M3];
regs->b0 = gdb_regs[BFIN_B0];
regs->b1 = gdb_regs[BFIN_B1];
regs->b2 = gdb_regs[BFIN_B2];
regs->b3 = gdb_regs[BFIN_B3];
regs->l0 = gdb_regs[BFIN_L0];
regs->l1 = gdb_regs[BFIN_L1];
regs->l2 = gdb_regs[BFIN_L2];
regs->l3 = gdb_regs[BFIN_L3];
regs->a0x = gdb_regs[BFIN_A0_DOT_X];
regs->a0w = gdb_regs[BFIN_A0_DOT_W];
regs->a1x = gdb_regs[BFIN_A1_DOT_X];
regs->a1w = gdb_regs[BFIN_A1_DOT_W];
regs->rets = gdb_regs[BFIN_RETS];
regs->lc0 = gdb_regs[BFIN_LC0];
regs->lt0 = gdb_regs[BFIN_LT0];
regs->lb0 = gdb_regs[BFIN_LB0];
regs->lc1 = gdb_regs[BFIN_LC1];
regs->lt1 = gdb_regs[BFIN_LT1];
regs->lb1 = gdb_regs[BFIN_LB1];
regs->usp = gdb_regs[BFIN_USP];
regs->syscfg = gdb_regs[BFIN_SYSCFG];
regs->retx = gdb_regs[BFIN_PC];
regs->retn = gdb_regs[BFIN_RETN];
regs->rete = gdb_regs[BFIN_RETE];
regs->pc = gdb_regs[BFIN_PC];
#if 0 /* can't change these */
regs->astat = gdb_regs[BFIN_ASTAT];
regs->seqstat = gdb_regs[BFIN_SEQSTAT];
regs->ipend = gdb_regs[BFIN_IPEND];
#endif
}
struct hw_breakpoint {
unsigned int occupied:1;
unsigned int skip:1;
unsigned int enabled:1;
unsigned int type:1;
unsigned int dataacc:2;
unsigned short count;
unsigned int addr;
} breakinfo[HW_WATCHPOINT_NUM];
int bfin_set_hw_break(unsigned long addr, int len, enum kgdb_bptype type)
{
int breakno;
int bfin_type;
int dataacc = 0;
switch (type) {
case BP_HARDWARE_BREAKPOINT:
bfin_type = TYPE_INST_WATCHPOINT;
break;
case BP_WRITE_WATCHPOINT:
dataacc = 1;
bfin_type = TYPE_DATA_WATCHPOINT;
break;
case BP_READ_WATCHPOINT:
dataacc = 2;
bfin_type = TYPE_DATA_WATCHPOINT;
break;
case BP_ACCESS_WATCHPOINT:
dataacc = 3;
bfin_type = TYPE_DATA_WATCHPOINT;
break;
default:
return -ENOSPC;
}
/* Becasue hardware data watchpoint impelemented in current
* Blackfin can not trigger an exception event as the hardware
* instrction watchpoint does, we ignaore all data watch point here.
* They can be turned on easily after future blackfin design
* supports this feature.
*/
for (breakno = 0; breakno < HW_INST_WATCHPOINT_NUM; breakno++)
if (bfin_type == breakinfo[breakno].type
&& !breakinfo[breakno].occupied) {
breakinfo[breakno].occupied = 1;
breakinfo[breakno].skip = 0;
breakinfo[breakno].enabled = 1;
breakinfo[breakno].addr = addr;
breakinfo[breakno].dataacc = dataacc;
breakinfo[breakno].count = 0;
return 0;
}
return -ENOSPC;
}
int bfin_remove_hw_break(unsigned long addr, int len, enum kgdb_bptype type)
{
int breakno;
int bfin_type;
switch (type) {
case BP_HARDWARE_BREAKPOINT:
bfin_type = TYPE_INST_WATCHPOINT;
break;
case BP_WRITE_WATCHPOINT:
case BP_READ_WATCHPOINT:
case BP_ACCESS_WATCHPOINT:
bfin_type = TYPE_DATA_WATCHPOINT;
break;
default:
return 0;
}
for (breakno = 0; breakno < HW_WATCHPOINT_NUM; breakno++)
if (bfin_type == breakinfo[breakno].type
&& breakinfo[breakno].occupied
&& breakinfo[breakno].addr == addr) {
breakinfo[breakno].occupied = 0;
breakinfo[breakno].enabled = 0;
}
return 0;
}
void bfin_remove_all_hw_break(void)
{
int breakno;
memset(breakinfo, 0, sizeof(struct hw_breakpoint)*HW_WATCHPOINT_NUM);
for (breakno = 0; breakno < HW_INST_WATCHPOINT_NUM; breakno++)
breakinfo[breakno].type = TYPE_INST_WATCHPOINT;
for (; breakno < HW_WATCHPOINT_NUM; breakno++)
breakinfo[breakno].type = TYPE_DATA_WATCHPOINT;
}
void bfin_correct_hw_break(void)
{
int breakno;
unsigned int wpiactl = 0;
unsigned int wpdactl = 0;
int enable_wp = 0;
for (breakno = 0; breakno < HW_WATCHPOINT_NUM; breakno++)
if (breakinfo[breakno].enabled) {
enable_wp = 1;
switch (breakno) {
case 0:
wpiactl |= WPIAEN0|WPICNTEN0;
bfin_write_WPIA0(breakinfo[breakno].addr);
bfin_write_WPIACNT0(breakinfo[breakno].count
+ breakinfo->skip);
break;
case 1:
wpiactl |= WPIAEN1|WPICNTEN1;
bfin_write_WPIA1(breakinfo[breakno].addr);
bfin_write_WPIACNT1(breakinfo[breakno].count
+ breakinfo->skip);
break;
case 2:
wpiactl |= WPIAEN2|WPICNTEN2;
bfin_write_WPIA2(breakinfo[breakno].addr);
bfin_write_WPIACNT2(breakinfo[breakno].count
+ breakinfo->skip);
break;
case 3:
wpiactl |= WPIAEN3|WPICNTEN3;
bfin_write_WPIA3(breakinfo[breakno].addr);
bfin_write_WPIACNT3(breakinfo[breakno].count
+ breakinfo->skip);
break;
case 4:
wpiactl |= WPIAEN4|WPICNTEN4;
bfin_write_WPIA4(breakinfo[breakno].addr);
bfin_write_WPIACNT4(breakinfo[breakno].count
+ breakinfo->skip);
break;
case 5:
wpiactl |= WPIAEN5|WPICNTEN5;
bfin_write_WPIA5(breakinfo[breakno].addr);
bfin_write_WPIACNT5(breakinfo[breakno].count
+ breakinfo->skip);
break;
case 6:
wpdactl |= WPDAEN0|WPDCNTEN0|WPDSRC0;
wpdactl |= breakinfo[breakno].dataacc
<< WPDACC0_OFFSET;
bfin_write_WPDA0(breakinfo[breakno].addr);
bfin_write_WPDACNT0(breakinfo[breakno].count
+ breakinfo->skip);
break;
case 7:
wpdactl |= WPDAEN1|WPDCNTEN1|WPDSRC1;
wpdactl |= breakinfo[breakno].dataacc
<< WPDACC1_OFFSET;
bfin_write_WPDA1(breakinfo[breakno].addr);
bfin_write_WPDACNT1(breakinfo[breakno].count
+ breakinfo->skip);
break;
}
}
/* Should enable WPPWR bit first before set any other
* WPIACTL and WPDACTL bits */
if (enable_wp) {
bfin_write_WPIACTL(WPPWR);
CSYNC();
bfin_write_WPIACTL(wpiactl|WPPWR);
bfin_write_WPDACTL(wpdactl);
CSYNC();
}
}
void kgdb_disable_hw_debug(struct pt_regs *regs)
{
/* Disable hardware debugging while we are in kgdb */
bfin_write_WPIACTL(0);
bfin_write_WPDACTL(0);
CSYNC();
}
#ifdef CONFIG_SMP
void kgdb_passive_cpu_callback(void *info)
{
kgdb_nmicallback(raw_smp_processor_id(), get_irq_regs());
}
void kgdb_roundup_cpus(unsigned long flags)
{
smp_call_function(kgdb_passive_cpu_callback, NULL, 0);
}
void kgdb_roundup_cpu(int cpu, unsigned long flags)
{
smp_call_function_single(cpu, kgdb_passive_cpu_callback, NULL, 0);
}
#endif
void kgdb_post_primary_code(struct pt_regs *regs, int eVector, int err_code)
{
/* Master processor is completely in the debugger */
gdb_bfin_vector = eVector;
gdb_bfin_errcode = err_code;
}
int kgdb_arch_handle_exception(int vector, int signo,
int err_code, char *remcom_in_buffer,
char *remcom_out_buffer,
struct pt_regs *regs)
{
long addr;
char *ptr;
int newPC;
int i;
switch (remcom_in_buffer[0]) {
case 'c':
case 's':
if (kgdb_contthread && kgdb_contthread != current) {
strcpy(remcom_out_buffer, "E00");
break;
}
kgdb_contthread = NULL;
/* try to read optional parameter, pc unchanged if no parm */
ptr = &remcom_in_buffer[1];
if (kgdb_hex2long(&ptr, &addr)) {
regs->retx = addr;
}
newPC = regs->retx;
/* clear the trace bit */
regs->syscfg &= 0xfffffffe;
/* set the trace bit if we're stepping */
if (remcom_in_buffer[0] == 's') {
regs->syscfg |= 0x1;
kgdb_single_step = regs->ipend;
kgdb_single_step >>= 6;
for (i = 10; i > 0; i--, kgdb_single_step >>= 1)
if (kgdb_single_step & 1)
break;
/* i indicate event priority of current stopped instruction
* user space instruction is 0, IVG15 is 1, IVTMR is 10.
* kgdb_single_step > 0 means in single step mode
*/
kgdb_single_step = i + 1;
}
bfin_correct_hw_break();
return 0;
} /* switch */
return -1; /* this means that we do not want to exit from the handler */
}
struct kgdb_arch arch_kgdb_ops = {
.gdb_bpt_instr = {0xa1},
#ifdef CONFIG_SMP
.flags = KGDB_HW_BREAKPOINT|KGDB_THR_PROC_SWAP,
#else
.flags = KGDB_HW_BREAKPOINT,
#endif
.set_hw_breakpoint = bfin_set_hw_break,
.remove_hw_breakpoint = bfin_remove_hw_break,
.remove_all_hw_break = bfin_remove_all_hw_break,
.correct_hw_break = bfin_correct_hw_break,
};
static int hex(char ch)
{
if ((ch >= 'a') && (ch <= 'f'))
return ch - 'a' + 10;
if ((ch >= '0') && (ch <= '9'))
return ch - '0';
if ((ch >= 'A') && (ch <= 'F'))
return ch - 'A' + 10;
return -1;
}
static int validate_memory_access_address(unsigned long addr, int size)
{
int cpu = raw_smp_processor_id();
if (size < 0)
return EFAULT;
if (addr >= 0x1000 && (addr + size) <= physical_mem_end)
return 0;
if (addr >= SYSMMR_BASE)
return 0;
if (IN_MEM(addr, size, ASYNC_BANK0_BASE, ASYNC_BANK_SIZE))
return 0;
if (cpu == 0) {
if (IN_MEM(addr, size, L1_SCRATCH_START, L1_SCRATCH_LENGTH))
return 0;
if (IN_MEM(addr, size, L1_CODE_START, L1_CODE_LENGTH))
return 0;
if (IN_MEM(addr, size, L1_DATA_A_START, L1_DATA_A_LENGTH))
return 0;
if (IN_MEM(addr, size, L1_DATA_B_START, L1_DATA_B_LENGTH))
return 0;
#ifdef CONFIG_SMP
} else if (cpu == 1) {
if (IN_MEM(addr, size, COREB_L1_SCRATCH_START, L1_SCRATCH_LENGTH))
return 0;
if (IN_MEM(addr, size, COREB_L1_CODE_START, L1_CODE_LENGTH))
return 0;
if (IN_MEM(addr, size, COREB_L1_DATA_A_START, L1_DATA_A_LENGTH))
return 0;
if (IN_MEM(addr, size, COREB_L1_DATA_B_START, L1_DATA_B_LENGTH))
return 0;
#endif
}
if (IN_MEM(addr, size, L2_START, L2_LENGTH))
return 0;
return EFAULT;
}
/*
* Convert the memory pointed to by mem into hex, placing result in buf.
* Return a pointer to the last char put in buf (null). May return an error.
*/
int kgdb_mem2hex(char *mem, char *buf, int count)
{
char *tmp;
int err = 0;
unsigned char *pch;
unsigned short mmr16;
unsigned long mmr32;
int cpu = raw_smp_processor_id();
if (validate_memory_access_address((unsigned long)mem, count))
return EFAULT;
/*
* We use the upper half of buf as an intermediate buffer for the
* raw memory copy. Hex conversion will work against this one.
*/
tmp = buf + count;
if ((unsigned int)mem >= SYSMMR_BASE) { /*access MMR registers*/
switch (count) {
case 2:
if ((unsigned int)mem % 2 == 0) {
mmr16 = *(unsigned short *)mem;
pch = (unsigned char *)&mmr16;
*tmp++ = *pch++;
*tmp++ = *pch++;
tmp -= 2;
} else
err = EFAULT;
break;
case 4:
if ((unsigned int)mem % 4 == 0) {
mmr32 = *(unsigned long *)mem;
pch = (unsigned char *)&mmr32;
*tmp++ = *pch++;
*tmp++ = *pch++;
*tmp++ = *pch++;
*tmp++ = *pch++;
tmp -= 4;
} else
err = EFAULT;
break;
default:
err = EFAULT;
}
} else if ((cpu == 0 && IN_MEM(mem, count, L1_CODE_START, L1_CODE_LENGTH))
#ifdef CONFIG_SMP
|| (cpu == 1 && IN_MEM(mem, count, COREB_L1_CODE_START, L1_CODE_LENGTH))
#endif
) {
/* access L1 instruction SRAM*/
if (dma_memcpy(tmp, mem, count) == NULL)
err = EFAULT;
} else
err = probe_kernel_read(tmp, mem, count);
if (!err) {
while (count > 0) {
buf = pack_hex_byte(buf, *tmp);
tmp++;
count--;
}
*buf = 0;
}
return err;
}
/*
* Copy the binary array pointed to by buf into mem. Fix $, #, and
* 0x7d escaped with 0x7d. Return a pointer to the character after
* the last byte written.
*/
int kgdb_ebin2mem(char *buf, char *mem, int count)
{
char *tmp_old;
char *tmp_new;
unsigned short *mmr16;
unsigned long *mmr32;
int err = 0;
int size = 0;
int cpu = raw_smp_processor_id();
tmp_old = tmp_new = buf;
while (count-- > 0) {
if (*tmp_old == 0x7d)
*tmp_new = *(++tmp_old) ^ 0x20;
else
*tmp_new = *tmp_old;
tmp_new++;
tmp_old++;
size++;
}
if (validate_memory_access_address((unsigned long)mem, size))
return EFAULT;
if ((unsigned int)mem >= SYSMMR_BASE) { /*access MMR registers*/
switch (size) {
case 2:
if ((unsigned int)mem % 2 == 0) {
mmr16 = (unsigned short *)buf;
*(unsigned short *)mem = *mmr16;
} else
return EFAULT;
break;
case 4:
if ((unsigned int)mem % 4 == 0) {
mmr32 = (unsigned long *)buf;
*(unsigned long *)mem = *mmr32;
} else
return EFAULT;
break;
default:
return EFAULT;
}
} else if ((cpu == 0 && IN_MEM(mem, count, L1_CODE_START, L1_CODE_LENGTH))
#ifdef CONFIG_SMP
|| (cpu == 1 && IN_MEM(mem, count, COREB_L1_CODE_START, L1_CODE_LENGTH))
#endif
) {
/* access L1 instruction SRAM */
if (dma_memcpy(mem, buf, size) == NULL)
err = EFAULT;
} else
err = probe_kernel_write(mem, buf, size);
return err;
}
/*
* Convert the hex array pointed to by buf into binary to be placed in mem.
* Return a pointer to the character AFTER the last byte written.
* May return an error.
*/
int kgdb_hex2mem(char *buf, char *mem, int count)
{
char *tmp_raw;
char *tmp_hex;
unsigned short *mmr16;
unsigned long *mmr32;
int cpu = raw_smp_processor_id();
if (validate_memory_access_address((unsigned long)mem, count))
return EFAULT;
/*
* We use the upper half of buf as an intermediate buffer for the
* raw memory that is converted from hex.
*/
tmp_raw = buf + count * 2;
tmp_hex = tmp_raw - 1;
while (tmp_hex >= buf) {
tmp_raw--;
*tmp_raw = hex(*tmp_hex--);
*tmp_raw |= hex(*tmp_hex--) << 4;
}
if ((unsigned int)mem >= SYSMMR_BASE) { /*access MMR registers*/
switch (count) {
case 2:
if ((unsigned int)mem % 2 == 0) {
mmr16 = (unsigned short *)tmp_raw;
*(unsigned short *)mem = *mmr16;
} else
return EFAULT;
break;
case 4:
if ((unsigned int)mem % 4 == 0) {
mmr32 = (unsigned long *)tmp_raw;
*(unsigned long *)mem = *mmr32;
} else
return EFAULT;
break;
default:
return EFAULT;
}
} else if ((cpu == 0 && IN_MEM(mem, count, L1_CODE_START, L1_CODE_LENGTH))
#ifdef CONFIG_SMP
|| (cpu == 1 && IN_MEM(mem, count, COREB_L1_CODE_START, L1_CODE_LENGTH))
#endif
) {
/* access L1 instruction SRAM */
if (dma_memcpy(mem, tmp_raw, count) == NULL)
return EFAULT;
} else
return probe_kernel_write(mem, tmp_raw, count);
return 0;
}
int kgdb_validate_break_address(unsigned long addr)
{
int cpu = raw_smp_processor_id();
if (addr >= 0x1000 && (addr + BREAK_INSTR_SIZE) <= physical_mem_end)
return 0;
if (IN_MEM(addr, BREAK_INSTR_SIZE, ASYNC_BANK0_BASE, ASYNC_BANK_SIZE))
return 0;
if (cpu == 0 && IN_MEM(addr, BREAK_INSTR_SIZE, L1_CODE_START, L1_CODE_LENGTH))
return 0;
#ifdef CONFIG_SMP
else if (cpu == 1 && IN_MEM(addr, BREAK_INSTR_SIZE, COREB_L1_CODE_START, L1_CODE_LENGTH))
return 0;
#endif
if (IN_MEM(addr, BREAK_INSTR_SIZE, L2_START, L2_LENGTH))
return 0;
return EFAULT;
}
int kgdb_arch_set_breakpoint(unsigned long addr, char *saved_instr)
{
int err;
int cpu = raw_smp_processor_id();
if ((cpu == 0 && IN_MEM(addr, BREAK_INSTR_SIZE, L1_CODE_START, L1_CODE_LENGTH))
#ifdef CONFIG_SMP
|| (cpu == 1 && IN_MEM(addr, BREAK_INSTR_SIZE, COREB_L1_CODE_START, L1_CODE_LENGTH))
#endif
) {
/* access L1 instruction SRAM */
if (dma_memcpy(saved_instr, (void *)addr, BREAK_INSTR_SIZE)
== NULL)
return -EFAULT;
if (dma_memcpy((void *)addr, arch_kgdb_ops.gdb_bpt_instr,
BREAK_INSTR_SIZE) == NULL)
return -EFAULT;
return 0;
} else {
err = probe_kernel_read(saved_instr, (char *)addr,
BREAK_INSTR_SIZE);
if (err)
return err;
return probe_kernel_write((char *)addr,
arch_kgdb_ops.gdb_bpt_instr, BREAK_INSTR_SIZE);
}
}
int kgdb_arch_remove_breakpoint(unsigned long addr, char *bundle)
{
if (IN_MEM(addr, BREAK_INSTR_SIZE, L1_CODE_START, L1_CODE_LENGTH)) {
/* access L1 instruction SRAM */
if (dma_memcpy((void *)addr, bundle, BREAK_INSTR_SIZE) == NULL)
return -EFAULT;
return 0;
} else
return probe_kernel_write((char *)addr,
(char *)bundle, BREAK_INSTR_SIZE);
}
int kgdb_arch_init(void)
{
kgdb_single_step = 0;
bfin_remove_all_hw_break();
return 0;
}
void kgdb_arch_exit(void)
{
}