6e28fbef0f
Every time a new input device that is capable of one of the rfkill EV_SW events (currently only SW_RFKILL_ALL) is connected to rfkill-input, we must check the states of the input EV_SW switches and take action. Otherwise, we will ignore the initial switch state. We also need to re-check the states of the EV_SW switches after a device that was under an exclusive grab is released back to us, since we got no input events from that device while it was grabbed. Signed-off-by: Henrique de Moraes Holschuh <hmh@hmh.eng.br> Acked-by: Ivo van Doorn <IvDoorn@gmail.com> Cc: Dmitry Torokhov <dtor@mail.ru> Signed-off-by: John W. Linville <linville@tuxdriver.com>
269 lines
6.6 KiB
C
269 lines
6.6 KiB
C
/*
|
|
* Input layer to RF Kill interface connector
|
|
*
|
|
* Copyright (c) 2007 Dmitry Torokhov
|
|
*/
|
|
|
|
/*
|
|
* This program is free software; you can redistribute it and/or modify it
|
|
* under the terms of the GNU General Public License version 2 as published
|
|
* by the Free Software Foundation.
|
|
*/
|
|
|
|
#include <linux/module.h>
|
|
#include <linux/input.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/workqueue.h>
|
|
#include <linux/init.h>
|
|
#include <linux/rfkill.h>
|
|
|
|
#include "rfkill-input.h"
|
|
|
|
MODULE_AUTHOR("Dmitry Torokhov <dtor@mail.ru>");
|
|
MODULE_DESCRIPTION("Input layer to RF switch connector");
|
|
MODULE_LICENSE("GPL");
|
|
|
|
struct rfkill_task {
|
|
struct work_struct work;
|
|
enum rfkill_type type;
|
|
struct mutex mutex; /* ensures that task is serialized */
|
|
spinlock_t lock; /* for accessing last and desired state */
|
|
unsigned long last; /* last schedule */
|
|
enum rfkill_state desired_state; /* on/off */
|
|
};
|
|
|
|
static void rfkill_task_handler(struct work_struct *work)
|
|
{
|
|
struct rfkill_task *task = container_of(work, struct rfkill_task, work);
|
|
|
|
mutex_lock(&task->mutex);
|
|
|
|
rfkill_switch_all(task->type, task->desired_state);
|
|
|
|
mutex_unlock(&task->mutex);
|
|
}
|
|
|
|
static void rfkill_task_epo_handler(struct work_struct *work)
|
|
{
|
|
rfkill_epo();
|
|
}
|
|
|
|
static DECLARE_WORK(epo_work, rfkill_task_epo_handler);
|
|
|
|
static void rfkill_schedule_epo(void)
|
|
{
|
|
schedule_work(&epo_work);
|
|
}
|
|
|
|
static void rfkill_schedule_set(struct rfkill_task *task,
|
|
enum rfkill_state desired_state)
|
|
{
|
|
unsigned long flags;
|
|
|
|
if (unlikely(work_pending(&epo_work)))
|
|
return;
|
|
|
|
spin_lock_irqsave(&task->lock, flags);
|
|
|
|
if (time_after(jiffies, task->last + msecs_to_jiffies(200))) {
|
|
task->desired_state = desired_state;
|
|
task->last = jiffies;
|
|
schedule_work(&task->work);
|
|
}
|
|
|
|
spin_unlock_irqrestore(&task->lock, flags);
|
|
}
|
|
|
|
static void rfkill_schedule_toggle(struct rfkill_task *task)
|
|
{
|
|
unsigned long flags;
|
|
|
|
if (unlikely(work_pending(&epo_work)))
|
|
return;
|
|
|
|
spin_lock_irqsave(&task->lock, flags);
|
|
|
|
if (time_after(jiffies, task->last + msecs_to_jiffies(200))) {
|
|
task->desired_state =
|
|
rfkill_state_complement(task->desired_state);
|
|
task->last = jiffies;
|
|
schedule_work(&task->work);
|
|
}
|
|
|
|
spin_unlock_irqrestore(&task->lock, flags);
|
|
}
|
|
|
|
#define DEFINE_RFKILL_TASK(n, t) \
|
|
struct rfkill_task n = { \
|
|
.work = __WORK_INITIALIZER(n.work, \
|
|
rfkill_task_handler), \
|
|
.type = t, \
|
|
.mutex = __MUTEX_INITIALIZER(n.mutex), \
|
|
.lock = __SPIN_LOCK_UNLOCKED(n.lock), \
|
|
.desired_state = RFKILL_STATE_UNBLOCKED, \
|
|
}
|
|
|
|
static DEFINE_RFKILL_TASK(rfkill_wlan, RFKILL_TYPE_WLAN);
|
|
static DEFINE_RFKILL_TASK(rfkill_bt, RFKILL_TYPE_BLUETOOTH);
|
|
static DEFINE_RFKILL_TASK(rfkill_uwb, RFKILL_TYPE_UWB);
|
|
static DEFINE_RFKILL_TASK(rfkill_wimax, RFKILL_TYPE_WIMAX);
|
|
static DEFINE_RFKILL_TASK(rfkill_wwan, RFKILL_TYPE_WWAN);
|
|
|
|
static void rfkill_schedule_evsw_rfkillall(int state)
|
|
{
|
|
/* EVERY radio type. state != 0 means radios ON */
|
|
/* handle EPO (emergency power off) through shortcut */
|
|
if (state) {
|
|
rfkill_schedule_set(&rfkill_wwan,
|
|
RFKILL_STATE_UNBLOCKED);
|
|
rfkill_schedule_set(&rfkill_wimax,
|
|
RFKILL_STATE_UNBLOCKED);
|
|
rfkill_schedule_set(&rfkill_uwb,
|
|
RFKILL_STATE_UNBLOCKED);
|
|
rfkill_schedule_set(&rfkill_bt,
|
|
RFKILL_STATE_UNBLOCKED);
|
|
rfkill_schedule_set(&rfkill_wlan,
|
|
RFKILL_STATE_UNBLOCKED);
|
|
} else
|
|
rfkill_schedule_epo();
|
|
}
|
|
|
|
static void rfkill_event(struct input_handle *handle, unsigned int type,
|
|
unsigned int code, int data)
|
|
{
|
|
if (type == EV_KEY && data == 1) {
|
|
switch (code) {
|
|
case KEY_WLAN:
|
|
rfkill_schedule_toggle(&rfkill_wlan);
|
|
break;
|
|
case KEY_BLUETOOTH:
|
|
rfkill_schedule_toggle(&rfkill_bt);
|
|
break;
|
|
case KEY_UWB:
|
|
rfkill_schedule_toggle(&rfkill_uwb);
|
|
break;
|
|
case KEY_WIMAX:
|
|
rfkill_schedule_toggle(&rfkill_wimax);
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
} else if (type == EV_SW) {
|
|
switch (code) {
|
|
case SW_RFKILL_ALL:
|
|
rfkill_schedule_evsw_rfkillall(data);
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
static int rfkill_connect(struct input_handler *handler, struct input_dev *dev,
|
|
const struct input_device_id *id)
|
|
{
|
|
struct input_handle *handle;
|
|
int error;
|
|
|
|
handle = kzalloc(sizeof(struct input_handle), GFP_KERNEL);
|
|
if (!handle)
|
|
return -ENOMEM;
|
|
|
|
handle->dev = dev;
|
|
handle->handler = handler;
|
|
handle->name = "rfkill";
|
|
|
|
/* causes rfkill_start() to be called */
|
|
error = input_register_handle(handle);
|
|
if (error)
|
|
goto err_free_handle;
|
|
|
|
error = input_open_device(handle);
|
|
if (error)
|
|
goto err_unregister_handle;
|
|
|
|
return 0;
|
|
|
|
err_unregister_handle:
|
|
input_unregister_handle(handle);
|
|
err_free_handle:
|
|
kfree(handle);
|
|
return error;
|
|
}
|
|
|
|
static void rfkill_start(struct input_handle *handle)
|
|
{
|
|
/* Take event_lock to guard against configuration changes, we
|
|
* should be able to deal with concurrency with rfkill_event()
|
|
* just fine (which event_lock will also avoid). */
|
|
spin_lock_irq(&handle->dev->event_lock);
|
|
|
|
if (test_bit(EV_SW, handle->dev->evbit)) {
|
|
if (test_bit(SW_RFKILL_ALL, handle->dev->swbit))
|
|
rfkill_schedule_evsw_rfkillall(test_bit(SW_RFKILL_ALL,
|
|
handle->dev->sw));
|
|
/* add resync for further EV_SW events here */
|
|
}
|
|
|
|
spin_unlock_irq(&handle->dev->event_lock);
|
|
}
|
|
|
|
static void rfkill_disconnect(struct input_handle *handle)
|
|
{
|
|
input_close_device(handle);
|
|
input_unregister_handle(handle);
|
|
kfree(handle);
|
|
}
|
|
|
|
static const struct input_device_id rfkill_ids[] = {
|
|
{
|
|
.flags = INPUT_DEVICE_ID_MATCH_EVBIT | INPUT_DEVICE_ID_MATCH_KEYBIT,
|
|
.evbit = { BIT_MASK(EV_KEY) },
|
|
.keybit = { [BIT_WORD(KEY_WLAN)] = BIT_MASK(KEY_WLAN) },
|
|
},
|
|
{
|
|
.flags = INPUT_DEVICE_ID_MATCH_EVBIT | INPUT_DEVICE_ID_MATCH_KEYBIT,
|
|
.evbit = { BIT_MASK(EV_KEY) },
|
|
.keybit = { [BIT_WORD(KEY_BLUETOOTH)] = BIT_MASK(KEY_BLUETOOTH) },
|
|
},
|
|
{
|
|
.flags = INPUT_DEVICE_ID_MATCH_EVBIT | INPUT_DEVICE_ID_MATCH_KEYBIT,
|
|
.evbit = { BIT_MASK(EV_KEY) },
|
|
.keybit = { [BIT_WORD(KEY_UWB)] = BIT_MASK(KEY_UWB) },
|
|
},
|
|
{
|
|
.flags = INPUT_DEVICE_ID_MATCH_EVBIT | INPUT_DEVICE_ID_MATCH_KEYBIT,
|
|
.evbit = { BIT_MASK(EV_KEY) },
|
|
.keybit = { [BIT_WORD(KEY_WIMAX)] = BIT_MASK(KEY_WIMAX) },
|
|
},
|
|
{
|
|
.flags = INPUT_DEVICE_ID_MATCH_EVBIT | INPUT_DEVICE_ID_MATCH_SWBIT,
|
|
.evbit = { BIT(EV_SW) },
|
|
.swbit = { [BIT_WORD(SW_RFKILL_ALL)] = BIT_MASK(SW_RFKILL_ALL) },
|
|
},
|
|
{ }
|
|
};
|
|
|
|
static struct input_handler rfkill_handler = {
|
|
.event = rfkill_event,
|
|
.connect = rfkill_connect,
|
|
.disconnect = rfkill_disconnect,
|
|
.start = rfkill_start,
|
|
.name = "rfkill",
|
|
.id_table = rfkill_ids,
|
|
};
|
|
|
|
static int __init rfkill_handler_init(void)
|
|
{
|
|
return input_register_handler(&rfkill_handler);
|
|
}
|
|
|
|
static void __exit rfkill_handler_exit(void)
|
|
{
|
|
input_unregister_handler(&rfkill_handler);
|
|
flush_scheduled_work();
|
|
}
|
|
|
|
module_init(rfkill_handler_init);
|
|
module_exit(rfkill_handler_exit);
|