c1a144d77a
Original port to early 2.6 kernel using TI COFF toolchain. Brought up to date by Mark Salter <msalter@redhat.com> This patch provides the early boot code for C6X architecture. There is a 16 entry vector table which is used to direct reset and interrupt events. The vector table entries contain a small amount of code (maximum of 8 opcodes) which simply branches to the actual event handling code. The head.S code simply clears BSS, setups up a few control registers, and calls machine_init followed by start_kernel. The machine_init code in setup.c does the early flat tree parsing (memory, commandline, etc). At setup_arch time, the code does the usual memory setup and minimally scans the devicetree for any needed information. Signed-off-by: Aurelien Jacquiot <a-jacquiot@ti.com> Signed-off-by: Mark Salter <msalter@redhat.com> Acked-by: Arnd Bergmann <arnd@arndb.de>
499 lines
11 KiB
C
499 lines
11 KiB
C
/*
|
|
* Port on Texas Instruments TMS320C6x architecture
|
|
*
|
|
* Copyright (C) 2004, 2006, 2009, 2010, 2011 Texas Instruments Incorporated
|
|
* Author: Aurelien Jacquiot (aurelien.jacquiot@jaluna.com)
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License version 2 as
|
|
* published by the Free Software Foundation.
|
|
*/
|
|
#include <linux/dma-mapping.h>
|
|
#include <linux/memblock.h>
|
|
#include <linux/seq_file.h>
|
|
#include <linux/bootmem.h>
|
|
#include <linux/clkdev.h>
|
|
#include <linux/initrd.h>
|
|
#include <linux/kernel.h>
|
|
#include <linux/module.h>
|
|
#include <linux/of_fdt.h>
|
|
#include <linux/string.h>
|
|
#include <linux/errno.h>
|
|
#include <linux/cache.h>
|
|
#include <linux/delay.h>
|
|
#include <linux/sched.h>
|
|
#include <linux/clk.h>
|
|
#include <linux/fs.h>
|
|
#include <linux/of.h>
|
|
|
|
|
|
#include <asm/sections.h>
|
|
#include <asm/div64.h>
|
|
#include <asm/setup.h>
|
|
#include <asm/dscr.h>
|
|
#include <asm/clock.h>
|
|
#include <asm/soc.h>
|
|
|
|
static const char *c6x_soc_name;
|
|
|
|
int c6x_num_cores;
|
|
EXPORT_SYMBOL_GPL(c6x_num_cores);
|
|
|
|
unsigned int c6x_silicon_rev;
|
|
EXPORT_SYMBOL_GPL(c6x_silicon_rev);
|
|
|
|
/*
|
|
* Device status register. This holds information
|
|
* about device configuration needed by some drivers.
|
|
*/
|
|
unsigned int c6x_devstat;
|
|
EXPORT_SYMBOL_GPL(c6x_devstat);
|
|
|
|
/*
|
|
* Some SoCs have fuse registers holding a unique MAC
|
|
* address. This is parsed out of the device tree with
|
|
* the resulting MAC being held here.
|
|
*/
|
|
unsigned char c6x_fuse_mac[6];
|
|
|
|
unsigned long memory_start;
|
|
unsigned long memory_end;
|
|
|
|
unsigned long ram_start;
|
|
unsigned long ram_end;
|
|
|
|
/* Uncached memory for DMA consistent use (memdma=) */
|
|
static unsigned long dma_start __initdata;
|
|
static unsigned long dma_size __initdata;
|
|
|
|
char c6x_command_line[COMMAND_LINE_SIZE];
|
|
|
|
#if defined(CONFIG_CMDLINE_BOOL)
|
|
static const char default_command_line[COMMAND_LINE_SIZE] __section(.cmdline) =
|
|
CONFIG_CMDLINE;
|
|
#endif
|
|
|
|
struct cpuinfo_c6x {
|
|
const char *cpu_name;
|
|
const char *cpu_voltage;
|
|
const char *mmu;
|
|
const char *fpu;
|
|
char *cpu_rev;
|
|
unsigned int core_id;
|
|
char __cpu_rev[5];
|
|
};
|
|
|
|
static DEFINE_PER_CPU(struct cpuinfo_c6x, cpu_data);
|
|
|
|
unsigned int ticks_per_ns_scaled;
|
|
EXPORT_SYMBOL(ticks_per_ns_scaled);
|
|
|
|
unsigned int c6x_core_freq;
|
|
|
|
static void __init get_cpuinfo(void)
|
|
{
|
|
unsigned cpu_id, rev_id, csr;
|
|
struct clk *coreclk = clk_get_sys(NULL, "core");
|
|
unsigned long core_khz;
|
|
u64 tmp;
|
|
struct cpuinfo_c6x *p;
|
|
struct device_node *node, *np;
|
|
|
|
p = &per_cpu(cpu_data, smp_processor_id());
|
|
|
|
if (!IS_ERR(coreclk))
|
|
c6x_core_freq = clk_get_rate(coreclk);
|
|
else {
|
|
printk(KERN_WARNING
|
|
"Cannot find core clock frequency. Using 700MHz\n");
|
|
c6x_core_freq = 700000000;
|
|
}
|
|
|
|
core_khz = c6x_core_freq / 1000;
|
|
|
|
tmp = (uint64_t)core_khz << C6X_NDELAY_SCALE;
|
|
do_div(tmp, 1000000);
|
|
ticks_per_ns_scaled = tmp;
|
|
|
|
csr = get_creg(CSR);
|
|
cpu_id = csr >> 24;
|
|
rev_id = (csr >> 16) & 0xff;
|
|
|
|
p->mmu = "none";
|
|
p->fpu = "none";
|
|
p->cpu_voltage = "unknown";
|
|
|
|
switch (cpu_id) {
|
|
case 0:
|
|
p->cpu_name = "C67x";
|
|
p->fpu = "yes";
|
|
break;
|
|
case 2:
|
|
p->cpu_name = "C62x";
|
|
break;
|
|
case 8:
|
|
p->cpu_name = "C64x";
|
|
break;
|
|
case 12:
|
|
p->cpu_name = "C64x";
|
|
break;
|
|
case 16:
|
|
p->cpu_name = "C64x+";
|
|
p->cpu_voltage = "1.2";
|
|
break;
|
|
default:
|
|
p->cpu_name = "unknown";
|
|
break;
|
|
}
|
|
|
|
if (cpu_id < 16) {
|
|
switch (rev_id) {
|
|
case 0x1:
|
|
if (cpu_id > 8) {
|
|
p->cpu_rev = "DM640/DM641/DM642/DM643";
|
|
p->cpu_voltage = "1.2 - 1.4";
|
|
} else {
|
|
p->cpu_rev = "C6201";
|
|
p->cpu_voltage = "2.5";
|
|
}
|
|
break;
|
|
case 0x2:
|
|
p->cpu_rev = "C6201B/C6202/C6211";
|
|
p->cpu_voltage = "1.8";
|
|
break;
|
|
case 0x3:
|
|
p->cpu_rev = "C6202B/C6203/C6204/C6205";
|
|
p->cpu_voltage = "1.5";
|
|
break;
|
|
case 0x201:
|
|
p->cpu_rev = "C6701 revision 0 (early CPU)";
|
|
p->cpu_voltage = "1.8";
|
|
break;
|
|
case 0x202:
|
|
p->cpu_rev = "C6701/C6711/C6712";
|
|
p->cpu_voltage = "1.8";
|
|
break;
|
|
case 0x801:
|
|
p->cpu_rev = "C64x";
|
|
p->cpu_voltage = "1.5";
|
|
break;
|
|
default:
|
|
p->cpu_rev = "unknown";
|
|
}
|
|
} else {
|
|
p->cpu_rev = p->__cpu_rev;
|
|
snprintf(p->__cpu_rev, sizeof(p->__cpu_rev), "0x%x", cpu_id);
|
|
}
|
|
|
|
p->core_id = get_coreid();
|
|
|
|
node = of_find_node_by_name(NULL, "cpus");
|
|
if (node) {
|
|
for_each_child_of_node(node, np)
|
|
if (!strcmp("cpu", np->name))
|
|
++c6x_num_cores;
|
|
of_node_put(node);
|
|
}
|
|
|
|
node = of_find_node_by_name(NULL, "soc");
|
|
if (node) {
|
|
if (of_property_read_string(node, "model", &c6x_soc_name))
|
|
c6x_soc_name = "unknown";
|
|
of_node_put(node);
|
|
} else
|
|
c6x_soc_name = "unknown";
|
|
|
|
printk(KERN_INFO "CPU%d: %s rev %s, %s volts, %uMHz\n",
|
|
p->core_id, p->cpu_name, p->cpu_rev,
|
|
p->cpu_voltage, c6x_core_freq / 1000000);
|
|
}
|
|
|
|
/*
|
|
* Early parsing of the command line
|
|
*/
|
|
static u32 mem_size __initdata;
|
|
|
|
/* "mem=" parsing. */
|
|
static int __init early_mem(char *p)
|
|
{
|
|
if (!p)
|
|
return -EINVAL;
|
|
|
|
mem_size = memparse(p, &p);
|
|
/* don't remove all of memory when handling "mem={invalid}" */
|
|
if (mem_size == 0)
|
|
return -EINVAL;
|
|
|
|
return 0;
|
|
}
|
|
early_param("mem", early_mem);
|
|
|
|
/* "memdma=<size>[@<address>]" parsing. */
|
|
static int __init early_memdma(char *p)
|
|
{
|
|
if (!p)
|
|
return -EINVAL;
|
|
|
|
dma_size = memparse(p, &p);
|
|
if (*p == '@')
|
|
dma_start = memparse(p, &p);
|
|
|
|
return 0;
|
|
}
|
|
early_param("memdma", early_memdma);
|
|
|
|
int __init c6x_add_memory(phys_addr_t start, unsigned long size)
|
|
{
|
|
static int ram_found __initdata;
|
|
|
|
/* We only handle one bank (the one with PAGE_OFFSET) for now */
|
|
if (ram_found)
|
|
return -EINVAL;
|
|
|
|
if (start > PAGE_OFFSET || PAGE_OFFSET >= (start + size))
|
|
return 0;
|
|
|
|
ram_start = start;
|
|
ram_end = start + size;
|
|
|
|
ram_found = 1;
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Do early machine setup and device tree parsing. This is called very
|
|
* early on the boot process.
|
|
*/
|
|
notrace void __init machine_init(unsigned long dt_ptr)
|
|
{
|
|
struct boot_param_header *dtb = __va(dt_ptr);
|
|
struct boot_param_header *fdt = (struct boot_param_header *)_fdt_start;
|
|
|
|
/* interrupts must be masked */
|
|
set_creg(IER, 2);
|
|
|
|
/*
|
|
* Set the Interrupt Service Table (IST) to the beginning of the
|
|
* vector table.
|
|
*/
|
|
set_ist(_vectors_start);
|
|
|
|
lockdep_init();
|
|
|
|
/*
|
|
* dtb is passed in from bootloader.
|
|
* fdt is linked in blob.
|
|
*/
|
|
if (dtb && dtb != fdt)
|
|
fdt = dtb;
|
|
|
|
/* Do some early initialization based on the flat device tree */
|
|
early_init_devtree(fdt);
|
|
|
|
/* parse_early_param needs a boot_command_line */
|
|
strlcpy(boot_command_line, c6x_command_line, COMMAND_LINE_SIZE);
|
|
parse_early_param();
|
|
}
|
|
|
|
void __init setup_arch(char **cmdline_p)
|
|
{
|
|
int bootmap_size;
|
|
struct memblock_region *reg;
|
|
|
|
printk(KERN_INFO "Initializing kernel\n");
|
|
|
|
/* Initialize command line */
|
|
*cmdline_p = c6x_command_line;
|
|
|
|
memblock_init();
|
|
|
|
memory_end = ram_end;
|
|
memory_end &= ~(PAGE_SIZE - 1);
|
|
|
|
if (mem_size && (PAGE_OFFSET + PAGE_ALIGN(mem_size)) < memory_end)
|
|
memory_end = PAGE_OFFSET + PAGE_ALIGN(mem_size);
|
|
|
|
/* add block that this kernel can use */
|
|
memblock_add(PAGE_OFFSET, memory_end - PAGE_OFFSET);
|
|
|
|
/* reserve kernel text/data/bss */
|
|
memblock_reserve(PAGE_OFFSET,
|
|
PAGE_ALIGN((unsigned long)&_end - PAGE_OFFSET));
|
|
|
|
if (dma_size) {
|
|
/* align to cacheability granularity */
|
|
dma_size = CACHE_REGION_END(dma_size);
|
|
|
|
if (!dma_start)
|
|
dma_start = memory_end - dma_size;
|
|
|
|
/* align to cacheability granularity */
|
|
dma_start = CACHE_REGION_START(dma_start);
|
|
|
|
/* reserve DMA memory taken from kernel memory */
|
|
if (memblock_is_region_memory(dma_start, dma_size))
|
|
memblock_reserve(dma_start, dma_size);
|
|
}
|
|
|
|
memory_start = PAGE_ALIGN((unsigned int) &_end);
|
|
|
|
printk(KERN_INFO "Memory Start=%08lx, Memory End=%08lx\n",
|
|
memory_start, memory_end);
|
|
|
|
#ifdef CONFIG_BLK_DEV_INITRD
|
|
/*
|
|
* Reserve initrd memory if in kernel memory.
|
|
*/
|
|
if (initrd_start < initrd_end)
|
|
if (memblock_is_region_memory(initrd_start,
|
|
initrd_end - initrd_start))
|
|
memblock_reserve(initrd_start,
|
|
initrd_end - initrd_start);
|
|
#endif
|
|
|
|
init_mm.start_code = (unsigned long) &_stext;
|
|
init_mm.end_code = (unsigned long) &_etext;
|
|
init_mm.end_data = memory_start;
|
|
init_mm.brk = memory_start;
|
|
|
|
/*
|
|
* Give all the memory to the bootmap allocator, tell it to put the
|
|
* boot mem_map at the start of memory
|
|
*/
|
|
bootmap_size = init_bootmem_node(NODE_DATA(0),
|
|
memory_start >> PAGE_SHIFT,
|
|
PAGE_OFFSET >> PAGE_SHIFT,
|
|
memory_end >> PAGE_SHIFT);
|
|
memblock_reserve(memory_start, bootmap_size);
|
|
|
|
memblock_analyze();
|
|
unflatten_device_tree();
|
|
|
|
c6x_cache_init();
|
|
|
|
/* Set the whole external memory as non-cacheable */
|
|
disable_caching(ram_start, ram_end - 1);
|
|
|
|
/* Set caching of external RAM used by Linux */
|
|
for_each_memblock(memory, reg)
|
|
enable_caching(CACHE_REGION_START(reg->base),
|
|
CACHE_REGION_START(reg->base + reg->size - 1));
|
|
|
|
#ifdef CONFIG_BLK_DEV_INITRD
|
|
/*
|
|
* Enable caching for initrd which falls outside kernel memory.
|
|
*/
|
|
if (initrd_start < initrd_end) {
|
|
if (!memblock_is_region_memory(initrd_start,
|
|
initrd_end - initrd_start))
|
|
enable_caching(CACHE_REGION_START(initrd_start),
|
|
CACHE_REGION_START(initrd_end - 1));
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
* Disable caching for dma coherent memory taken from kernel memory.
|
|
*/
|
|
if (dma_size && memblock_is_region_memory(dma_start, dma_size))
|
|
disable_caching(dma_start,
|
|
CACHE_REGION_START(dma_start + dma_size - 1));
|
|
|
|
/* Initialize the coherent memory allocator */
|
|
coherent_mem_init(dma_start, dma_size);
|
|
|
|
/*
|
|
* Free all memory as a starting point.
|
|
*/
|
|
free_bootmem(PAGE_OFFSET, memory_end - PAGE_OFFSET);
|
|
|
|
/*
|
|
* Then reserve memory which is already being used.
|
|
*/
|
|
for_each_memblock(reserved, reg) {
|
|
pr_debug("reserved - 0x%08x-0x%08x\n",
|
|
(u32) reg->base, (u32) reg->size);
|
|
reserve_bootmem(reg->base, reg->size, BOOTMEM_DEFAULT);
|
|
}
|
|
|
|
max_low_pfn = PFN_DOWN(memory_end);
|
|
min_low_pfn = PFN_UP(memory_start);
|
|
max_mapnr = max_low_pfn - min_low_pfn;
|
|
|
|
/* Get kmalloc into gear */
|
|
paging_init();
|
|
|
|
/*
|
|
* Probe for Device State Configuration Registers.
|
|
* We have to do this early in case timer needs to be enabled
|
|
* through DSCR.
|
|
*/
|
|
dscr_probe();
|
|
|
|
/* We do this early for timer and core clock frequency */
|
|
c64x_setup_clocks();
|
|
|
|
/* Get CPU info */
|
|
get_cpuinfo();
|
|
|
|
#if defined(CONFIG_VT) && defined(CONFIG_DUMMY_CONSOLE)
|
|
conswitchp = &dummy_con;
|
|
#endif
|
|
}
|
|
|
|
#define cpu_to_ptr(n) ((void *)((long)(n)+1))
|
|
#define ptr_to_cpu(p) ((long)(p) - 1)
|
|
|
|
static int show_cpuinfo(struct seq_file *m, void *v)
|
|
{
|
|
int n = ptr_to_cpu(v);
|
|
struct cpuinfo_c6x *p = &per_cpu(cpu_data, n);
|
|
|
|
if (n == 0) {
|
|
seq_printf(m,
|
|
"soc\t\t: %s\n"
|
|
"soc revision\t: 0x%x\n"
|
|
"soc cores\t: %d\n",
|
|
c6x_soc_name, c6x_silicon_rev, c6x_num_cores);
|
|
}
|
|
|
|
seq_printf(m,
|
|
"\n"
|
|
"processor\t: %d\n"
|
|
"cpu\t\t: %s\n"
|
|
"core revision\t: %s\n"
|
|
"core voltage\t: %s\n"
|
|
"core id\t\t: %d\n"
|
|
"mmu\t\t: %s\n"
|
|
"fpu\t\t: %s\n"
|
|
"cpu MHz\t\t: %u\n"
|
|
"bogomips\t: %lu.%02lu\n\n",
|
|
n,
|
|
p->cpu_name, p->cpu_rev, p->cpu_voltage,
|
|
p->core_id, p->mmu, p->fpu,
|
|
(c6x_core_freq + 500000) / 1000000,
|
|
(loops_per_jiffy/(500000/HZ)),
|
|
(loops_per_jiffy/(5000/HZ))%100);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void *c_start(struct seq_file *m, loff_t *pos)
|
|
{
|
|
return *pos < nr_cpu_ids ? cpu_to_ptr(*pos) : NULL;
|
|
}
|
|
static void *c_next(struct seq_file *m, void *v, loff_t *pos)
|
|
{
|
|
++*pos;
|
|
return NULL;
|
|
}
|
|
static void c_stop(struct seq_file *m, void *v)
|
|
{
|
|
}
|
|
|
|
const struct seq_operations cpuinfo_op = {
|
|
c_start,
|
|
c_stop,
|
|
c_next,
|
|
show_cpuinfo
|
|
};
|