9b9375b5b7
Document the possible state transitions for a BBR flow, and also add a prose summary of the state machine, covering the life of a typical BBR flow. Signed-off-by: Neal Cardwell <ncardwell@google.com> Signed-off-by: Yuchung Cheng <ycheng@google.com> Signed-off-by: Eric Dumazet <edumazet@google.com> Signed-off-by: Soheil Hassas Yeganeh <soheil@google.com> Signed-off-by: David S. Miller <davem@davemloft.net>
927 lines
33 KiB
C
927 lines
33 KiB
C
/* Bottleneck Bandwidth and RTT (BBR) congestion control
|
|
*
|
|
* BBR congestion control computes the sending rate based on the delivery
|
|
* rate (throughput) estimated from ACKs. In a nutshell:
|
|
*
|
|
* On each ACK, update our model of the network path:
|
|
* bottleneck_bandwidth = windowed_max(delivered / elapsed, 10 round trips)
|
|
* min_rtt = windowed_min(rtt, 10 seconds)
|
|
* pacing_rate = pacing_gain * bottleneck_bandwidth
|
|
* cwnd = max(cwnd_gain * bottleneck_bandwidth * min_rtt, 4)
|
|
*
|
|
* The core algorithm does not react directly to packet losses or delays,
|
|
* although BBR may adjust the size of next send per ACK when loss is
|
|
* observed, or adjust the sending rate if it estimates there is a
|
|
* traffic policer, in order to keep the drop rate reasonable.
|
|
*
|
|
* Here is a state transition diagram for BBR:
|
|
*
|
|
* |
|
|
* V
|
|
* +---> STARTUP ----+
|
|
* | | |
|
|
* | V |
|
|
* | DRAIN ----+
|
|
* | | |
|
|
* | V |
|
|
* +---> PROBE_BW ----+
|
|
* | ^ | |
|
|
* | | | |
|
|
* | +----+ |
|
|
* | |
|
|
* +---- PROBE_RTT <--+
|
|
*
|
|
* A BBR flow starts in STARTUP, and ramps up its sending rate quickly.
|
|
* When it estimates the pipe is full, it enters DRAIN to drain the queue.
|
|
* In steady state a BBR flow only uses PROBE_BW and PROBE_RTT.
|
|
* A long-lived BBR flow spends the vast majority of its time remaining
|
|
* (repeatedly) in PROBE_BW, fully probing and utilizing the pipe's bandwidth
|
|
* in a fair manner, with a small, bounded queue. *If* a flow has been
|
|
* continuously sending for the entire min_rtt window, and hasn't seen an RTT
|
|
* sample that matches or decreases its min_rtt estimate for 10 seconds, then
|
|
* it briefly enters PROBE_RTT to cut inflight to a minimum value to re-probe
|
|
* the path's two-way propagation delay (min_rtt). When exiting PROBE_RTT, if
|
|
* we estimated that we reached the full bw of the pipe then we enter PROBE_BW;
|
|
* otherwise we enter STARTUP to try to fill the pipe.
|
|
*
|
|
* BBR is described in detail in:
|
|
* "BBR: Congestion-Based Congestion Control",
|
|
* Neal Cardwell, Yuchung Cheng, C. Stephen Gunn, Soheil Hassas Yeganeh,
|
|
* Van Jacobson. ACM Queue, Vol. 14 No. 5, September-October 2016.
|
|
*
|
|
* There is a public e-mail list for discussing BBR development and testing:
|
|
* https://groups.google.com/forum/#!forum/bbr-dev
|
|
*
|
|
* NOTE: BBR *must* be used with the fq qdisc ("man tc-fq") with pacing enabled,
|
|
* since pacing is integral to the BBR design and implementation.
|
|
* BBR without pacing would not function properly, and may incur unnecessary
|
|
* high packet loss rates.
|
|
*/
|
|
#include <linux/module.h>
|
|
#include <net/tcp.h>
|
|
#include <linux/inet_diag.h>
|
|
#include <linux/inet.h>
|
|
#include <linux/random.h>
|
|
#include <linux/win_minmax.h>
|
|
|
|
/* Scale factor for rate in pkt/uSec unit to avoid truncation in bandwidth
|
|
* estimation. The rate unit ~= (1500 bytes / 1 usec / 2^24) ~= 715 bps.
|
|
* This handles bandwidths from 0.06pps (715bps) to 256Mpps (3Tbps) in a u32.
|
|
* Since the minimum window is >=4 packets, the lower bound isn't
|
|
* an issue. The upper bound isn't an issue with existing technologies.
|
|
*/
|
|
#define BW_SCALE 24
|
|
#define BW_UNIT (1 << BW_SCALE)
|
|
|
|
#define BBR_SCALE 8 /* scaling factor for fractions in BBR (e.g. gains) */
|
|
#define BBR_UNIT (1 << BBR_SCALE)
|
|
|
|
/* BBR has the following modes for deciding how fast to send: */
|
|
enum bbr_mode {
|
|
BBR_STARTUP, /* ramp up sending rate rapidly to fill pipe */
|
|
BBR_DRAIN, /* drain any queue created during startup */
|
|
BBR_PROBE_BW, /* discover, share bw: pace around estimated bw */
|
|
BBR_PROBE_RTT, /* cut inflight to min to probe min_rtt */
|
|
};
|
|
|
|
/* BBR congestion control block */
|
|
struct bbr {
|
|
u32 min_rtt_us; /* min RTT in min_rtt_win_sec window */
|
|
u32 min_rtt_stamp; /* timestamp of min_rtt_us */
|
|
u32 probe_rtt_done_stamp; /* end time for BBR_PROBE_RTT mode */
|
|
struct minmax bw; /* Max recent delivery rate in pkts/uS << 24 */
|
|
u32 rtt_cnt; /* count of packet-timed rounds elapsed */
|
|
u32 next_rtt_delivered; /* scb->tx.delivered at end of round */
|
|
struct skb_mstamp cycle_mstamp; /* time of this cycle phase start */
|
|
u32 mode:3, /* current bbr_mode in state machine */
|
|
prev_ca_state:3, /* CA state on previous ACK */
|
|
packet_conservation:1, /* use packet conservation? */
|
|
restore_cwnd:1, /* decided to revert cwnd to old value */
|
|
round_start:1, /* start of packet-timed tx->ack round? */
|
|
tso_segs_goal:7, /* segments we want in each skb we send */
|
|
idle_restart:1, /* restarting after idle? */
|
|
probe_rtt_round_done:1, /* a BBR_PROBE_RTT round at 4 pkts? */
|
|
unused:5,
|
|
lt_is_sampling:1, /* taking long-term ("LT") samples now? */
|
|
lt_rtt_cnt:7, /* round trips in long-term interval */
|
|
lt_use_bw:1; /* use lt_bw as our bw estimate? */
|
|
u32 lt_bw; /* LT est delivery rate in pkts/uS << 24 */
|
|
u32 lt_last_delivered; /* LT intvl start: tp->delivered */
|
|
u32 lt_last_stamp; /* LT intvl start: tp->delivered_mstamp */
|
|
u32 lt_last_lost; /* LT intvl start: tp->lost */
|
|
u32 pacing_gain:10, /* current gain for setting pacing rate */
|
|
cwnd_gain:10, /* current gain for setting cwnd */
|
|
full_bw_cnt:3, /* number of rounds without large bw gains */
|
|
cycle_idx:3, /* current index in pacing_gain cycle array */
|
|
unused_b:6;
|
|
u32 prior_cwnd; /* prior cwnd upon entering loss recovery */
|
|
u32 full_bw; /* recent bw, to estimate if pipe is full */
|
|
};
|
|
|
|
#define CYCLE_LEN 8 /* number of phases in a pacing gain cycle */
|
|
|
|
/* Window length of bw filter (in rounds): */
|
|
static const int bbr_bw_rtts = CYCLE_LEN + 2;
|
|
/* Window length of min_rtt filter (in sec): */
|
|
static const u32 bbr_min_rtt_win_sec = 10;
|
|
/* Minimum time (in ms) spent at bbr_cwnd_min_target in BBR_PROBE_RTT mode: */
|
|
static const u32 bbr_probe_rtt_mode_ms = 200;
|
|
/* Skip TSO below the following bandwidth (bits/sec): */
|
|
static const int bbr_min_tso_rate = 1200000;
|
|
|
|
/* We use a high_gain value of 2/ln(2) because it's the smallest pacing gain
|
|
* that will allow a smoothly increasing pacing rate that will double each RTT
|
|
* and send the same number of packets per RTT that an un-paced, slow-starting
|
|
* Reno or CUBIC flow would:
|
|
*/
|
|
static const int bbr_high_gain = BBR_UNIT * 2885 / 1000 + 1;
|
|
/* The pacing gain of 1/high_gain in BBR_DRAIN is calculated to typically drain
|
|
* the queue created in BBR_STARTUP in a single round:
|
|
*/
|
|
static const int bbr_drain_gain = BBR_UNIT * 1000 / 2885;
|
|
/* The gain for deriving steady-state cwnd tolerates delayed/stretched ACKs: */
|
|
static const int bbr_cwnd_gain = BBR_UNIT * 2;
|
|
/* The pacing_gain values for the PROBE_BW gain cycle, to discover/share bw: */
|
|
static const int bbr_pacing_gain[] = {
|
|
BBR_UNIT * 5 / 4, /* probe for more available bw */
|
|
BBR_UNIT * 3 / 4, /* drain queue and/or yield bw to other flows */
|
|
BBR_UNIT, BBR_UNIT, BBR_UNIT, /* cruise at 1.0*bw to utilize pipe, */
|
|
BBR_UNIT, BBR_UNIT, BBR_UNIT /* without creating excess queue... */
|
|
};
|
|
/* Randomize the starting gain cycling phase over N phases: */
|
|
static const u32 bbr_cycle_rand = 7;
|
|
|
|
/* Try to keep at least this many packets in flight, if things go smoothly. For
|
|
* smooth functioning, a sliding window protocol ACKing every other packet
|
|
* needs at least 4 packets in flight:
|
|
*/
|
|
static const u32 bbr_cwnd_min_target = 4;
|
|
|
|
/* To estimate if BBR_STARTUP mode (i.e. high_gain) has filled pipe... */
|
|
/* If bw has increased significantly (1.25x), there may be more bw available: */
|
|
static const u32 bbr_full_bw_thresh = BBR_UNIT * 5 / 4;
|
|
/* But after 3 rounds w/o significant bw growth, estimate pipe is full: */
|
|
static const u32 bbr_full_bw_cnt = 3;
|
|
|
|
/* "long-term" ("LT") bandwidth estimator parameters... */
|
|
/* The minimum number of rounds in an LT bw sampling interval: */
|
|
static const u32 bbr_lt_intvl_min_rtts = 4;
|
|
/* If lost/delivered ratio > 20%, interval is "lossy" and we may be policed: */
|
|
static const u32 bbr_lt_loss_thresh = 50;
|
|
/* If 2 intervals have a bw ratio <= 1/8, their bw is "consistent": */
|
|
static const u32 bbr_lt_bw_ratio = BBR_UNIT / 8;
|
|
/* If 2 intervals have a bw diff <= 4 Kbit/sec their bw is "consistent": */
|
|
static const u32 bbr_lt_bw_diff = 4000 / 8;
|
|
/* If we estimate we're policed, use lt_bw for this many round trips: */
|
|
static const u32 bbr_lt_bw_max_rtts = 48;
|
|
|
|
/* Do we estimate that STARTUP filled the pipe? */
|
|
static bool bbr_full_bw_reached(const struct sock *sk)
|
|
{
|
|
const struct bbr *bbr = inet_csk_ca(sk);
|
|
|
|
return bbr->full_bw_cnt >= bbr_full_bw_cnt;
|
|
}
|
|
|
|
/* Return the windowed max recent bandwidth sample, in pkts/uS << BW_SCALE. */
|
|
static u32 bbr_max_bw(const struct sock *sk)
|
|
{
|
|
struct bbr *bbr = inet_csk_ca(sk);
|
|
|
|
return minmax_get(&bbr->bw);
|
|
}
|
|
|
|
/* Return the estimated bandwidth of the path, in pkts/uS << BW_SCALE. */
|
|
static u32 bbr_bw(const struct sock *sk)
|
|
{
|
|
struct bbr *bbr = inet_csk_ca(sk);
|
|
|
|
return bbr->lt_use_bw ? bbr->lt_bw : bbr_max_bw(sk);
|
|
}
|
|
|
|
/* Return rate in bytes per second, optionally with a gain.
|
|
* The order here is chosen carefully to avoid overflow of u64. This should
|
|
* work for input rates of up to 2.9Tbit/sec and gain of 2.89x.
|
|
*/
|
|
static u64 bbr_rate_bytes_per_sec(struct sock *sk, u64 rate, int gain)
|
|
{
|
|
rate *= tcp_mss_to_mtu(sk, tcp_sk(sk)->mss_cache);
|
|
rate *= gain;
|
|
rate >>= BBR_SCALE;
|
|
rate *= USEC_PER_SEC;
|
|
return rate >> BW_SCALE;
|
|
}
|
|
|
|
/* Pace using current bw estimate and a gain factor. In order to help drive the
|
|
* network toward lower queues while maintaining high utilization and low
|
|
* latency, the average pacing rate aims to be slightly (~1%) lower than the
|
|
* estimated bandwidth. This is an important aspect of the design. In this
|
|
* implementation this slightly lower pacing rate is achieved implicitly by not
|
|
* including link-layer headers in the packet size used for the pacing rate.
|
|
*/
|
|
static void bbr_set_pacing_rate(struct sock *sk, u32 bw, int gain)
|
|
{
|
|
struct bbr *bbr = inet_csk_ca(sk);
|
|
u64 rate = bw;
|
|
|
|
rate = bbr_rate_bytes_per_sec(sk, rate, gain);
|
|
rate = min_t(u64, rate, sk->sk_max_pacing_rate);
|
|
if (bbr->mode != BBR_STARTUP || rate > sk->sk_pacing_rate)
|
|
sk->sk_pacing_rate = rate;
|
|
}
|
|
|
|
/* Return count of segments we want in the skbs we send, or 0 for default. */
|
|
static u32 bbr_tso_segs_goal(struct sock *sk)
|
|
{
|
|
struct bbr *bbr = inet_csk_ca(sk);
|
|
|
|
return bbr->tso_segs_goal;
|
|
}
|
|
|
|
static void bbr_set_tso_segs_goal(struct sock *sk)
|
|
{
|
|
struct tcp_sock *tp = tcp_sk(sk);
|
|
struct bbr *bbr = inet_csk_ca(sk);
|
|
u32 min_segs;
|
|
|
|
min_segs = sk->sk_pacing_rate < (bbr_min_tso_rate >> 3) ? 1 : 2;
|
|
bbr->tso_segs_goal = min(tcp_tso_autosize(sk, tp->mss_cache, min_segs),
|
|
0x7FU);
|
|
}
|
|
|
|
/* Save "last known good" cwnd so we can restore it after losses or PROBE_RTT */
|
|
static void bbr_save_cwnd(struct sock *sk)
|
|
{
|
|
struct tcp_sock *tp = tcp_sk(sk);
|
|
struct bbr *bbr = inet_csk_ca(sk);
|
|
|
|
if (bbr->prev_ca_state < TCP_CA_Recovery && bbr->mode != BBR_PROBE_RTT)
|
|
bbr->prior_cwnd = tp->snd_cwnd; /* this cwnd is good enough */
|
|
else /* loss recovery or BBR_PROBE_RTT have temporarily cut cwnd */
|
|
bbr->prior_cwnd = max(bbr->prior_cwnd, tp->snd_cwnd);
|
|
}
|
|
|
|
static void bbr_cwnd_event(struct sock *sk, enum tcp_ca_event event)
|
|
{
|
|
struct tcp_sock *tp = tcp_sk(sk);
|
|
struct bbr *bbr = inet_csk_ca(sk);
|
|
|
|
if (event == CA_EVENT_TX_START && tp->app_limited) {
|
|
bbr->idle_restart = 1;
|
|
/* Avoid pointless buffer overflows: pace at est. bw if we don't
|
|
* need more speed (we're restarting from idle and app-limited).
|
|
*/
|
|
if (bbr->mode == BBR_PROBE_BW)
|
|
bbr_set_pacing_rate(sk, bbr_bw(sk), BBR_UNIT);
|
|
}
|
|
}
|
|
|
|
/* Find target cwnd. Right-size the cwnd based on min RTT and the
|
|
* estimated bottleneck bandwidth:
|
|
*
|
|
* cwnd = bw * min_rtt * gain = BDP * gain
|
|
*
|
|
* The key factor, gain, controls the amount of queue. While a small gain
|
|
* builds a smaller queue, it becomes more vulnerable to noise in RTT
|
|
* measurements (e.g., delayed ACKs or other ACK compression effects). This
|
|
* noise may cause BBR to under-estimate the rate.
|
|
*
|
|
* To achieve full performance in high-speed paths, we budget enough cwnd to
|
|
* fit full-sized skbs in-flight on both end hosts to fully utilize the path:
|
|
* - one skb in sending host Qdisc,
|
|
* - one skb in sending host TSO/GSO engine
|
|
* - one skb being received by receiver host LRO/GRO/delayed-ACK engine
|
|
* Don't worry, at low rates (bbr_min_tso_rate) this won't bloat cwnd because
|
|
* in such cases tso_segs_goal is 1. The minimum cwnd is 4 packets,
|
|
* which allows 2 outstanding 2-packet sequences, to try to keep pipe
|
|
* full even with ACK-every-other-packet delayed ACKs.
|
|
*/
|
|
static u32 bbr_target_cwnd(struct sock *sk, u32 bw, int gain)
|
|
{
|
|
struct bbr *bbr = inet_csk_ca(sk);
|
|
u32 cwnd;
|
|
u64 w;
|
|
|
|
/* If we've never had a valid RTT sample, cap cwnd at the initial
|
|
* default. This should only happen when the connection is not using TCP
|
|
* timestamps and has retransmitted all of the SYN/SYNACK/data packets
|
|
* ACKed so far. In this case, an RTO can cut cwnd to 1, in which
|
|
* case we need to slow-start up toward something safe: TCP_INIT_CWND.
|
|
*/
|
|
if (unlikely(bbr->min_rtt_us == ~0U)) /* no valid RTT samples yet? */
|
|
return TCP_INIT_CWND; /* be safe: cap at default initial cwnd*/
|
|
|
|
w = (u64)bw * bbr->min_rtt_us;
|
|
|
|
/* Apply a gain to the given value, then remove the BW_SCALE shift. */
|
|
cwnd = (((w * gain) >> BBR_SCALE) + BW_UNIT - 1) / BW_UNIT;
|
|
|
|
/* Allow enough full-sized skbs in flight to utilize end systems. */
|
|
cwnd += 3 * bbr->tso_segs_goal;
|
|
|
|
/* Reduce delayed ACKs by rounding up cwnd to the next even number. */
|
|
cwnd = (cwnd + 1) & ~1U;
|
|
|
|
return cwnd;
|
|
}
|
|
|
|
/* An optimization in BBR to reduce losses: On the first round of recovery, we
|
|
* follow the packet conservation principle: send P packets per P packets acked.
|
|
* After that, we slow-start and send at most 2*P packets per P packets acked.
|
|
* After recovery finishes, or upon undo, we restore the cwnd we had when
|
|
* recovery started (capped by the target cwnd based on estimated BDP).
|
|
*
|
|
* TODO(ycheng/ncardwell): implement a rate-based approach.
|
|
*/
|
|
static bool bbr_set_cwnd_to_recover_or_restore(
|
|
struct sock *sk, const struct rate_sample *rs, u32 acked, u32 *new_cwnd)
|
|
{
|
|
struct tcp_sock *tp = tcp_sk(sk);
|
|
struct bbr *bbr = inet_csk_ca(sk);
|
|
u8 prev_state = bbr->prev_ca_state, state = inet_csk(sk)->icsk_ca_state;
|
|
u32 cwnd = tp->snd_cwnd;
|
|
|
|
/* An ACK for P pkts should release at most 2*P packets. We do this
|
|
* in two steps. First, here we deduct the number of lost packets.
|
|
* Then, in bbr_set_cwnd() we slow start up toward the target cwnd.
|
|
*/
|
|
if (rs->losses > 0)
|
|
cwnd = max_t(s32, cwnd - rs->losses, 1);
|
|
|
|
if (state == TCP_CA_Recovery && prev_state != TCP_CA_Recovery) {
|
|
/* Starting 1st round of Recovery, so do packet conservation. */
|
|
bbr->packet_conservation = 1;
|
|
bbr->next_rtt_delivered = tp->delivered; /* start round now */
|
|
/* Cut unused cwnd from app behavior, TSQ, or TSO deferral: */
|
|
cwnd = tcp_packets_in_flight(tp) + acked;
|
|
} else if (prev_state >= TCP_CA_Recovery && state < TCP_CA_Recovery) {
|
|
/* Exiting loss recovery; restore cwnd saved before recovery. */
|
|
bbr->restore_cwnd = 1;
|
|
bbr->packet_conservation = 0;
|
|
}
|
|
bbr->prev_ca_state = state;
|
|
|
|
if (bbr->restore_cwnd) {
|
|
/* Restore cwnd after exiting loss recovery or PROBE_RTT. */
|
|
cwnd = max(cwnd, bbr->prior_cwnd);
|
|
bbr->restore_cwnd = 0;
|
|
}
|
|
|
|
if (bbr->packet_conservation) {
|
|
*new_cwnd = max(cwnd, tcp_packets_in_flight(tp) + acked);
|
|
return true; /* yes, using packet conservation */
|
|
}
|
|
*new_cwnd = cwnd;
|
|
return false;
|
|
}
|
|
|
|
/* Slow-start up toward target cwnd (if bw estimate is growing, or packet loss
|
|
* has drawn us down below target), or snap down to target if we're above it.
|
|
*/
|
|
static void bbr_set_cwnd(struct sock *sk, const struct rate_sample *rs,
|
|
u32 acked, u32 bw, int gain)
|
|
{
|
|
struct tcp_sock *tp = tcp_sk(sk);
|
|
struct bbr *bbr = inet_csk_ca(sk);
|
|
u32 cwnd = 0, target_cwnd = 0;
|
|
|
|
if (!acked)
|
|
return;
|
|
|
|
if (bbr_set_cwnd_to_recover_or_restore(sk, rs, acked, &cwnd))
|
|
goto done;
|
|
|
|
/* If we're below target cwnd, slow start cwnd toward target cwnd. */
|
|
target_cwnd = bbr_target_cwnd(sk, bw, gain);
|
|
if (bbr_full_bw_reached(sk)) /* only cut cwnd if we filled the pipe */
|
|
cwnd = min(cwnd + acked, target_cwnd);
|
|
else if (cwnd < target_cwnd || tp->delivered < TCP_INIT_CWND)
|
|
cwnd = cwnd + acked;
|
|
cwnd = max(cwnd, bbr_cwnd_min_target);
|
|
|
|
done:
|
|
tp->snd_cwnd = min(cwnd, tp->snd_cwnd_clamp); /* apply global cap */
|
|
if (bbr->mode == BBR_PROBE_RTT) /* drain queue, refresh min_rtt */
|
|
tp->snd_cwnd = min(tp->snd_cwnd, bbr_cwnd_min_target);
|
|
}
|
|
|
|
/* End cycle phase if it's time and/or we hit the phase's in-flight target. */
|
|
static bool bbr_is_next_cycle_phase(struct sock *sk,
|
|
const struct rate_sample *rs)
|
|
{
|
|
struct tcp_sock *tp = tcp_sk(sk);
|
|
struct bbr *bbr = inet_csk_ca(sk);
|
|
bool is_full_length =
|
|
skb_mstamp_us_delta(&tp->delivered_mstamp, &bbr->cycle_mstamp) >
|
|
bbr->min_rtt_us;
|
|
u32 inflight, bw;
|
|
|
|
/* The pacing_gain of 1.0 paces at the estimated bw to try to fully
|
|
* use the pipe without increasing the queue.
|
|
*/
|
|
if (bbr->pacing_gain == BBR_UNIT)
|
|
return is_full_length; /* just use wall clock time */
|
|
|
|
inflight = rs->prior_in_flight; /* what was in-flight before ACK? */
|
|
bw = bbr_max_bw(sk);
|
|
|
|
/* A pacing_gain > 1.0 probes for bw by trying to raise inflight to at
|
|
* least pacing_gain*BDP; this may take more than min_rtt if min_rtt is
|
|
* small (e.g. on a LAN). We do not persist if packets are lost, since
|
|
* a path with small buffers may not hold that much.
|
|
*/
|
|
if (bbr->pacing_gain > BBR_UNIT)
|
|
return is_full_length &&
|
|
(rs->losses || /* perhaps pacing_gain*BDP won't fit */
|
|
inflight >= bbr_target_cwnd(sk, bw, bbr->pacing_gain));
|
|
|
|
/* A pacing_gain < 1.0 tries to drain extra queue we added if bw
|
|
* probing didn't find more bw. If inflight falls to match BDP then we
|
|
* estimate queue is drained; persisting would underutilize the pipe.
|
|
*/
|
|
return is_full_length ||
|
|
inflight <= bbr_target_cwnd(sk, bw, BBR_UNIT);
|
|
}
|
|
|
|
static void bbr_advance_cycle_phase(struct sock *sk)
|
|
{
|
|
struct tcp_sock *tp = tcp_sk(sk);
|
|
struct bbr *bbr = inet_csk_ca(sk);
|
|
|
|
bbr->cycle_idx = (bbr->cycle_idx + 1) & (CYCLE_LEN - 1);
|
|
bbr->cycle_mstamp = tp->delivered_mstamp;
|
|
bbr->pacing_gain = bbr_pacing_gain[bbr->cycle_idx];
|
|
}
|
|
|
|
/* Gain cycling: cycle pacing gain to converge to fair share of available bw. */
|
|
static void bbr_update_cycle_phase(struct sock *sk,
|
|
const struct rate_sample *rs)
|
|
{
|
|
struct bbr *bbr = inet_csk_ca(sk);
|
|
|
|
if ((bbr->mode == BBR_PROBE_BW) && !bbr->lt_use_bw &&
|
|
bbr_is_next_cycle_phase(sk, rs))
|
|
bbr_advance_cycle_phase(sk);
|
|
}
|
|
|
|
static void bbr_reset_startup_mode(struct sock *sk)
|
|
{
|
|
struct bbr *bbr = inet_csk_ca(sk);
|
|
|
|
bbr->mode = BBR_STARTUP;
|
|
bbr->pacing_gain = bbr_high_gain;
|
|
bbr->cwnd_gain = bbr_high_gain;
|
|
}
|
|
|
|
static void bbr_reset_probe_bw_mode(struct sock *sk)
|
|
{
|
|
struct bbr *bbr = inet_csk_ca(sk);
|
|
|
|
bbr->mode = BBR_PROBE_BW;
|
|
bbr->pacing_gain = BBR_UNIT;
|
|
bbr->cwnd_gain = bbr_cwnd_gain;
|
|
bbr->cycle_idx = CYCLE_LEN - 1 - prandom_u32_max(bbr_cycle_rand);
|
|
bbr_advance_cycle_phase(sk); /* flip to next phase of gain cycle */
|
|
}
|
|
|
|
static void bbr_reset_mode(struct sock *sk)
|
|
{
|
|
if (!bbr_full_bw_reached(sk))
|
|
bbr_reset_startup_mode(sk);
|
|
else
|
|
bbr_reset_probe_bw_mode(sk);
|
|
}
|
|
|
|
/* Start a new long-term sampling interval. */
|
|
static void bbr_reset_lt_bw_sampling_interval(struct sock *sk)
|
|
{
|
|
struct tcp_sock *tp = tcp_sk(sk);
|
|
struct bbr *bbr = inet_csk_ca(sk);
|
|
|
|
bbr->lt_last_stamp = tp->delivered_mstamp.stamp_jiffies;
|
|
bbr->lt_last_delivered = tp->delivered;
|
|
bbr->lt_last_lost = tp->lost;
|
|
bbr->lt_rtt_cnt = 0;
|
|
}
|
|
|
|
/* Completely reset long-term bandwidth sampling. */
|
|
static void bbr_reset_lt_bw_sampling(struct sock *sk)
|
|
{
|
|
struct bbr *bbr = inet_csk_ca(sk);
|
|
|
|
bbr->lt_bw = 0;
|
|
bbr->lt_use_bw = 0;
|
|
bbr->lt_is_sampling = false;
|
|
bbr_reset_lt_bw_sampling_interval(sk);
|
|
}
|
|
|
|
/* Long-term bw sampling interval is done. Estimate whether we're policed. */
|
|
static void bbr_lt_bw_interval_done(struct sock *sk, u32 bw)
|
|
{
|
|
struct bbr *bbr = inet_csk_ca(sk);
|
|
u32 diff;
|
|
|
|
if (bbr->lt_bw) { /* do we have bw from a previous interval? */
|
|
/* Is new bw close to the lt_bw from the previous interval? */
|
|
diff = abs(bw - bbr->lt_bw);
|
|
if ((diff * BBR_UNIT <= bbr_lt_bw_ratio * bbr->lt_bw) ||
|
|
(bbr_rate_bytes_per_sec(sk, diff, BBR_UNIT) <=
|
|
bbr_lt_bw_diff)) {
|
|
/* All criteria are met; estimate we're policed. */
|
|
bbr->lt_bw = (bw + bbr->lt_bw) >> 1; /* avg 2 intvls */
|
|
bbr->lt_use_bw = 1;
|
|
bbr->pacing_gain = BBR_UNIT; /* try to avoid drops */
|
|
bbr->lt_rtt_cnt = 0;
|
|
return;
|
|
}
|
|
}
|
|
bbr->lt_bw = bw;
|
|
bbr_reset_lt_bw_sampling_interval(sk);
|
|
}
|
|
|
|
/* Token-bucket traffic policers are common (see "An Internet-Wide Analysis of
|
|
* Traffic Policing", SIGCOMM 2016). BBR detects token-bucket policers and
|
|
* explicitly models their policed rate, to reduce unnecessary losses. We
|
|
* estimate that we're policed if we see 2 consecutive sampling intervals with
|
|
* consistent throughput and high packet loss. If we think we're being policed,
|
|
* set lt_bw to the "long-term" average delivery rate from those 2 intervals.
|
|
*/
|
|
static void bbr_lt_bw_sampling(struct sock *sk, const struct rate_sample *rs)
|
|
{
|
|
struct tcp_sock *tp = tcp_sk(sk);
|
|
struct bbr *bbr = inet_csk_ca(sk);
|
|
u32 lost, delivered;
|
|
u64 bw;
|
|
s32 t;
|
|
|
|
if (bbr->lt_use_bw) { /* already using long-term rate, lt_bw? */
|
|
if (bbr->mode == BBR_PROBE_BW && bbr->round_start &&
|
|
++bbr->lt_rtt_cnt >= bbr_lt_bw_max_rtts) {
|
|
bbr_reset_lt_bw_sampling(sk); /* stop using lt_bw */
|
|
bbr_reset_probe_bw_mode(sk); /* restart gain cycling */
|
|
}
|
|
return;
|
|
}
|
|
|
|
/* Wait for the first loss before sampling, to let the policer exhaust
|
|
* its tokens and estimate the steady-state rate allowed by the policer.
|
|
* Starting samples earlier includes bursts that over-estimate the bw.
|
|
*/
|
|
if (!bbr->lt_is_sampling) {
|
|
if (!rs->losses)
|
|
return;
|
|
bbr_reset_lt_bw_sampling_interval(sk);
|
|
bbr->lt_is_sampling = true;
|
|
}
|
|
|
|
/* To avoid underestimates, reset sampling if we run out of data. */
|
|
if (rs->is_app_limited) {
|
|
bbr_reset_lt_bw_sampling(sk);
|
|
return;
|
|
}
|
|
|
|
if (bbr->round_start)
|
|
bbr->lt_rtt_cnt++; /* count round trips in this interval */
|
|
if (bbr->lt_rtt_cnt < bbr_lt_intvl_min_rtts)
|
|
return; /* sampling interval needs to be longer */
|
|
if (bbr->lt_rtt_cnt > 4 * bbr_lt_intvl_min_rtts) {
|
|
bbr_reset_lt_bw_sampling(sk); /* interval is too long */
|
|
return;
|
|
}
|
|
|
|
/* End sampling interval when a packet is lost, so we estimate the
|
|
* policer tokens were exhausted. Stopping the sampling before the
|
|
* tokens are exhausted under-estimates the policed rate.
|
|
*/
|
|
if (!rs->losses)
|
|
return;
|
|
|
|
/* Calculate packets lost and delivered in sampling interval. */
|
|
lost = tp->lost - bbr->lt_last_lost;
|
|
delivered = tp->delivered - bbr->lt_last_delivered;
|
|
/* Is loss rate (lost/delivered) >= lt_loss_thresh? If not, wait. */
|
|
if (!delivered || (lost << BBR_SCALE) < bbr_lt_loss_thresh * delivered)
|
|
return;
|
|
|
|
/* Find average delivery rate in this sampling interval. */
|
|
t = (s32)(tp->delivered_mstamp.stamp_jiffies - bbr->lt_last_stamp);
|
|
if (t < 1)
|
|
return; /* interval is less than one jiffy, so wait */
|
|
t = jiffies_to_usecs(t);
|
|
/* Interval long enough for jiffies_to_usecs() to return a bogus 0? */
|
|
if (t < 1) {
|
|
bbr_reset_lt_bw_sampling(sk); /* interval too long; reset */
|
|
return;
|
|
}
|
|
bw = (u64)delivered * BW_UNIT;
|
|
do_div(bw, t);
|
|
bbr_lt_bw_interval_done(sk, bw);
|
|
}
|
|
|
|
/* Estimate the bandwidth based on how fast packets are delivered */
|
|
static void bbr_update_bw(struct sock *sk, const struct rate_sample *rs)
|
|
{
|
|
struct tcp_sock *tp = tcp_sk(sk);
|
|
struct bbr *bbr = inet_csk_ca(sk);
|
|
u64 bw;
|
|
|
|
bbr->round_start = 0;
|
|
if (rs->delivered < 0 || rs->interval_us <= 0)
|
|
return; /* Not a valid observation */
|
|
|
|
/* See if we've reached the next RTT */
|
|
if (!before(rs->prior_delivered, bbr->next_rtt_delivered)) {
|
|
bbr->next_rtt_delivered = tp->delivered;
|
|
bbr->rtt_cnt++;
|
|
bbr->round_start = 1;
|
|
bbr->packet_conservation = 0;
|
|
}
|
|
|
|
bbr_lt_bw_sampling(sk, rs);
|
|
|
|
/* Divide delivered by the interval to find a (lower bound) bottleneck
|
|
* bandwidth sample. Delivered is in packets and interval_us in uS and
|
|
* ratio will be <<1 for most connections. So delivered is first scaled.
|
|
*/
|
|
bw = (u64)rs->delivered * BW_UNIT;
|
|
do_div(bw, rs->interval_us);
|
|
|
|
/* If this sample is application-limited, it is likely to have a very
|
|
* low delivered count that represents application behavior rather than
|
|
* the available network rate. Such a sample could drag down estimated
|
|
* bw, causing needless slow-down. Thus, to continue to send at the
|
|
* last measured network rate, we filter out app-limited samples unless
|
|
* they describe the path bw at least as well as our bw model.
|
|
*
|
|
* So the goal during app-limited phase is to proceed with the best
|
|
* network rate no matter how long. We automatically leave this
|
|
* phase when app writes faster than the network can deliver :)
|
|
*/
|
|
if (!rs->is_app_limited || bw >= bbr_max_bw(sk)) {
|
|
/* Incorporate new sample into our max bw filter. */
|
|
minmax_running_max(&bbr->bw, bbr_bw_rtts, bbr->rtt_cnt, bw);
|
|
}
|
|
}
|
|
|
|
/* Estimate when the pipe is full, using the change in delivery rate: BBR
|
|
* estimates that STARTUP filled the pipe if the estimated bw hasn't changed by
|
|
* at least bbr_full_bw_thresh (25%) after bbr_full_bw_cnt (3) non-app-limited
|
|
* rounds. Why 3 rounds: 1: rwin autotuning grows the rwin, 2: we fill the
|
|
* higher rwin, 3: we get higher delivery rate samples. Or transient
|
|
* cross-traffic or radio noise can go away. CUBIC Hystart shares a similar
|
|
* design goal, but uses delay and inter-ACK spacing instead of bandwidth.
|
|
*/
|
|
static void bbr_check_full_bw_reached(struct sock *sk,
|
|
const struct rate_sample *rs)
|
|
{
|
|
struct bbr *bbr = inet_csk_ca(sk);
|
|
u32 bw_thresh;
|
|
|
|
if (bbr_full_bw_reached(sk) || !bbr->round_start || rs->is_app_limited)
|
|
return;
|
|
|
|
bw_thresh = (u64)bbr->full_bw * bbr_full_bw_thresh >> BBR_SCALE;
|
|
if (bbr_max_bw(sk) >= bw_thresh) {
|
|
bbr->full_bw = bbr_max_bw(sk);
|
|
bbr->full_bw_cnt = 0;
|
|
return;
|
|
}
|
|
++bbr->full_bw_cnt;
|
|
}
|
|
|
|
/* If pipe is probably full, drain the queue and then enter steady-state. */
|
|
static void bbr_check_drain(struct sock *sk, const struct rate_sample *rs)
|
|
{
|
|
struct bbr *bbr = inet_csk_ca(sk);
|
|
|
|
if (bbr->mode == BBR_STARTUP && bbr_full_bw_reached(sk)) {
|
|
bbr->mode = BBR_DRAIN; /* drain queue we created */
|
|
bbr->pacing_gain = bbr_drain_gain; /* pace slow to drain */
|
|
bbr->cwnd_gain = bbr_high_gain; /* maintain cwnd */
|
|
} /* fall through to check if in-flight is already small: */
|
|
if (bbr->mode == BBR_DRAIN &&
|
|
tcp_packets_in_flight(tcp_sk(sk)) <=
|
|
bbr_target_cwnd(sk, bbr_max_bw(sk), BBR_UNIT))
|
|
bbr_reset_probe_bw_mode(sk); /* we estimate queue is drained */
|
|
}
|
|
|
|
/* The goal of PROBE_RTT mode is to have BBR flows cooperatively and
|
|
* periodically drain the bottleneck queue, to converge to measure the true
|
|
* min_rtt (unloaded propagation delay). This allows the flows to keep queues
|
|
* small (reducing queuing delay and packet loss) and achieve fairness among
|
|
* BBR flows.
|
|
*
|
|
* The min_rtt filter window is 10 seconds. When the min_rtt estimate expires,
|
|
* we enter PROBE_RTT mode and cap the cwnd at bbr_cwnd_min_target=4 packets.
|
|
* After at least bbr_probe_rtt_mode_ms=200ms and at least one packet-timed
|
|
* round trip elapsed with that flight size <= 4, we leave PROBE_RTT mode and
|
|
* re-enter the previous mode. BBR uses 200ms to approximately bound the
|
|
* performance penalty of PROBE_RTT's cwnd capping to roughly 2% (200ms/10s).
|
|
*
|
|
* Note that flows need only pay 2% if they are busy sending over the last 10
|
|
* seconds. Interactive applications (e.g., Web, RPCs, video chunks) often have
|
|
* natural silences or low-rate periods within 10 seconds where the rate is low
|
|
* enough for long enough to drain its queue in the bottleneck. We pick up
|
|
* these min RTT measurements opportunistically with our min_rtt filter. :-)
|
|
*/
|
|
static void bbr_update_min_rtt(struct sock *sk, const struct rate_sample *rs)
|
|
{
|
|
struct tcp_sock *tp = tcp_sk(sk);
|
|
struct bbr *bbr = inet_csk_ca(sk);
|
|
bool filter_expired;
|
|
|
|
/* Track min RTT seen in the min_rtt_win_sec filter window: */
|
|
filter_expired = after(tcp_time_stamp,
|
|
bbr->min_rtt_stamp + bbr_min_rtt_win_sec * HZ);
|
|
if (rs->rtt_us >= 0 &&
|
|
(rs->rtt_us <= bbr->min_rtt_us || filter_expired)) {
|
|
bbr->min_rtt_us = rs->rtt_us;
|
|
bbr->min_rtt_stamp = tcp_time_stamp;
|
|
}
|
|
|
|
if (bbr_probe_rtt_mode_ms > 0 && filter_expired &&
|
|
!bbr->idle_restart && bbr->mode != BBR_PROBE_RTT) {
|
|
bbr->mode = BBR_PROBE_RTT; /* dip, drain queue */
|
|
bbr->pacing_gain = BBR_UNIT;
|
|
bbr->cwnd_gain = BBR_UNIT;
|
|
bbr_save_cwnd(sk); /* note cwnd so we can restore it */
|
|
bbr->probe_rtt_done_stamp = 0;
|
|
}
|
|
|
|
if (bbr->mode == BBR_PROBE_RTT) {
|
|
/* Ignore low rate samples during this mode. */
|
|
tp->app_limited =
|
|
(tp->delivered + tcp_packets_in_flight(tp)) ? : 1;
|
|
/* Maintain min packets in flight for max(200 ms, 1 round). */
|
|
if (!bbr->probe_rtt_done_stamp &&
|
|
tcp_packets_in_flight(tp) <= bbr_cwnd_min_target) {
|
|
bbr->probe_rtt_done_stamp = tcp_time_stamp +
|
|
msecs_to_jiffies(bbr_probe_rtt_mode_ms);
|
|
bbr->probe_rtt_round_done = 0;
|
|
bbr->next_rtt_delivered = tp->delivered;
|
|
} else if (bbr->probe_rtt_done_stamp) {
|
|
if (bbr->round_start)
|
|
bbr->probe_rtt_round_done = 1;
|
|
if (bbr->probe_rtt_round_done &&
|
|
after(tcp_time_stamp, bbr->probe_rtt_done_stamp)) {
|
|
bbr->min_rtt_stamp = tcp_time_stamp;
|
|
bbr->restore_cwnd = 1; /* snap to prior_cwnd */
|
|
bbr_reset_mode(sk);
|
|
}
|
|
}
|
|
}
|
|
bbr->idle_restart = 0;
|
|
}
|
|
|
|
static void bbr_update_model(struct sock *sk, const struct rate_sample *rs)
|
|
{
|
|
bbr_update_bw(sk, rs);
|
|
bbr_update_cycle_phase(sk, rs);
|
|
bbr_check_full_bw_reached(sk, rs);
|
|
bbr_check_drain(sk, rs);
|
|
bbr_update_min_rtt(sk, rs);
|
|
}
|
|
|
|
static void bbr_main(struct sock *sk, const struct rate_sample *rs)
|
|
{
|
|
struct bbr *bbr = inet_csk_ca(sk);
|
|
u32 bw;
|
|
|
|
bbr_update_model(sk, rs);
|
|
|
|
bw = bbr_bw(sk);
|
|
bbr_set_pacing_rate(sk, bw, bbr->pacing_gain);
|
|
bbr_set_tso_segs_goal(sk);
|
|
bbr_set_cwnd(sk, rs, rs->acked_sacked, bw, bbr->cwnd_gain);
|
|
}
|
|
|
|
static void bbr_init(struct sock *sk)
|
|
{
|
|
struct tcp_sock *tp = tcp_sk(sk);
|
|
struct bbr *bbr = inet_csk_ca(sk);
|
|
u64 bw;
|
|
|
|
bbr->prior_cwnd = 0;
|
|
bbr->tso_segs_goal = 0; /* default segs per skb until first ACK */
|
|
bbr->rtt_cnt = 0;
|
|
bbr->next_rtt_delivered = 0;
|
|
bbr->prev_ca_state = TCP_CA_Open;
|
|
bbr->packet_conservation = 0;
|
|
|
|
bbr->probe_rtt_done_stamp = 0;
|
|
bbr->probe_rtt_round_done = 0;
|
|
bbr->min_rtt_us = tcp_min_rtt(tp);
|
|
bbr->min_rtt_stamp = tcp_time_stamp;
|
|
|
|
minmax_reset(&bbr->bw, bbr->rtt_cnt, 0); /* init max bw to 0 */
|
|
|
|
/* Initialize pacing rate to: high_gain * init_cwnd / RTT. */
|
|
bw = (u64)tp->snd_cwnd * BW_UNIT;
|
|
do_div(bw, (tp->srtt_us >> 3) ? : USEC_PER_MSEC);
|
|
sk->sk_pacing_rate = 0; /* force an update of sk_pacing_rate */
|
|
bbr_set_pacing_rate(sk, bw, bbr_high_gain);
|
|
|
|
bbr->restore_cwnd = 0;
|
|
bbr->round_start = 0;
|
|
bbr->idle_restart = 0;
|
|
bbr->full_bw = 0;
|
|
bbr->full_bw_cnt = 0;
|
|
bbr->cycle_mstamp.v64 = 0;
|
|
bbr->cycle_idx = 0;
|
|
bbr_reset_lt_bw_sampling(sk);
|
|
bbr_reset_startup_mode(sk);
|
|
}
|
|
|
|
static u32 bbr_sndbuf_expand(struct sock *sk)
|
|
{
|
|
/* Provision 3 * cwnd since BBR may slow-start even during recovery. */
|
|
return 3;
|
|
}
|
|
|
|
/* In theory BBR does not need to undo the cwnd since it does not
|
|
* always reduce cwnd on losses (see bbr_main()). Keep it for now.
|
|
*/
|
|
static u32 bbr_undo_cwnd(struct sock *sk)
|
|
{
|
|
return tcp_sk(sk)->snd_cwnd;
|
|
}
|
|
|
|
/* Entering loss recovery, so save cwnd for when we exit or undo recovery. */
|
|
static u32 bbr_ssthresh(struct sock *sk)
|
|
{
|
|
bbr_save_cwnd(sk);
|
|
return TCP_INFINITE_SSTHRESH; /* BBR does not use ssthresh */
|
|
}
|
|
|
|
static size_t bbr_get_info(struct sock *sk, u32 ext, int *attr,
|
|
union tcp_cc_info *info)
|
|
{
|
|
if (ext & (1 << (INET_DIAG_BBRINFO - 1)) ||
|
|
ext & (1 << (INET_DIAG_VEGASINFO - 1))) {
|
|
struct tcp_sock *tp = tcp_sk(sk);
|
|
struct bbr *bbr = inet_csk_ca(sk);
|
|
u64 bw = bbr_bw(sk);
|
|
|
|
bw = bw * tp->mss_cache * USEC_PER_SEC >> BW_SCALE;
|
|
memset(&info->bbr, 0, sizeof(info->bbr));
|
|
info->bbr.bbr_bw_lo = (u32)bw;
|
|
info->bbr.bbr_bw_hi = (u32)(bw >> 32);
|
|
info->bbr.bbr_min_rtt = bbr->min_rtt_us;
|
|
info->bbr.bbr_pacing_gain = bbr->pacing_gain;
|
|
info->bbr.bbr_cwnd_gain = bbr->cwnd_gain;
|
|
*attr = INET_DIAG_BBRINFO;
|
|
return sizeof(info->bbr);
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static void bbr_set_state(struct sock *sk, u8 new_state)
|
|
{
|
|
struct bbr *bbr = inet_csk_ca(sk);
|
|
|
|
if (new_state == TCP_CA_Loss) {
|
|
struct rate_sample rs = { .losses = 1 };
|
|
|
|
bbr->prev_ca_state = TCP_CA_Loss;
|
|
bbr->full_bw = 0;
|
|
bbr->round_start = 1; /* treat RTO like end of a round */
|
|
bbr_lt_bw_sampling(sk, &rs);
|
|
}
|
|
}
|
|
|
|
static struct tcp_congestion_ops tcp_bbr_cong_ops __read_mostly = {
|
|
.flags = TCP_CONG_NON_RESTRICTED,
|
|
.name = "bbr",
|
|
.owner = THIS_MODULE,
|
|
.init = bbr_init,
|
|
.cong_control = bbr_main,
|
|
.sndbuf_expand = bbr_sndbuf_expand,
|
|
.undo_cwnd = bbr_undo_cwnd,
|
|
.cwnd_event = bbr_cwnd_event,
|
|
.ssthresh = bbr_ssthresh,
|
|
.tso_segs_goal = bbr_tso_segs_goal,
|
|
.get_info = bbr_get_info,
|
|
.set_state = bbr_set_state,
|
|
};
|
|
|
|
static int __init bbr_register(void)
|
|
{
|
|
BUILD_BUG_ON(sizeof(struct bbr) > ICSK_CA_PRIV_SIZE);
|
|
return tcp_register_congestion_control(&tcp_bbr_cong_ops);
|
|
}
|
|
|
|
static void __exit bbr_unregister(void)
|
|
{
|
|
tcp_unregister_congestion_control(&tcp_bbr_cong_ops);
|
|
}
|
|
|
|
module_init(bbr_register);
|
|
module_exit(bbr_unregister);
|
|
|
|
MODULE_AUTHOR("Van Jacobson <vanj@google.com>");
|
|
MODULE_AUTHOR("Neal Cardwell <ncardwell@google.com>");
|
|
MODULE_AUTHOR("Yuchung Cheng <ycheng@google.com>");
|
|
MODULE_AUTHOR("Soheil Hassas Yeganeh <soheil@google.com>");
|
|
MODULE_LICENSE("Dual BSD/GPL");
|
|
MODULE_DESCRIPTION("TCP BBR (Bottleneck Bandwidth and RTT)");
|