bd4b968362
Fix this: In file included from drivers/edac/sb_edac.c:27:0: drivers/edac/sb_edac.c: In function ‘sbridge_mce_output_error’: drivers/edac/edac_core.h:50:8: warning: ‘limit’ may be used uninitialized in this function [-Wmaybe-uninitialized] printk(level "EDAC " prefix ": " fmt, ##arg) ^ drivers/edac/sb_edac.c:948:25: note: ‘limit’ was declared here u64 ch_addr, offset, limit, prv = 0; Limit can be initialized to 0. The only way limit wouldn't be initialized is if there are no DIMMs present (which would be a bug of course) and it'd fail on the next test. Signed-off-by: Aristeu Rozanski <arozansk@redhat.com> Cc: Mauro Carvalho Chehab <mchehab@infradead.org> Link: http://lkml.kernel.org/r/20131121122021.GD26009@pd.tnic Signed-off-by: Borislav Petkov <bp@suse.de>
2179 lines
53 KiB
C
2179 lines
53 KiB
C
/* Intel Sandy Bridge -EN/-EP/-EX Memory Controller kernel module
|
|
*
|
|
* This driver supports the memory controllers found on the Intel
|
|
* processor family Sandy Bridge.
|
|
*
|
|
* This file may be distributed under the terms of the
|
|
* GNU General Public License version 2 only.
|
|
*
|
|
* Copyright (c) 2011 by:
|
|
* Mauro Carvalho Chehab <mchehab@redhat.com>
|
|
*/
|
|
|
|
#include <linux/module.h>
|
|
#include <linux/init.h>
|
|
#include <linux/pci.h>
|
|
#include <linux/pci_ids.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/delay.h>
|
|
#include <linux/edac.h>
|
|
#include <linux/mmzone.h>
|
|
#include <linux/smp.h>
|
|
#include <linux/bitmap.h>
|
|
#include <linux/math64.h>
|
|
#include <asm/processor.h>
|
|
#include <asm/mce.h>
|
|
|
|
#include "edac_core.h"
|
|
|
|
/* Static vars */
|
|
static LIST_HEAD(sbridge_edac_list);
|
|
static DEFINE_MUTEX(sbridge_edac_lock);
|
|
static int probed;
|
|
|
|
/*
|
|
* Alter this version for the module when modifications are made
|
|
*/
|
|
#define SBRIDGE_REVISION " Ver: 1.1.0 "
|
|
#define EDAC_MOD_STR "sbridge_edac"
|
|
|
|
/*
|
|
* Debug macros
|
|
*/
|
|
#define sbridge_printk(level, fmt, arg...) \
|
|
edac_printk(level, "sbridge", fmt, ##arg)
|
|
|
|
#define sbridge_mc_printk(mci, level, fmt, arg...) \
|
|
edac_mc_chipset_printk(mci, level, "sbridge", fmt, ##arg)
|
|
|
|
/*
|
|
* Get a bit field at register value <v>, from bit <lo> to bit <hi>
|
|
*/
|
|
#define GET_BITFIELD(v, lo, hi) \
|
|
(((v) & GENMASK_ULL(hi, lo)) >> (lo))
|
|
|
|
/*
|
|
* sbridge Memory Controller Registers
|
|
*/
|
|
|
|
/*
|
|
* FIXME: For now, let's order by device function, as it makes
|
|
* easier for driver's development process. This table should be
|
|
* moved to pci_id.h when submitted upstream
|
|
*/
|
|
#define PCI_DEVICE_ID_INTEL_SBRIDGE_SAD0 0x3cf4 /* 12.6 */
|
|
#define PCI_DEVICE_ID_INTEL_SBRIDGE_SAD1 0x3cf6 /* 12.7 */
|
|
#define PCI_DEVICE_ID_INTEL_SBRIDGE_BR 0x3cf5 /* 13.6 */
|
|
#define PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_HA0 0x3ca0 /* 14.0 */
|
|
#define PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TA 0x3ca8 /* 15.0 */
|
|
#define PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_RAS 0x3c71 /* 15.1 */
|
|
#define PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD0 0x3caa /* 15.2 */
|
|
#define PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD1 0x3cab /* 15.3 */
|
|
#define PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD2 0x3cac /* 15.4 */
|
|
#define PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD3 0x3cad /* 15.5 */
|
|
#define PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_DDRIO 0x3cb8 /* 17.0 */
|
|
|
|
/*
|
|
* Currently, unused, but will be needed in the future
|
|
* implementations, as they hold the error counters
|
|
*/
|
|
#define PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_ERR0 0x3c72 /* 16.2 */
|
|
#define PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_ERR1 0x3c73 /* 16.3 */
|
|
#define PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_ERR2 0x3c76 /* 16.6 */
|
|
#define PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_ERR3 0x3c77 /* 16.7 */
|
|
|
|
/* Devices 12 Function 6, Offsets 0x80 to 0xcc */
|
|
static const u32 sbridge_dram_rule[] = {
|
|
0x80, 0x88, 0x90, 0x98, 0xa0,
|
|
0xa8, 0xb0, 0xb8, 0xc0, 0xc8,
|
|
};
|
|
|
|
static const u32 ibridge_dram_rule[] = {
|
|
0x60, 0x68, 0x70, 0x78, 0x80,
|
|
0x88, 0x90, 0x98, 0xa0, 0xa8,
|
|
0xb0, 0xb8, 0xc0, 0xc8, 0xd0,
|
|
0xd8, 0xe0, 0xe8, 0xf0, 0xf8,
|
|
};
|
|
|
|
#define SAD_LIMIT(reg) ((GET_BITFIELD(reg, 6, 25) << 26) | 0x3ffffff)
|
|
#define DRAM_ATTR(reg) GET_BITFIELD(reg, 2, 3)
|
|
#define INTERLEAVE_MODE(reg) GET_BITFIELD(reg, 1, 1)
|
|
#define DRAM_RULE_ENABLE(reg) GET_BITFIELD(reg, 0, 0)
|
|
|
|
static char *get_dram_attr(u32 reg)
|
|
{
|
|
switch(DRAM_ATTR(reg)) {
|
|
case 0:
|
|
return "DRAM";
|
|
case 1:
|
|
return "MMCFG";
|
|
case 2:
|
|
return "NXM";
|
|
default:
|
|
return "unknown";
|
|
}
|
|
}
|
|
|
|
static const u32 sbridge_interleave_list[] = {
|
|
0x84, 0x8c, 0x94, 0x9c, 0xa4,
|
|
0xac, 0xb4, 0xbc, 0xc4, 0xcc,
|
|
};
|
|
|
|
static const u32 ibridge_interleave_list[] = {
|
|
0x64, 0x6c, 0x74, 0x7c, 0x84,
|
|
0x8c, 0x94, 0x9c, 0xa4, 0xac,
|
|
0xb4, 0xbc, 0xc4, 0xcc, 0xd4,
|
|
0xdc, 0xe4, 0xec, 0xf4, 0xfc,
|
|
};
|
|
|
|
struct interleave_pkg {
|
|
unsigned char start;
|
|
unsigned char end;
|
|
};
|
|
|
|
static const struct interleave_pkg sbridge_interleave_pkg[] = {
|
|
{ 0, 2 },
|
|
{ 3, 5 },
|
|
{ 8, 10 },
|
|
{ 11, 13 },
|
|
{ 16, 18 },
|
|
{ 19, 21 },
|
|
{ 24, 26 },
|
|
{ 27, 29 },
|
|
};
|
|
|
|
static const struct interleave_pkg ibridge_interleave_pkg[] = {
|
|
{ 0, 3 },
|
|
{ 4, 7 },
|
|
{ 8, 11 },
|
|
{ 12, 15 },
|
|
{ 16, 19 },
|
|
{ 20, 23 },
|
|
{ 24, 27 },
|
|
{ 28, 31 },
|
|
};
|
|
|
|
static inline int sad_pkg(const struct interleave_pkg *table, u32 reg,
|
|
int interleave)
|
|
{
|
|
return GET_BITFIELD(reg, table[interleave].start,
|
|
table[interleave].end);
|
|
}
|
|
|
|
/* Devices 12 Function 7 */
|
|
|
|
#define TOLM 0x80
|
|
#define TOHM 0x84
|
|
|
|
#define GET_TOLM(reg) ((GET_BITFIELD(reg, 0, 3) << 28) | 0x3ffffff)
|
|
#define GET_TOHM(reg) ((GET_BITFIELD(reg, 0, 20) << 25) | 0x3ffffff)
|
|
|
|
/* Device 13 Function 6 */
|
|
|
|
#define SAD_TARGET 0xf0
|
|
|
|
#define SOURCE_ID(reg) GET_BITFIELD(reg, 9, 11)
|
|
|
|
#define SAD_CONTROL 0xf4
|
|
|
|
#define NODE_ID(reg) GET_BITFIELD(reg, 0, 2)
|
|
|
|
/* Device 14 function 0 */
|
|
|
|
static const u32 tad_dram_rule[] = {
|
|
0x40, 0x44, 0x48, 0x4c,
|
|
0x50, 0x54, 0x58, 0x5c,
|
|
0x60, 0x64, 0x68, 0x6c,
|
|
};
|
|
#define MAX_TAD ARRAY_SIZE(tad_dram_rule)
|
|
|
|
#define TAD_LIMIT(reg) ((GET_BITFIELD(reg, 12, 31) << 26) | 0x3ffffff)
|
|
#define TAD_SOCK(reg) GET_BITFIELD(reg, 10, 11)
|
|
#define TAD_CH(reg) GET_BITFIELD(reg, 8, 9)
|
|
#define TAD_TGT3(reg) GET_BITFIELD(reg, 6, 7)
|
|
#define TAD_TGT2(reg) GET_BITFIELD(reg, 4, 5)
|
|
#define TAD_TGT1(reg) GET_BITFIELD(reg, 2, 3)
|
|
#define TAD_TGT0(reg) GET_BITFIELD(reg, 0, 1)
|
|
|
|
/* Device 15, function 0 */
|
|
|
|
#define MCMTR 0x7c
|
|
|
|
#define IS_ECC_ENABLED(mcmtr) GET_BITFIELD(mcmtr, 2, 2)
|
|
#define IS_LOCKSTEP_ENABLED(mcmtr) GET_BITFIELD(mcmtr, 1, 1)
|
|
#define IS_CLOSE_PG(mcmtr) GET_BITFIELD(mcmtr, 0, 0)
|
|
|
|
/* Device 15, function 1 */
|
|
|
|
#define RASENABLES 0xac
|
|
#define IS_MIRROR_ENABLED(reg) GET_BITFIELD(reg, 0, 0)
|
|
|
|
/* Device 15, functions 2-5 */
|
|
|
|
static const int mtr_regs[] = {
|
|
0x80, 0x84, 0x88,
|
|
};
|
|
|
|
#define RANK_DISABLE(mtr) GET_BITFIELD(mtr, 16, 19)
|
|
#define IS_DIMM_PRESENT(mtr) GET_BITFIELD(mtr, 14, 14)
|
|
#define RANK_CNT_BITS(mtr) GET_BITFIELD(mtr, 12, 13)
|
|
#define RANK_WIDTH_BITS(mtr) GET_BITFIELD(mtr, 2, 4)
|
|
#define COL_WIDTH_BITS(mtr) GET_BITFIELD(mtr, 0, 1)
|
|
|
|
static const u32 tad_ch_nilv_offset[] = {
|
|
0x90, 0x94, 0x98, 0x9c,
|
|
0xa0, 0xa4, 0xa8, 0xac,
|
|
0xb0, 0xb4, 0xb8, 0xbc,
|
|
};
|
|
#define CHN_IDX_OFFSET(reg) GET_BITFIELD(reg, 28, 29)
|
|
#define TAD_OFFSET(reg) (GET_BITFIELD(reg, 6, 25) << 26)
|
|
|
|
static const u32 rir_way_limit[] = {
|
|
0x108, 0x10c, 0x110, 0x114, 0x118,
|
|
};
|
|
#define MAX_RIR_RANGES ARRAY_SIZE(rir_way_limit)
|
|
|
|
#define IS_RIR_VALID(reg) GET_BITFIELD(reg, 31, 31)
|
|
#define RIR_WAY(reg) GET_BITFIELD(reg, 28, 29)
|
|
#define RIR_LIMIT(reg) ((GET_BITFIELD(reg, 1, 10) << 29)| 0x1fffffff)
|
|
|
|
#define MAX_RIR_WAY 8
|
|
|
|
static const u32 rir_offset[MAX_RIR_RANGES][MAX_RIR_WAY] = {
|
|
{ 0x120, 0x124, 0x128, 0x12c, 0x130, 0x134, 0x138, 0x13c },
|
|
{ 0x140, 0x144, 0x148, 0x14c, 0x150, 0x154, 0x158, 0x15c },
|
|
{ 0x160, 0x164, 0x168, 0x16c, 0x170, 0x174, 0x178, 0x17c },
|
|
{ 0x180, 0x184, 0x188, 0x18c, 0x190, 0x194, 0x198, 0x19c },
|
|
{ 0x1a0, 0x1a4, 0x1a8, 0x1ac, 0x1b0, 0x1b4, 0x1b8, 0x1bc },
|
|
};
|
|
|
|
#define RIR_RNK_TGT(reg) GET_BITFIELD(reg, 16, 19)
|
|
#define RIR_OFFSET(reg) GET_BITFIELD(reg, 2, 14)
|
|
|
|
/* Device 16, functions 2-7 */
|
|
|
|
/*
|
|
* FIXME: Implement the error count reads directly
|
|
*/
|
|
|
|
static const u32 correrrcnt[] = {
|
|
0x104, 0x108, 0x10c, 0x110,
|
|
};
|
|
|
|
#define RANK_ODD_OV(reg) GET_BITFIELD(reg, 31, 31)
|
|
#define RANK_ODD_ERR_CNT(reg) GET_BITFIELD(reg, 16, 30)
|
|
#define RANK_EVEN_OV(reg) GET_BITFIELD(reg, 15, 15)
|
|
#define RANK_EVEN_ERR_CNT(reg) GET_BITFIELD(reg, 0, 14)
|
|
|
|
static const u32 correrrthrsld[] = {
|
|
0x11c, 0x120, 0x124, 0x128,
|
|
};
|
|
|
|
#define RANK_ODD_ERR_THRSLD(reg) GET_BITFIELD(reg, 16, 30)
|
|
#define RANK_EVEN_ERR_THRSLD(reg) GET_BITFIELD(reg, 0, 14)
|
|
|
|
|
|
/* Device 17, function 0 */
|
|
|
|
#define SB_RANK_CFG_A 0x0328
|
|
|
|
#define IB_RANK_CFG_A 0x0320
|
|
|
|
#define IS_RDIMM_ENABLED(reg) GET_BITFIELD(reg, 11, 11)
|
|
|
|
/*
|
|
* sbridge structs
|
|
*/
|
|
|
|
#define NUM_CHANNELS 4
|
|
#define MAX_DIMMS 3 /* Max DIMMS per channel */
|
|
|
|
enum type {
|
|
SANDY_BRIDGE,
|
|
IVY_BRIDGE,
|
|
};
|
|
|
|
struct sbridge_pvt;
|
|
struct sbridge_info {
|
|
enum type type;
|
|
u32 mcmtr;
|
|
u32 rankcfgr;
|
|
u64 (*get_tolm)(struct sbridge_pvt *pvt);
|
|
u64 (*get_tohm)(struct sbridge_pvt *pvt);
|
|
const u32 *dram_rule;
|
|
const u32 *interleave_list;
|
|
const struct interleave_pkg *interleave_pkg;
|
|
u8 max_sad;
|
|
u8 max_interleave;
|
|
};
|
|
|
|
struct sbridge_channel {
|
|
u32 ranks;
|
|
u32 dimms;
|
|
};
|
|
|
|
struct pci_id_descr {
|
|
int dev;
|
|
int func;
|
|
int dev_id;
|
|
int optional;
|
|
};
|
|
|
|
struct pci_id_table {
|
|
const struct pci_id_descr *descr;
|
|
int n_devs;
|
|
};
|
|
|
|
struct sbridge_dev {
|
|
struct list_head list;
|
|
u8 bus, mc;
|
|
u8 node_id, source_id;
|
|
struct pci_dev **pdev;
|
|
int n_devs;
|
|
struct mem_ctl_info *mci;
|
|
};
|
|
|
|
struct sbridge_pvt {
|
|
struct pci_dev *pci_ta, *pci_ddrio, *pci_ras;
|
|
struct pci_dev *pci_sad0, *pci_sad1;
|
|
struct pci_dev *pci_ha0, *pci_ha1;
|
|
struct pci_dev *pci_br0, *pci_br1;
|
|
struct pci_dev *pci_tad[NUM_CHANNELS];
|
|
|
|
struct sbridge_dev *sbridge_dev;
|
|
|
|
struct sbridge_info info;
|
|
struct sbridge_channel channel[NUM_CHANNELS];
|
|
|
|
/* Memory type detection */
|
|
bool is_mirrored, is_lockstep, is_close_pg;
|
|
|
|
/* Fifo double buffers */
|
|
struct mce mce_entry[MCE_LOG_LEN];
|
|
struct mce mce_outentry[MCE_LOG_LEN];
|
|
|
|
/* Fifo in/out counters */
|
|
unsigned mce_in, mce_out;
|
|
|
|
/* Count indicator to show errors not got */
|
|
unsigned mce_overrun;
|
|
|
|
/* Memory description */
|
|
u64 tolm, tohm;
|
|
};
|
|
|
|
#define PCI_DESCR(device, function, device_id, opt) \
|
|
.dev = (device), \
|
|
.func = (function), \
|
|
.dev_id = (device_id), \
|
|
.optional = opt
|
|
|
|
static const struct pci_id_descr pci_dev_descr_sbridge[] = {
|
|
/* Processor Home Agent */
|
|
{ PCI_DESCR(14, 0, PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_HA0, 0) },
|
|
|
|
/* Memory controller */
|
|
{ PCI_DESCR(15, 0, PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TA, 0) },
|
|
{ PCI_DESCR(15, 1, PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_RAS, 0) },
|
|
{ PCI_DESCR(15, 2, PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD0, 0) },
|
|
{ PCI_DESCR(15, 3, PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD1, 0) },
|
|
{ PCI_DESCR(15, 4, PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD2, 0) },
|
|
{ PCI_DESCR(15, 5, PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD3, 0) },
|
|
{ PCI_DESCR(17, 0, PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_DDRIO, 1) },
|
|
|
|
/* System Address Decoder */
|
|
{ PCI_DESCR(12, 6, PCI_DEVICE_ID_INTEL_SBRIDGE_SAD0, 0) },
|
|
{ PCI_DESCR(12, 7, PCI_DEVICE_ID_INTEL_SBRIDGE_SAD1, 0) },
|
|
|
|
/* Broadcast Registers */
|
|
{ PCI_DESCR(13, 6, PCI_DEVICE_ID_INTEL_SBRIDGE_BR, 0) },
|
|
};
|
|
|
|
#define PCI_ID_TABLE_ENTRY(A) { .descr=A, .n_devs = ARRAY_SIZE(A) }
|
|
static const struct pci_id_table pci_dev_descr_sbridge_table[] = {
|
|
PCI_ID_TABLE_ENTRY(pci_dev_descr_sbridge),
|
|
{0,} /* 0 terminated list. */
|
|
};
|
|
|
|
/* This changes depending if 1HA or 2HA:
|
|
* 1HA:
|
|
* 0x0eb8 (17.0) is DDRIO0
|
|
* 2HA:
|
|
* 0x0ebc (17.4) is DDRIO0
|
|
*/
|
|
#define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_1HA_DDRIO0 0x0eb8
|
|
#define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_2HA_DDRIO0 0x0ebc
|
|
|
|
/* pci ids */
|
|
#define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0 0x0ea0
|
|
#define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TA 0x0ea8
|
|
#define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_RAS 0x0e71
|
|
#define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD0 0x0eaa
|
|
#define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD1 0x0eab
|
|
#define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD2 0x0eac
|
|
#define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD3 0x0ead
|
|
#define PCI_DEVICE_ID_INTEL_IBRIDGE_SAD 0x0ec8
|
|
#define PCI_DEVICE_ID_INTEL_IBRIDGE_BR0 0x0ec9
|
|
#define PCI_DEVICE_ID_INTEL_IBRIDGE_BR1 0x0eca
|
|
#define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1 0x0e60
|
|
#define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TA 0x0e68
|
|
#define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_RAS 0x0e79
|
|
#define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD0 0x0e6a
|
|
#define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD1 0x0e6b
|
|
|
|
static const struct pci_id_descr pci_dev_descr_ibridge[] = {
|
|
/* Processor Home Agent */
|
|
{ PCI_DESCR(14, 0, PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0, 0) },
|
|
|
|
/* Memory controller */
|
|
{ PCI_DESCR(15, 0, PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TA, 0) },
|
|
{ PCI_DESCR(15, 1, PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_RAS, 0) },
|
|
{ PCI_DESCR(15, 2, PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD0, 0) },
|
|
{ PCI_DESCR(15, 3, PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD1, 0) },
|
|
{ PCI_DESCR(15, 4, PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD2, 0) },
|
|
{ PCI_DESCR(15, 5, PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD3, 0) },
|
|
|
|
/* System Address Decoder */
|
|
{ PCI_DESCR(22, 0, PCI_DEVICE_ID_INTEL_IBRIDGE_SAD, 0) },
|
|
|
|
/* Broadcast Registers */
|
|
{ PCI_DESCR(22, 1, PCI_DEVICE_ID_INTEL_IBRIDGE_BR0, 1) },
|
|
{ PCI_DESCR(22, 2, PCI_DEVICE_ID_INTEL_IBRIDGE_BR1, 0) },
|
|
|
|
/* Optional, mode 2HA */
|
|
{ PCI_DESCR(28, 0, PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1, 1) },
|
|
#if 0
|
|
{ PCI_DESCR(29, 0, PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TA, 1) },
|
|
{ PCI_DESCR(29, 1, PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_RAS, 1) },
|
|
#endif
|
|
{ PCI_DESCR(29, 2, PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD0, 1) },
|
|
{ PCI_DESCR(29, 3, PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD1, 1) },
|
|
|
|
{ PCI_DESCR(17, 0, PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_1HA_DDRIO0, 1) },
|
|
{ PCI_DESCR(17, 4, PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_2HA_DDRIO0, 1) },
|
|
};
|
|
|
|
static const struct pci_id_table pci_dev_descr_ibridge_table[] = {
|
|
PCI_ID_TABLE_ENTRY(pci_dev_descr_ibridge),
|
|
{0,} /* 0 terminated list. */
|
|
};
|
|
|
|
/*
|
|
* pci_device_id table for which devices we are looking for
|
|
*/
|
|
static DEFINE_PCI_DEVICE_TABLE(sbridge_pci_tbl) = {
|
|
{PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TA)},
|
|
{PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TA)},
|
|
{0,} /* 0 terminated list. */
|
|
};
|
|
|
|
|
|
/****************************************************************************
|
|
Ancillary status routines
|
|
****************************************************************************/
|
|
|
|
static inline int numrank(u32 mtr)
|
|
{
|
|
int ranks = (1 << RANK_CNT_BITS(mtr));
|
|
|
|
if (ranks > 4) {
|
|
edac_dbg(0, "Invalid number of ranks: %d (max = 4) raw value = %x (%04x)\n",
|
|
ranks, (unsigned int)RANK_CNT_BITS(mtr), mtr);
|
|
return -EINVAL;
|
|
}
|
|
|
|
return ranks;
|
|
}
|
|
|
|
static inline int numrow(u32 mtr)
|
|
{
|
|
int rows = (RANK_WIDTH_BITS(mtr) + 12);
|
|
|
|
if (rows < 13 || rows > 18) {
|
|
edac_dbg(0, "Invalid number of rows: %d (should be between 14 and 17) raw value = %x (%04x)\n",
|
|
rows, (unsigned int)RANK_WIDTH_BITS(mtr), mtr);
|
|
return -EINVAL;
|
|
}
|
|
|
|
return 1 << rows;
|
|
}
|
|
|
|
static inline int numcol(u32 mtr)
|
|
{
|
|
int cols = (COL_WIDTH_BITS(mtr) + 10);
|
|
|
|
if (cols > 12) {
|
|
edac_dbg(0, "Invalid number of cols: %d (max = 4) raw value = %x (%04x)\n",
|
|
cols, (unsigned int)COL_WIDTH_BITS(mtr), mtr);
|
|
return -EINVAL;
|
|
}
|
|
|
|
return 1 << cols;
|
|
}
|
|
|
|
static struct sbridge_dev *get_sbridge_dev(u8 bus)
|
|
{
|
|
struct sbridge_dev *sbridge_dev;
|
|
|
|
list_for_each_entry(sbridge_dev, &sbridge_edac_list, list) {
|
|
if (sbridge_dev->bus == bus)
|
|
return sbridge_dev;
|
|
}
|
|
|
|
return NULL;
|
|
}
|
|
|
|
static struct sbridge_dev *alloc_sbridge_dev(u8 bus,
|
|
const struct pci_id_table *table)
|
|
{
|
|
struct sbridge_dev *sbridge_dev;
|
|
|
|
sbridge_dev = kzalloc(sizeof(*sbridge_dev), GFP_KERNEL);
|
|
if (!sbridge_dev)
|
|
return NULL;
|
|
|
|
sbridge_dev->pdev = kzalloc(sizeof(*sbridge_dev->pdev) * table->n_devs,
|
|
GFP_KERNEL);
|
|
if (!sbridge_dev->pdev) {
|
|
kfree(sbridge_dev);
|
|
return NULL;
|
|
}
|
|
|
|
sbridge_dev->bus = bus;
|
|
sbridge_dev->n_devs = table->n_devs;
|
|
list_add_tail(&sbridge_dev->list, &sbridge_edac_list);
|
|
|
|
return sbridge_dev;
|
|
}
|
|
|
|
static void free_sbridge_dev(struct sbridge_dev *sbridge_dev)
|
|
{
|
|
list_del(&sbridge_dev->list);
|
|
kfree(sbridge_dev->pdev);
|
|
kfree(sbridge_dev);
|
|
}
|
|
|
|
static u64 sbridge_get_tolm(struct sbridge_pvt *pvt)
|
|
{
|
|
u32 reg;
|
|
|
|
/* Address range is 32:28 */
|
|
pci_read_config_dword(pvt->pci_sad1, TOLM, ®);
|
|
return GET_TOLM(reg);
|
|
}
|
|
|
|
static u64 sbridge_get_tohm(struct sbridge_pvt *pvt)
|
|
{
|
|
u32 reg;
|
|
|
|
pci_read_config_dword(pvt->pci_sad1, TOHM, ®);
|
|
return GET_TOHM(reg);
|
|
}
|
|
|
|
static u64 ibridge_get_tolm(struct sbridge_pvt *pvt)
|
|
{
|
|
u32 reg;
|
|
|
|
pci_read_config_dword(pvt->pci_br1, TOLM, ®);
|
|
|
|
return GET_TOLM(reg);
|
|
}
|
|
|
|
static u64 ibridge_get_tohm(struct sbridge_pvt *pvt)
|
|
{
|
|
u32 reg;
|
|
|
|
pci_read_config_dword(pvt->pci_br1, TOHM, ®);
|
|
|
|
return GET_TOHM(reg);
|
|
}
|
|
|
|
static inline u8 sad_pkg_socket(u8 pkg)
|
|
{
|
|
/* on Ivy Bridge, nodeID is SASS, where A is HA and S is node id */
|
|
return (pkg >> 3) | (pkg & 0x3);
|
|
}
|
|
|
|
static inline u8 sad_pkg_ha(u8 pkg)
|
|
{
|
|
return (pkg >> 2) & 0x1;
|
|
}
|
|
|
|
/****************************************************************************
|
|
Memory check routines
|
|
****************************************************************************/
|
|
static struct pci_dev *get_pdev_slot_func(u8 bus, unsigned slot,
|
|
unsigned func)
|
|
{
|
|
struct sbridge_dev *sbridge_dev = get_sbridge_dev(bus);
|
|
int i;
|
|
|
|
if (!sbridge_dev)
|
|
return NULL;
|
|
|
|
for (i = 0; i < sbridge_dev->n_devs; i++) {
|
|
if (!sbridge_dev->pdev[i])
|
|
continue;
|
|
|
|
if (PCI_SLOT(sbridge_dev->pdev[i]->devfn) == slot &&
|
|
PCI_FUNC(sbridge_dev->pdev[i]->devfn) == func) {
|
|
edac_dbg(1, "Associated %02x.%02x.%d with %p\n",
|
|
bus, slot, func, sbridge_dev->pdev[i]);
|
|
return sbridge_dev->pdev[i];
|
|
}
|
|
}
|
|
|
|
return NULL;
|
|
}
|
|
|
|
/**
|
|
* check_if_ecc_is_active() - Checks if ECC is active
|
|
* bus: Device bus
|
|
*/
|
|
static int check_if_ecc_is_active(const u8 bus)
|
|
{
|
|
struct pci_dev *pdev = NULL;
|
|
u32 mcmtr;
|
|
|
|
pdev = get_pdev_slot_func(bus, 15, 0);
|
|
if (!pdev) {
|
|
sbridge_printk(KERN_ERR, "Couldn't find PCI device "
|
|
"%2x.%02d.%d!!!\n",
|
|
bus, 15, 0);
|
|
return -ENODEV;
|
|
}
|
|
|
|
pci_read_config_dword(pdev, MCMTR, &mcmtr);
|
|
if (!IS_ECC_ENABLED(mcmtr)) {
|
|
sbridge_printk(KERN_ERR, "ECC is disabled. Aborting\n");
|
|
return -ENODEV;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static int get_dimm_config(struct mem_ctl_info *mci)
|
|
{
|
|
struct sbridge_pvt *pvt = mci->pvt_info;
|
|
struct dimm_info *dimm;
|
|
unsigned i, j, banks, ranks, rows, cols, npages;
|
|
u64 size;
|
|
u32 reg;
|
|
enum edac_type mode;
|
|
enum mem_type mtype;
|
|
|
|
pci_read_config_dword(pvt->pci_br0, SAD_TARGET, ®);
|
|
pvt->sbridge_dev->source_id = SOURCE_ID(reg);
|
|
|
|
pci_read_config_dword(pvt->pci_br0, SAD_CONTROL, ®);
|
|
pvt->sbridge_dev->node_id = NODE_ID(reg);
|
|
edac_dbg(0, "mc#%d: Node ID: %d, source ID: %d\n",
|
|
pvt->sbridge_dev->mc,
|
|
pvt->sbridge_dev->node_id,
|
|
pvt->sbridge_dev->source_id);
|
|
|
|
pci_read_config_dword(pvt->pci_ras, RASENABLES, ®);
|
|
if (IS_MIRROR_ENABLED(reg)) {
|
|
edac_dbg(0, "Memory mirror is enabled\n");
|
|
pvt->is_mirrored = true;
|
|
} else {
|
|
edac_dbg(0, "Memory mirror is disabled\n");
|
|
pvt->is_mirrored = false;
|
|
}
|
|
|
|
pci_read_config_dword(pvt->pci_ta, MCMTR, &pvt->info.mcmtr);
|
|
if (IS_LOCKSTEP_ENABLED(pvt->info.mcmtr)) {
|
|
edac_dbg(0, "Lockstep is enabled\n");
|
|
mode = EDAC_S8ECD8ED;
|
|
pvt->is_lockstep = true;
|
|
} else {
|
|
edac_dbg(0, "Lockstep is disabled\n");
|
|
mode = EDAC_S4ECD4ED;
|
|
pvt->is_lockstep = false;
|
|
}
|
|
if (IS_CLOSE_PG(pvt->info.mcmtr)) {
|
|
edac_dbg(0, "address map is on closed page mode\n");
|
|
pvt->is_close_pg = true;
|
|
} else {
|
|
edac_dbg(0, "address map is on open page mode\n");
|
|
pvt->is_close_pg = false;
|
|
}
|
|
|
|
if (pvt->pci_ddrio) {
|
|
pci_read_config_dword(pvt->pci_ddrio, pvt->info.rankcfgr,
|
|
®);
|
|
if (IS_RDIMM_ENABLED(reg)) {
|
|
/* FIXME: Can also be LRDIMM */
|
|
edac_dbg(0, "Memory is registered\n");
|
|
mtype = MEM_RDDR3;
|
|
} else {
|
|
edac_dbg(0, "Memory is unregistered\n");
|
|
mtype = MEM_DDR3;
|
|
}
|
|
} else {
|
|
edac_dbg(0, "Cannot determine memory type\n");
|
|
mtype = MEM_UNKNOWN;
|
|
}
|
|
|
|
/* On all supported DDR3 DIMM types, there are 8 banks available */
|
|
banks = 8;
|
|
|
|
for (i = 0; i < NUM_CHANNELS; i++) {
|
|
u32 mtr;
|
|
|
|
for (j = 0; j < ARRAY_SIZE(mtr_regs); j++) {
|
|
dimm = EDAC_DIMM_PTR(mci->layers, mci->dimms, mci->n_layers,
|
|
i, j, 0);
|
|
pci_read_config_dword(pvt->pci_tad[i],
|
|
mtr_regs[j], &mtr);
|
|
edac_dbg(4, "Channel #%d MTR%d = %x\n", i, j, mtr);
|
|
if (IS_DIMM_PRESENT(mtr)) {
|
|
pvt->channel[i].dimms++;
|
|
|
|
ranks = numrank(mtr);
|
|
rows = numrow(mtr);
|
|
cols = numcol(mtr);
|
|
|
|
/* DDR3 has 8 I/O banks */
|
|
size = ((u64)rows * cols * banks * ranks) >> (20 - 3);
|
|
npages = MiB_TO_PAGES(size);
|
|
|
|
edac_dbg(0, "mc#%d: channel %d, dimm %d, %Ld Mb (%d pages) bank: %d, rank: %d, row: %#x, col: %#x\n",
|
|
pvt->sbridge_dev->mc, i, j,
|
|
size, npages,
|
|
banks, ranks, rows, cols);
|
|
|
|
dimm->nr_pages = npages;
|
|
dimm->grain = 32;
|
|
dimm->dtype = (banks == 8) ? DEV_X8 : DEV_X4;
|
|
dimm->mtype = mtype;
|
|
dimm->edac_mode = mode;
|
|
snprintf(dimm->label, sizeof(dimm->label),
|
|
"CPU_SrcID#%u_Channel#%u_DIMM#%u",
|
|
pvt->sbridge_dev->source_id, i, j);
|
|
}
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void get_memory_layout(const struct mem_ctl_info *mci)
|
|
{
|
|
struct sbridge_pvt *pvt = mci->pvt_info;
|
|
int i, j, k, n_sads, n_tads, sad_interl;
|
|
u32 reg;
|
|
u64 limit, prv = 0;
|
|
u64 tmp_mb;
|
|
u32 mb, kb;
|
|
u32 rir_way;
|
|
|
|
/*
|
|
* Step 1) Get TOLM/TOHM ranges
|
|
*/
|
|
|
|
pvt->tolm = pvt->info.get_tolm(pvt);
|
|
tmp_mb = (1 + pvt->tolm) >> 20;
|
|
|
|
mb = div_u64_rem(tmp_mb, 1000, &kb);
|
|
edac_dbg(0, "TOLM: %u.%03u GB (0x%016Lx)\n", mb, kb, (u64)pvt->tolm);
|
|
|
|
/* Address range is already 45:25 */
|
|
pvt->tohm = pvt->info.get_tohm(pvt);
|
|
tmp_mb = (1 + pvt->tohm) >> 20;
|
|
|
|
mb = div_u64_rem(tmp_mb, 1000, &kb);
|
|
edac_dbg(0, "TOHM: %u.%03u GB (0x%016Lx)\n", mb, kb, (u64)pvt->tohm);
|
|
|
|
/*
|
|
* Step 2) Get SAD range and SAD Interleave list
|
|
* TAD registers contain the interleave wayness. However, it
|
|
* seems simpler to just discover it indirectly, with the
|
|
* algorithm bellow.
|
|
*/
|
|
prv = 0;
|
|
for (n_sads = 0; n_sads < pvt->info.max_sad; n_sads++) {
|
|
/* SAD_LIMIT Address range is 45:26 */
|
|
pci_read_config_dword(pvt->pci_sad0, pvt->info.dram_rule[n_sads],
|
|
®);
|
|
limit = SAD_LIMIT(reg);
|
|
|
|
if (!DRAM_RULE_ENABLE(reg))
|
|
continue;
|
|
|
|
if (limit <= prv)
|
|
break;
|
|
|
|
tmp_mb = (limit + 1) >> 20;
|
|
mb = div_u64_rem(tmp_mb, 1000, &kb);
|
|
edac_dbg(0, "SAD#%d %s up to %u.%03u GB (0x%016Lx) Interleave: %s reg=0x%08x\n",
|
|
n_sads,
|
|
get_dram_attr(reg),
|
|
mb, kb,
|
|
((u64)tmp_mb) << 20L,
|
|
INTERLEAVE_MODE(reg) ? "8:6" : "[8:6]XOR[18:16]",
|
|
reg);
|
|
prv = limit;
|
|
|
|
pci_read_config_dword(pvt->pci_sad0, pvt->info.interleave_list[n_sads],
|
|
®);
|
|
sad_interl = sad_pkg(pvt->info.interleave_pkg, reg, 0);
|
|
for (j = 0; j < 8; j++) {
|
|
u32 pkg = sad_pkg(pvt->info.interleave_pkg, reg, j);
|
|
if (j > 0 && sad_interl == pkg)
|
|
break;
|
|
|
|
edac_dbg(0, "SAD#%d, interleave #%d: %d\n",
|
|
n_sads, j, pkg);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Step 3) Get TAD range
|
|
*/
|
|
prv = 0;
|
|
for (n_tads = 0; n_tads < MAX_TAD; n_tads++) {
|
|
pci_read_config_dword(pvt->pci_ha0, tad_dram_rule[n_tads],
|
|
®);
|
|
limit = TAD_LIMIT(reg);
|
|
if (limit <= prv)
|
|
break;
|
|
tmp_mb = (limit + 1) >> 20;
|
|
|
|
mb = div_u64_rem(tmp_mb, 1000, &kb);
|
|
edac_dbg(0, "TAD#%d: up to %u.%03u GB (0x%016Lx), socket interleave %d, memory interleave %d, TGT: %d, %d, %d, %d, reg=0x%08x\n",
|
|
n_tads, mb, kb,
|
|
((u64)tmp_mb) << 20L,
|
|
(u32)TAD_SOCK(reg),
|
|
(u32)TAD_CH(reg),
|
|
(u32)TAD_TGT0(reg),
|
|
(u32)TAD_TGT1(reg),
|
|
(u32)TAD_TGT2(reg),
|
|
(u32)TAD_TGT3(reg),
|
|
reg);
|
|
prv = limit;
|
|
}
|
|
|
|
/*
|
|
* Step 4) Get TAD offsets, per each channel
|
|
*/
|
|
for (i = 0; i < NUM_CHANNELS; i++) {
|
|
if (!pvt->channel[i].dimms)
|
|
continue;
|
|
for (j = 0; j < n_tads; j++) {
|
|
pci_read_config_dword(pvt->pci_tad[i],
|
|
tad_ch_nilv_offset[j],
|
|
®);
|
|
tmp_mb = TAD_OFFSET(reg) >> 20;
|
|
mb = div_u64_rem(tmp_mb, 1000, &kb);
|
|
edac_dbg(0, "TAD CH#%d, offset #%d: %u.%03u GB (0x%016Lx), reg=0x%08x\n",
|
|
i, j,
|
|
mb, kb,
|
|
((u64)tmp_mb) << 20L,
|
|
reg);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Step 6) Get RIR Wayness/Limit, per each channel
|
|
*/
|
|
for (i = 0; i < NUM_CHANNELS; i++) {
|
|
if (!pvt->channel[i].dimms)
|
|
continue;
|
|
for (j = 0; j < MAX_RIR_RANGES; j++) {
|
|
pci_read_config_dword(pvt->pci_tad[i],
|
|
rir_way_limit[j],
|
|
®);
|
|
|
|
if (!IS_RIR_VALID(reg))
|
|
continue;
|
|
|
|
tmp_mb = RIR_LIMIT(reg) >> 20;
|
|
rir_way = 1 << RIR_WAY(reg);
|
|
mb = div_u64_rem(tmp_mb, 1000, &kb);
|
|
edac_dbg(0, "CH#%d RIR#%d, limit: %u.%03u GB (0x%016Lx), way: %d, reg=0x%08x\n",
|
|
i, j,
|
|
mb, kb,
|
|
((u64)tmp_mb) << 20L,
|
|
rir_way,
|
|
reg);
|
|
|
|
for (k = 0; k < rir_way; k++) {
|
|
pci_read_config_dword(pvt->pci_tad[i],
|
|
rir_offset[j][k],
|
|
®);
|
|
tmp_mb = RIR_OFFSET(reg) << 6;
|
|
|
|
mb = div_u64_rem(tmp_mb, 1000, &kb);
|
|
edac_dbg(0, "CH#%d RIR#%d INTL#%d, offset %u.%03u GB (0x%016Lx), tgt: %d, reg=0x%08x\n",
|
|
i, j, k,
|
|
mb, kb,
|
|
((u64)tmp_mb) << 20L,
|
|
(u32)RIR_RNK_TGT(reg),
|
|
reg);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
struct mem_ctl_info *get_mci_for_node_id(u8 node_id)
|
|
{
|
|
struct sbridge_dev *sbridge_dev;
|
|
|
|
list_for_each_entry(sbridge_dev, &sbridge_edac_list, list) {
|
|
if (sbridge_dev->node_id == node_id)
|
|
return sbridge_dev->mci;
|
|
}
|
|
return NULL;
|
|
}
|
|
|
|
static int get_memory_error_data(struct mem_ctl_info *mci,
|
|
u64 addr,
|
|
u8 *socket,
|
|
long *channel_mask,
|
|
u8 *rank,
|
|
char **area_type, char *msg)
|
|
{
|
|
struct mem_ctl_info *new_mci;
|
|
struct sbridge_pvt *pvt = mci->pvt_info;
|
|
struct pci_dev *pci_ha;
|
|
int n_rir, n_sads, n_tads, sad_way, sck_xch;
|
|
int sad_interl, idx, base_ch;
|
|
int interleave_mode;
|
|
unsigned sad_interleave[pvt->info.max_interleave];
|
|
u32 reg;
|
|
u8 ch_way, sck_way, pkg, sad_ha = 0;
|
|
u32 tad_offset;
|
|
u32 rir_way;
|
|
u32 mb, kb;
|
|
u64 ch_addr, offset, limit = 0, prv = 0;
|
|
|
|
|
|
/*
|
|
* Step 0) Check if the address is at special memory ranges
|
|
* The check bellow is probably enough to fill all cases where
|
|
* the error is not inside a memory, except for the legacy
|
|
* range (e. g. VGA addresses). It is unlikely, however, that the
|
|
* memory controller would generate an error on that range.
|
|
*/
|
|
if ((addr > (u64) pvt->tolm) && (addr < (1LL << 32))) {
|
|
sprintf(msg, "Error at TOLM area, on addr 0x%08Lx", addr);
|
|
return -EINVAL;
|
|
}
|
|
if (addr >= (u64)pvt->tohm) {
|
|
sprintf(msg, "Error at MMIOH area, on addr 0x%016Lx", addr);
|
|
return -EINVAL;
|
|
}
|
|
|
|
/*
|
|
* Step 1) Get socket
|
|
*/
|
|
for (n_sads = 0; n_sads < pvt->info.max_sad; n_sads++) {
|
|
pci_read_config_dword(pvt->pci_sad0, pvt->info.dram_rule[n_sads],
|
|
®);
|
|
|
|
if (!DRAM_RULE_ENABLE(reg))
|
|
continue;
|
|
|
|
limit = SAD_LIMIT(reg);
|
|
if (limit <= prv) {
|
|
sprintf(msg, "Can't discover the memory socket");
|
|
return -EINVAL;
|
|
}
|
|
if (addr <= limit)
|
|
break;
|
|
prv = limit;
|
|
}
|
|
if (n_sads == pvt->info.max_sad) {
|
|
sprintf(msg, "Can't discover the memory socket");
|
|
return -EINVAL;
|
|
}
|
|
*area_type = get_dram_attr(reg);
|
|
interleave_mode = INTERLEAVE_MODE(reg);
|
|
|
|
pci_read_config_dword(pvt->pci_sad0, pvt->info.interleave_list[n_sads],
|
|
®);
|
|
|
|
if (pvt->info.type == SANDY_BRIDGE) {
|
|
sad_interl = sad_pkg(pvt->info.interleave_pkg, reg, 0);
|
|
for (sad_way = 0; sad_way < 8; sad_way++) {
|
|
u32 pkg = sad_pkg(pvt->info.interleave_pkg, reg, sad_way);
|
|
if (sad_way > 0 && sad_interl == pkg)
|
|
break;
|
|
sad_interleave[sad_way] = pkg;
|
|
edac_dbg(0, "SAD interleave #%d: %d\n",
|
|
sad_way, sad_interleave[sad_way]);
|
|
}
|
|
edac_dbg(0, "mc#%d: Error detected on SAD#%d: address 0x%016Lx < 0x%016Lx, Interleave [%d:6]%s\n",
|
|
pvt->sbridge_dev->mc,
|
|
n_sads,
|
|
addr,
|
|
limit,
|
|
sad_way + 7,
|
|
!interleave_mode ? "" : "XOR[18:16]");
|
|
if (interleave_mode)
|
|
idx = ((addr >> 6) ^ (addr >> 16)) & 7;
|
|
else
|
|
idx = (addr >> 6) & 7;
|
|
switch (sad_way) {
|
|
case 1:
|
|
idx = 0;
|
|
break;
|
|
case 2:
|
|
idx = idx & 1;
|
|
break;
|
|
case 4:
|
|
idx = idx & 3;
|
|
break;
|
|
case 8:
|
|
break;
|
|
default:
|
|
sprintf(msg, "Can't discover socket interleave");
|
|
return -EINVAL;
|
|
}
|
|
*socket = sad_interleave[idx];
|
|
edac_dbg(0, "SAD interleave index: %d (wayness %d) = CPU socket %d\n",
|
|
idx, sad_way, *socket);
|
|
} else {
|
|
/* Ivy Bridge's SAD mode doesn't support XOR interleave mode */
|
|
idx = (addr >> 6) & 7;
|
|
pkg = sad_pkg(pvt->info.interleave_pkg, reg, idx);
|
|
*socket = sad_pkg_socket(pkg);
|
|
sad_ha = sad_pkg_ha(pkg);
|
|
edac_dbg(0, "SAD interleave package: %d = CPU socket %d, HA %d\n",
|
|
idx, *socket, sad_ha);
|
|
}
|
|
|
|
/*
|
|
* Move to the proper node structure, in order to access the
|
|
* right PCI registers
|
|
*/
|
|
new_mci = get_mci_for_node_id(*socket);
|
|
if (!new_mci) {
|
|
sprintf(msg, "Struct for socket #%u wasn't initialized",
|
|
*socket);
|
|
return -EINVAL;
|
|
}
|
|
mci = new_mci;
|
|
pvt = mci->pvt_info;
|
|
|
|
/*
|
|
* Step 2) Get memory channel
|
|
*/
|
|
prv = 0;
|
|
if (pvt->info.type == SANDY_BRIDGE)
|
|
pci_ha = pvt->pci_ha0;
|
|
else {
|
|
if (sad_ha)
|
|
pci_ha = pvt->pci_ha1;
|
|
else
|
|
pci_ha = pvt->pci_ha0;
|
|
}
|
|
for (n_tads = 0; n_tads < MAX_TAD; n_tads++) {
|
|
pci_read_config_dword(pci_ha, tad_dram_rule[n_tads], ®);
|
|
limit = TAD_LIMIT(reg);
|
|
if (limit <= prv) {
|
|
sprintf(msg, "Can't discover the memory channel");
|
|
return -EINVAL;
|
|
}
|
|
if (addr <= limit)
|
|
break;
|
|
prv = limit;
|
|
}
|
|
if (n_tads == MAX_TAD) {
|
|
sprintf(msg, "Can't discover the memory channel");
|
|
return -EINVAL;
|
|
}
|
|
|
|
ch_way = TAD_CH(reg) + 1;
|
|
sck_way = TAD_SOCK(reg) + 1;
|
|
|
|
if (ch_way == 3)
|
|
idx = addr >> 6;
|
|
else
|
|
idx = addr >> (6 + sck_way);
|
|
idx = idx % ch_way;
|
|
|
|
/*
|
|
* FIXME: Shouldn't we use CHN_IDX_OFFSET() here, when ch_way == 3 ???
|
|
*/
|
|
switch (idx) {
|
|
case 0:
|
|
base_ch = TAD_TGT0(reg);
|
|
break;
|
|
case 1:
|
|
base_ch = TAD_TGT1(reg);
|
|
break;
|
|
case 2:
|
|
base_ch = TAD_TGT2(reg);
|
|
break;
|
|
case 3:
|
|
base_ch = TAD_TGT3(reg);
|
|
break;
|
|
default:
|
|
sprintf(msg, "Can't discover the TAD target");
|
|
return -EINVAL;
|
|
}
|
|
*channel_mask = 1 << base_ch;
|
|
|
|
pci_read_config_dword(pvt->pci_tad[base_ch],
|
|
tad_ch_nilv_offset[n_tads],
|
|
&tad_offset);
|
|
|
|
if (pvt->is_mirrored) {
|
|
*channel_mask |= 1 << ((base_ch + 2) % 4);
|
|
switch(ch_way) {
|
|
case 2:
|
|
case 4:
|
|
sck_xch = 1 << sck_way * (ch_way >> 1);
|
|
break;
|
|
default:
|
|
sprintf(msg, "Invalid mirror set. Can't decode addr");
|
|
return -EINVAL;
|
|
}
|
|
} else
|
|
sck_xch = (1 << sck_way) * ch_way;
|
|
|
|
if (pvt->is_lockstep)
|
|
*channel_mask |= 1 << ((base_ch + 1) % 4);
|
|
|
|
offset = TAD_OFFSET(tad_offset);
|
|
|
|
edac_dbg(0, "TAD#%d: address 0x%016Lx < 0x%016Lx, socket interleave %d, channel interleave %d (offset 0x%08Lx), index %d, base ch: %d, ch mask: 0x%02lx\n",
|
|
n_tads,
|
|
addr,
|
|
limit,
|
|
(u32)TAD_SOCK(reg),
|
|
ch_way,
|
|
offset,
|
|
idx,
|
|
base_ch,
|
|
*channel_mask);
|
|
|
|
/* Calculate channel address */
|
|
/* Remove the TAD offset */
|
|
|
|
if (offset > addr) {
|
|
sprintf(msg, "Can't calculate ch addr: TAD offset 0x%08Lx is too high for addr 0x%08Lx!",
|
|
offset, addr);
|
|
return -EINVAL;
|
|
}
|
|
addr -= offset;
|
|
/* Store the low bits [0:6] of the addr */
|
|
ch_addr = addr & 0x7f;
|
|
/* Remove socket wayness and remove 6 bits */
|
|
addr >>= 6;
|
|
addr = div_u64(addr, sck_xch);
|
|
#if 0
|
|
/* Divide by channel way */
|
|
addr = addr / ch_way;
|
|
#endif
|
|
/* Recover the last 6 bits */
|
|
ch_addr |= addr << 6;
|
|
|
|
/*
|
|
* Step 3) Decode rank
|
|
*/
|
|
for (n_rir = 0; n_rir < MAX_RIR_RANGES; n_rir++) {
|
|
pci_read_config_dword(pvt->pci_tad[base_ch],
|
|
rir_way_limit[n_rir],
|
|
®);
|
|
|
|
if (!IS_RIR_VALID(reg))
|
|
continue;
|
|
|
|
limit = RIR_LIMIT(reg);
|
|
mb = div_u64_rem(limit >> 20, 1000, &kb);
|
|
edac_dbg(0, "RIR#%d, limit: %u.%03u GB (0x%016Lx), way: %d\n",
|
|
n_rir,
|
|
mb, kb,
|
|
limit,
|
|
1 << RIR_WAY(reg));
|
|
if (ch_addr <= limit)
|
|
break;
|
|
}
|
|
if (n_rir == MAX_RIR_RANGES) {
|
|
sprintf(msg, "Can't discover the memory rank for ch addr 0x%08Lx",
|
|
ch_addr);
|
|
return -EINVAL;
|
|
}
|
|
rir_way = RIR_WAY(reg);
|
|
if (pvt->is_close_pg)
|
|
idx = (ch_addr >> 6);
|
|
else
|
|
idx = (ch_addr >> 13); /* FIXME: Datasheet says to shift by 15 */
|
|
idx %= 1 << rir_way;
|
|
|
|
pci_read_config_dword(pvt->pci_tad[base_ch],
|
|
rir_offset[n_rir][idx],
|
|
®);
|
|
*rank = RIR_RNK_TGT(reg);
|
|
|
|
edac_dbg(0, "RIR#%d: channel address 0x%08Lx < 0x%08Lx, RIR interleave %d, index %d\n",
|
|
n_rir,
|
|
ch_addr,
|
|
limit,
|
|
rir_way,
|
|
idx);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/****************************************************************************
|
|
Device initialization routines: put/get, init/exit
|
|
****************************************************************************/
|
|
|
|
/*
|
|
* sbridge_put_all_devices 'put' all the devices that we have
|
|
* reserved via 'get'
|
|
*/
|
|
static void sbridge_put_devices(struct sbridge_dev *sbridge_dev)
|
|
{
|
|
int i;
|
|
|
|
edac_dbg(0, "\n");
|
|
for (i = 0; i < sbridge_dev->n_devs; i++) {
|
|
struct pci_dev *pdev = sbridge_dev->pdev[i];
|
|
if (!pdev)
|
|
continue;
|
|
edac_dbg(0, "Removing dev %02x:%02x.%d\n",
|
|
pdev->bus->number,
|
|
PCI_SLOT(pdev->devfn), PCI_FUNC(pdev->devfn));
|
|
pci_dev_put(pdev);
|
|
}
|
|
}
|
|
|
|
static void sbridge_put_all_devices(void)
|
|
{
|
|
struct sbridge_dev *sbridge_dev, *tmp;
|
|
|
|
list_for_each_entry_safe(sbridge_dev, tmp, &sbridge_edac_list, list) {
|
|
sbridge_put_devices(sbridge_dev);
|
|
free_sbridge_dev(sbridge_dev);
|
|
}
|
|
}
|
|
|
|
static int sbridge_get_onedevice(struct pci_dev **prev,
|
|
u8 *num_mc,
|
|
const struct pci_id_table *table,
|
|
const unsigned devno)
|
|
{
|
|
struct sbridge_dev *sbridge_dev;
|
|
const struct pci_id_descr *dev_descr = &table->descr[devno];
|
|
|
|
struct pci_dev *pdev = NULL;
|
|
u8 bus = 0;
|
|
|
|
sbridge_printk(KERN_INFO,
|
|
"Seeking for: dev %02x.%d PCI ID %04x:%04x\n",
|
|
dev_descr->dev, dev_descr->func,
|
|
PCI_VENDOR_ID_INTEL, dev_descr->dev_id);
|
|
|
|
pdev = pci_get_device(PCI_VENDOR_ID_INTEL,
|
|
dev_descr->dev_id, *prev);
|
|
|
|
if (!pdev) {
|
|
if (*prev) {
|
|
*prev = pdev;
|
|
return 0;
|
|
}
|
|
|
|
if (dev_descr->optional)
|
|
return 0;
|
|
|
|
if (devno == 0)
|
|
return -ENODEV;
|
|
|
|
sbridge_printk(KERN_INFO,
|
|
"Device not found: dev %02x.%d PCI ID %04x:%04x\n",
|
|
dev_descr->dev, dev_descr->func,
|
|
PCI_VENDOR_ID_INTEL, dev_descr->dev_id);
|
|
|
|
/* End of list, leave */
|
|
return -ENODEV;
|
|
}
|
|
bus = pdev->bus->number;
|
|
|
|
sbridge_dev = get_sbridge_dev(bus);
|
|
if (!sbridge_dev) {
|
|
sbridge_dev = alloc_sbridge_dev(bus, table);
|
|
if (!sbridge_dev) {
|
|
pci_dev_put(pdev);
|
|
return -ENOMEM;
|
|
}
|
|
(*num_mc)++;
|
|
}
|
|
|
|
if (sbridge_dev->pdev[devno]) {
|
|
sbridge_printk(KERN_ERR,
|
|
"Duplicated device for "
|
|
"dev %02x:%d.%d PCI ID %04x:%04x\n",
|
|
bus, dev_descr->dev, dev_descr->func,
|
|
PCI_VENDOR_ID_INTEL, dev_descr->dev_id);
|
|
pci_dev_put(pdev);
|
|
return -ENODEV;
|
|
}
|
|
|
|
sbridge_dev->pdev[devno] = pdev;
|
|
|
|
/* Sanity check */
|
|
if (unlikely(PCI_SLOT(pdev->devfn) != dev_descr->dev ||
|
|
PCI_FUNC(pdev->devfn) != dev_descr->func)) {
|
|
sbridge_printk(KERN_ERR,
|
|
"Device PCI ID %04x:%04x "
|
|
"has dev %02x:%d.%d instead of dev %02x:%02x.%d\n",
|
|
PCI_VENDOR_ID_INTEL, dev_descr->dev_id,
|
|
bus, PCI_SLOT(pdev->devfn), PCI_FUNC(pdev->devfn),
|
|
bus, dev_descr->dev, dev_descr->func);
|
|
return -ENODEV;
|
|
}
|
|
|
|
/* Be sure that the device is enabled */
|
|
if (unlikely(pci_enable_device(pdev) < 0)) {
|
|
sbridge_printk(KERN_ERR,
|
|
"Couldn't enable "
|
|
"dev %02x:%d.%d PCI ID %04x:%04x\n",
|
|
bus, dev_descr->dev, dev_descr->func,
|
|
PCI_VENDOR_ID_INTEL, dev_descr->dev_id);
|
|
return -ENODEV;
|
|
}
|
|
|
|
edac_dbg(0, "Detected dev %02x:%d.%d PCI ID %04x:%04x\n",
|
|
bus, dev_descr->dev, dev_descr->func,
|
|
PCI_VENDOR_ID_INTEL, dev_descr->dev_id);
|
|
|
|
/*
|
|
* As stated on drivers/pci/search.c, the reference count for
|
|
* @from is always decremented if it is not %NULL. So, as we need
|
|
* to get all devices up to null, we need to do a get for the device
|
|
*/
|
|
pci_dev_get(pdev);
|
|
|
|
*prev = pdev;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* sbridge_get_all_devices - Find and perform 'get' operation on the MCH's
|
|
* device/functions we want to reference for this driver.
|
|
* Need to 'get' device 16 func 1 and func 2.
|
|
* @num_mc: pointer to the memory controllers count, to be incremented in case
|
|
* of success.
|
|
* @table: model specific table
|
|
*
|
|
* returns 0 in case of success or error code
|
|
*/
|
|
static int sbridge_get_all_devices(u8 *num_mc,
|
|
const struct pci_id_table *table)
|
|
{
|
|
int i, rc;
|
|
struct pci_dev *pdev = NULL;
|
|
|
|
while (table && table->descr) {
|
|
for (i = 0; i < table->n_devs; i++) {
|
|
pdev = NULL;
|
|
do {
|
|
rc = sbridge_get_onedevice(&pdev, num_mc,
|
|
table, i);
|
|
if (rc < 0) {
|
|
if (i == 0) {
|
|
i = table->n_devs;
|
|
break;
|
|
}
|
|
sbridge_put_all_devices();
|
|
return -ENODEV;
|
|
}
|
|
} while (pdev);
|
|
}
|
|
table++;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int sbridge_mci_bind_devs(struct mem_ctl_info *mci,
|
|
struct sbridge_dev *sbridge_dev)
|
|
{
|
|
struct sbridge_pvt *pvt = mci->pvt_info;
|
|
struct pci_dev *pdev;
|
|
int i, func, slot;
|
|
|
|
for (i = 0; i < sbridge_dev->n_devs; i++) {
|
|
pdev = sbridge_dev->pdev[i];
|
|
if (!pdev)
|
|
continue;
|
|
slot = PCI_SLOT(pdev->devfn);
|
|
func = PCI_FUNC(pdev->devfn);
|
|
switch (slot) {
|
|
case 12:
|
|
switch (func) {
|
|
case 6:
|
|
pvt->pci_sad0 = pdev;
|
|
break;
|
|
case 7:
|
|
pvt->pci_sad1 = pdev;
|
|
break;
|
|
default:
|
|
goto error;
|
|
}
|
|
break;
|
|
case 13:
|
|
switch (func) {
|
|
case 6:
|
|
pvt->pci_br0 = pdev;
|
|
break;
|
|
default:
|
|
goto error;
|
|
}
|
|
break;
|
|
case 14:
|
|
switch (func) {
|
|
case 0:
|
|
pvt->pci_ha0 = pdev;
|
|
break;
|
|
default:
|
|
goto error;
|
|
}
|
|
break;
|
|
case 15:
|
|
switch (func) {
|
|
case 0:
|
|
pvt->pci_ta = pdev;
|
|
break;
|
|
case 1:
|
|
pvt->pci_ras = pdev;
|
|
break;
|
|
case 2:
|
|
case 3:
|
|
case 4:
|
|
case 5:
|
|
pvt->pci_tad[func - 2] = pdev;
|
|
break;
|
|
default:
|
|
goto error;
|
|
}
|
|
break;
|
|
case 17:
|
|
switch (func) {
|
|
case 0:
|
|
pvt->pci_ddrio = pdev;
|
|
break;
|
|
default:
|
|
goto error;
|
|
}
|
|
break;
|
|
default:
|
|
goto error;
|
|
}
|
|
|
|
edac_dbg(0, "Associated PCI %02x.%02d.%d with dev = %p\n",
|
|
sbridge_dev->bus,
|
|
PCI_SLOT(pdev->devfn), PCI_FUNC(pdev->devfn),
|
|
pdev);
|
|
}
|
|
|
|
/* Check if everything were registered */
|
|
if (!pvt->pci_sad0 || !pvt->pci_sad1 || !pvt->pci_ha0 ||
|
|
!pvt-> pci_tad || !pvt->pci_ras || !pvt->pci_ta)
|
|
goto enodev;
|
|
|
|
for (i = 0; i < NUM_CHANNELS; i++) {
|
|
if (!pvt->pci_tad[i])
|
|
goto enodev;
|
|
}
|
|
return 0;
|
|
|
|
enodev:
|
|
sbridge_printk(KERN_ERR, "Some needed devices are missing\n");
|
|
return -ENODEV;
|
|
|
|
error:
|
|
sbridge_printk(KERN_ERR, "Device %d, function %d "
|
|
"is out of the expected range\n",
|
|
slot, func);
|
|
return -EINVAL;
|
|
}
|
|
|
|
static int ibridge_mci_bind_devs(struct mem_ctl_info *mci,
|
|
struct sbridge_dev *sbridge_dev)
|
|
{
|
|
struct sbridge_pvt *pvt = mci->pvt_info;
|
|
struct pci_dev *pdev, *tmp;
|
|
int i, func, slot;
|
|
bool mode_2ha = false;
|
|
|
|
tmp = pci_get_device(PCI_VENDOR_ID_INTEL,
|
|
PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1, NULL);
|
|
if (tmp) {
|
|
mode_2ha = true;
|
|
pci_dev_put(tmp);
|
|
}
|
|
|
|
for (i = 0; i < sbridge_dev->n_devs; i++) {
|
|
pdev = sbridge_dev->pdev[i];
|
|
if (!pdev)
|
|
continue;
|
|
slot = PCI_SLOT(pdev->devfn);
|
|
func = PCI_FUNC(pdev->devfn);
|
|
|
|
switch (slot) {
|
|
case 14:
|
|
if (func == 0) {
|
|
pvt->pci_ha0 = pdev;
|
|
break;
|
|
}
|
|
goto error;
|
|
case 15:
|
|
switch (func) {
|
|
case 0:
|
|
pvt->pci_ta = pdev;
|
|
break;
|
|
case 1:
|
|
pvt->pci_ras = pdev;
|
|
break;
|
|
case 4:
|
|
case 5:
|
|
/* if we have 2 HAs active, channels 2 and 3
|
|
* are in other device */
|
|
if (mode_2ha)
|
|
break;
|
|
/* fall through */
|
|
case 2:
|
|
case 3:
|
|
pvt->pci_tad[func - 2] = pdev;
|
|
break;
|
|
default:
|
|
goto error;
|
|
}
|
|
break;
|
|
case 17:
|
|
if (func == 4) {
|
|
pvt->pci_ddrio = pdev;
|
|
break;
|
|
} else if (func == 0) {
|
|
if (!mode_2ha)
|
|
pvt->pci_ddrio = pdev;
|
|
break;
|
|
}
|
|
goto error;
|
|
case 22:
|
|
switch (func) {
|
|
case 0:
|
|
pvt->pci_sad0 = pdev;
|
|
break;
|
|
case 1:
|
|
pvt->pci_br0 = pdev;
|
|
break;
|
|
case 2:
|
|
pvt->pci_br1 = pdev;
|
|
break;
|
|
default:
|
|
goto error;
|
|
}
|
|
break;
|
|
case 28:
|
|
if (func == 0) {
|
|
pvt->pci_ha1 = pdev;
|
|
break;
|
|
}
|
|
goto error;
|
|
case 29:
|
|
/* we shouldn't have this device if we have just one
|
|
* HA present */
|
|
WARN_ON(!mode_2ha);
|
|
if (func == 2 || func == 3) {
|
|
pvt->pci_tad[func] = pdev;
|
|
break;
|
|
}
|
|
goto error;
|
|
default:
|
|
goto error;
|
|
}
|
|
|
|
edac_dbg(0, "Associated PCI %02x.%02d.%d with dev = %p\n",
|
|
sbridge_dev->bus,
|
|
PCI_SLOT(pdev->devfn), PCI_FUNC(pdev->devfn),
|
|
pdev);
|
|
}
|
|
|
|
/* Check if everything were registered */
|
|
if (!pvt->pci_sad0 || !pvt->pci_ha0 || !pvt->pci_br0 ||
|
|
!pvt->pci_br1 || !pvt->pci_tad || !pvt->pci_ras ||
|
|
!pvt->pci_ta)
|
|
goto enodev;
|
|
|
|
for (i = 0; i < NUM_CHANNELS; i++) {
|
|
if (!pvt->pci_tad[i])
|
|
goto enodev;
|
|
}
|
|
return 0;
|
|
|
|
enodev:
|
|
sbridge_printk(KERN_ERR, "Some needed devices are missing\n");
|
|
return -ENODEV;
|
|
|
|
error:
|
|
sbridge_printk(KERN_ERR,
|
|
"Device %d, function %d is out of the expected range\n",
|
|
slot, func);
|
|
return -EINVAL;
|
|
}
|
|
|
|
/****************************************************************************
|
|
Error check routines
|
|
****************************************************************************/
|
|
|
|
/*
|
|
* While Sandy Bridge has error count registers, SMI BIOS read values from
|
|
* and resets the counters. So, they are not reliable for the OS to read
|
|
* from them. So, we have no option but to just trust on whatever MCE is
|
|
* telling us about the errors.
|
|
*/
|
|
static void sbridge_mce_output_error(struct mem_ctl_info *mci,
|
|
const struct mce *m)
|
|
{
|
|
struct mem_ctl_info *new_mci;
|
|
struct sbridge_pvt *pvt = mci->pvt_info;
|
|
enum hw_event_mc_err_type tp_event;
|
|
char *type, *optype, msg[256];
|
|
bool ripv = GET_BITFIELD(m->mcgstatus, 0, 0);
|
|
bool overflow = GET_BITFIELD(m->status, 62, 62);
|
|
bool uncorrected_error = GET_BITFIELD(m->status, 61, 61);
|
|
bool recoverable;
|
|
u32 core_err_cnt = GET_BITFIELD(m->status, 38, 52);
|
|
u32 mscod = GET_BITFIELD(m->status, 16, 31);
|
|
u32 errcode = GET_BITFIELD(m->status, 0, 15);
|
|
u32 channel = GET_BITFIELD(m->status, 0, 3);
|
|
u32 optypenum = GET_BITFIELD(m->status, 4, 6);
|
|
long channel_mask, first_channel;
|
|
u8 rank, socket;
|
|
int rc, dimm;
|
|
char *area_type = NULL;
|
|
|
|
if (pvt->info.type == IVY_BRIDGE)
|
|
recoverable = true;
|
|
else
|
|
recoverable = GET_BITFIELD(m->status, 56, 56);
|
|
|
|
if (uncorrected_error) {
|
|
if (ripv) {
|
|
type = "FATAL";
|
|
tp_event = HW_EVENT_ERR_FATAL;
|
|
} else {
|
|
type = "NON_FATAL";
|
|
tp_event = HW_EVENT_ERR_UNCORRECTED;
|
|
}
|
|
} else {
|
|
type = "CORRECTED";
|
|
tp_event = HW_EVENT_ERR_CORRECTED;
|
|
}
|
|
|
|
/*
|
|
* According with Table 15-9 of the Intel Architecture spec vol 3A,
|
|
* memory errors should fit in this mask:
|
|
* 000f 0000 1mmm cccc (binary)
|
|
* where:
|
|
* f = Correction Report Filtering Bit. If 1, subsequent errors
|
|
* won't be shown
|
|
* mmm = error type
|
|
* cccc = channel
|
|
* If the mask doesn't match, report an error to the parsing logic
|
|
*/
|
|
if (! ((errcode & 0xef80) == 0x80)) {
|
|
optype = "Can't parse: it is not a mem";
|
|
} else {
|
|
switch (optypenum) {
|
|
case 0:
|
|
optype = "generic undef request error";
|
|
break;
|
|
case 1:
|
|
optype = "memory read error";
|
|
break;
|
|
case 2:
|
|
optype = "memory write error";
|
|
break;
|
|
case 3:
|
|
optype = "addr/cmd error";
|
|
break;
|
|
case 4:
|
|
optype = "memory scrubbing error";
|
|
break;
|
|
default:
|
|
optype = "reserved";
|
|
break;
|
|
}
|
|
}
|
|
|
|
/* Only decode errors with an valid address (ADDRV) */
|
|
if (!GET_BITFIELD(m->status, 58, 58))
|
|
return;
|
|
|
|
rc = get_memory_error_data(mci, m->addr, &socket,
|
|
&channel_mask, &rank, &area_type, msg);
|
|
if (rc < 0)
|
|
goto err_parsing;
|
|
new_mci = get_mci_for_node_id(socket);
|
|
if (!new_mci) {
|
|
strcpy(msg, "Error: socket got corrupted!");
|
|
goto err_parsing;
|
|
}
|
|
mci = new_mci;
|
|
pvt = mci->pvt_info;
|
|
|
|
first_channel = find_first_bit(&channel_mask, NUM_CHANNELS);
|
|
|
|
if (rank < 4)
|
|
dimm = 0;
|
|
else if (rank < 8)
|
|
dimm = 1;
|
|
else
|
|
dimm = 2;
|
|
|
|
|
|
/*
|
|
* FIXME: On some memory configurations (mirror, lockstep), the
|
|
* Memory Controller can't point the error to a single DIMM. The
|
|
* EDAC core should be handling the channel mask, in order to point
|
|
* to the group of dimm's where the error may be happening.
|
|
*/
|
|
snprintf(msg, sizeof(msg),
|
|
"%s%s area:%s err_code:%04x:%04x socket:%d channel_mask:%ld rank:%d",
|
|
overflow ? " OVERFLOW" : "",
|
|
(uncorrected_error && recoverable) ? " recoverable" : "",
|
|
area_type,
|
|
mscod, errcode,
|
|
socket,
|
|
channel_mask,
|
|
rank);
|
|
|
|
edac_dbg(0, "%s\n", msg);
|
|
|
|
/* FIXME: need support for channel mask */
|
|
|
|
/* Call the helper to output message */
|
|
edac_mc_handle_error(tp_event, mci, core_err_cnt,
|
|
m->addr >> PAGE_SHIFT, m->addr & ~PAGE_MASK, 0,
|
|
channel, dimm, -1,
|
|
optype, msg);
|
|
return;
|
|
err_parsing:
|
|
edac_mc_handle_error(tp_event, mci, core_err_cnt, 0, 0, 0,
|
|
-1, -1, -1,
|
|
msg, "");
|
|
|
|
}
|
|
|
|
/*
|
|
* sbridge_check_error Retrieve and process errors reported by the
|
|
* hardware. Called by the Core module.
|
|
*/
|
|
static void sbridge_check_error(struct mem_ctl_info *mci)
|
|
{
|
|
struct sbridge_pvt *pvt = mci->pvt_info;
|
|
int i;
|
|
unsigned count = 0;
|
|
struct mce *m;
|
|
|
|
/*
|
|
* MCE first step: Copy all mce errors into a temporary buffer
|
|
* We use a double buffering here, to reduce the risk of
|
|
* loosing an error.
|
|
*/
|
|
smp_rmb();
|
|
count = (pvt->mce_out + MCE_LOG_LEN - pvt->mce_in)
|
|
% MCE_LOG_LEN;
|
|
if (!count)
|
|
return;
|
|
|
|
m = pvt->mce_outentry;
|
|
if (pvt->mce_in + count > MCE_LOG_LEN) {
|
|
unsigned l = MCE_LOG_LEN - pvt->mce_in;
|
|
|
|
memcpy(m, &pvt->mce_entry[pvt->mce_in], sizeof(*m) * l);
|
|
smp_wmb();
|
|
pvt->mce_in = 0;
|
|
count -= l;
|
|
m += l;
|
|
}
|
|
memcpy(m, &pvt->mce_entry[pvt->mce_in], sizeof(*m) * count);
|
|
smp_wmb();
|
|
pvt->mce_in += count;
|
|
|
|
smp_rmb();
|
|
if (pvt->mce_overrun) {
|
|
sbridge_printk(KERN_ERR, "Lost %d memory errors\n",
|
|
pvt->mce_overrun);
|
|
smp_wmb();
|
|
pvt->mce_overrun = 0;
|
|
}
|
|
|
|
/*
|
|
* MCE second step: parse errors and display
|
|
*/
|
|
for (i = 0; i < count; i++)
|
|
sbridge_mce_output_error(mci, &pvt->mce_outentry[i]);
|
|
}
|
|
|
|
/*
|
|
* sbridge_mce_check_error Replicates mcelog routine to get errors
|
|
* This routine simply queues mcelog errors, and
|
|
* return. The error itself should be handled later
|
|
* by sbridge_check_error.
|
|
* WARNING: As this routine should be called at NMI time, extra care should
|
|
* be taken to avoid deadlocks, and to be as fast as possible.
|
|
*/
|
|
static int sbridge_mce_check_error(struct notifier_block *nb, unsigned long val,
|
|
void *data)
|
|
{
|
|
struct mce *mce = (struct mce *)data;
|
|
struct mem_ctl_info *mci;
|
|
struct sbridge_pvt *pvt;
|
|
|
|
mci = get_mci_for_node_id(mce->socketid);
|
|
if (!mci)
|
|
return NOTIFY_BAD;
|
|
pvt = mci->pvt_info;
|
|
|
|
/*
|
|
* Just let mcelog handle it if the error is
|
|
* outside the memory controller. A memory error
|
|
* is indicated by bit 7 = 1 and bits = 8-11,13-15 = 0.
|
|
* bit 12 has an special meaning.
|
|
*/
|
|
if ((mce->status & 0xefff) >> 7 != 1)
|
|
return NOTIFY_DONE;
|
|
|
|
printk("sbridge: HANDLING MCE MEMORY ERROR\n");
|
|
|
|
printk("CPU %d: Machine Check Exception: %Lx Bank %d: %016Lx\n",
|
|
mce->extcpu, mce->mcgstatus, mce->bank, mce->status);
|
|
printk("TSC %llx ", mce->tsc);
|
|
printk("ADDR %llx ", mce->addr);
|
|
printk("MISC %llx ", mce->misc);
|
|
|
|
printk("PROCESSOR %u:%x TIME %llu SOCKET %u APIC %x\n",
|
|
mce->cpuvendor, mce->cpuid, mce->time,
|
|
mce->socketid, mce->apicid);
|
|
|
|
/* Only handle if it is the right mc controller */
|
|
if (cpu_data(mce->cpu).phys_proc_id != pvt->sbridge_dev->mc)
|
|
return NOTIFY_DONE;
|
|
|
|
smp_rmb();
|
|
if ((pvt->mce_out + 1) % MCE_LOG_LEN == pvt->mce_in) {
|
|
smp_wmb();
|
|
pvt->mce_overrun++;
|
|
return NOTIFY_DONE;
|
|
}
|
|
|
|
/* Copy memory error at the ringbuffer */
|
|
memcpy(&pvt->mce_entry[pvt->mce_out], mce, sizeof(*mce));
|
|
smp_wmb();
|
|
pvt->mce_out = (pvt->mce_out + 1) % MCE_LOG_LEN;
|
|
|
|
/* Handle fatal errors immediately */
|
|
if (mce->mcgstatus & 1)
|
|
sbridge_check_error(mci);
|
|
|
|
/* Advice mcelog that the error were handled */
|
|
return NOTIFY_STOP;
|
|
}
|
|
|
|
static struct notifier_block sbridge_mce_dec = {
|
|
.notifier_call = sbridge_mce_check_error,
|
|
};
|
|
|
|
/****************************************************************************
|
|
EDAC register/unregister logic
|
|
****************************************************************************/
|
|
|
|
static void sbridge_unregister_mci(struct sbridge_dev *sbridge_dev)
|
|
{
|
|
struct mem_ctl_info *mci = sbridge_dev->mci;
|
|
struct sbridge_pvt *pvt;
|
|
|
|
if (unlikely(!mci || !mci->pvt_info)) {
|
|
edac_dbg(0, "MC: dev = %p\n", &sbridge_dev->pdev[0]->dev);
|
|
|
|
sbridge_printk(KERN_ERR, "Couldn't find mci handler\n");
|
|
return;
|
|
}
|
|
|
|
pvt = mci->pvt_info;
|
|
|
|
edac_dbg(0, "MC: mci = %p, dev = %p\n",
|
|
mci, &sbridge_dev->pdev[0]->dev);
|
|
|
|
/* Remove MC sysfs nodes */
|
|
edac_mc_del_mc(mci->pdev);
|
|
|
|
edac_dbg(1, "%s: free mci struct\n", mci->ctl_name);
|
|
kfree(mci->ctl_name);
|
|
edac_mc_free(mci);
|
|
sbridge_dev->mci = NULL;
|
|
}
|
|
|
|
static int sbridge_register_mci(struct sbridge_dev *sbridge_dev, enum type type)
|
|
{
|
|
struct mem_ctl_info *mci;
|
|
struct edac_mc_layer layers[2];
|
|
struct sbridge_pvt *pvt;
|
|
struct pci_dev *pdev = sbridge_dev->pdev[0];
|
|
int rc;
|
|
|
|
/* Check the number of active and not disabled channels */
|
|
rc = check_if_ecc_is_active(sbridge_dev->bus);
|
|
if (unlikely(rc < 0))
|
|
return rc;
|
|
|
|
/* allocate a new MC control structure */
|
|
layers[0].type = EDAC_MC_LAYER_CHANNEL;
|
|
layers[0].size = NUM_CHANNELS;
|
|
layers[0].is_virt_csrow = false;
|
|
layers[1].type = EDAC_MC_LAYER_SLOT;
|
|
layers[1].size = MAX_DIMMS;
|
|
layers[1].is_virt_csrow = true;
|
|
mci = edac_mc_alloc(sbridge_dev->mc, ARRAY_SIZE(layers), layers,
|
|
sizeof(*pvt));
|
|
|
|
if (unlikely(!mci))
|
|
return -ENOMEM;
|
|
|
|
edac_dbg(0, "MC: mci = %p, dev = %p\n",
|
|
mci, &pdev->dev);
|
|
|
|
pvt = mci->pvt_info;
|
|
memset(pvt, 0, sizeof(*pvt));
|
|
|
|
/* Associate sbridge_dev and mci for future usage */
|
|
pvt->sbridge_dev = sbridge_dev;
|
|
sbridge_dev->mci = mci;
|
|
|
|
mci->mtype_cap = MEM_FLAG_DDR3;
|
|
mci->edac_ctl_cap = EDAC_FLAG_NONE;
|
|
mci->edac_cap = EDAC_FLAG_NONE;
|
|
mci->mod_name = "sbridge_edac.c";
|
|
mci->mod_ver = SBRIDGE_REVISION;
|
|
mci->dev_name = pci_name(pdev);
|
|
mci->ctl_page_to_phys = NULL;
|
|
|
|
/* Set the function pointer to an actual operation function */
|
|
mci->edac_check = sbridge_check_error;
|
|
|
|
pvt->info.type = type;
|
|
if (type == IVY_BRIDGE) {
|
|
pvt->info.rankcfgr = IB_RANK_CFG_A;
|
|
pvt->info.get_tolm = ibridge_get_tolm;
|
|
pvt->info.get_tohm = ibridge_get_tohm;
|
|
pvt->info.dram_rule = ibridge_dram_rule;
|
|
pvt->info.max_sad = ARRAY_SIZE(ibridge_dram_rule);
|
|
pvt->info.interleave_list = ibridge_interleave_list;
|
|
pvt->info.max_interleave = ARRAY_SIZE(ibridge_interleave_list);
|
|
pvt->info.interleave_pkg = ibridge_interleave_pkg;
|
|
mci->ctl_name = kasprintf(GFP_KERNEL, "Ivy Bridge Socket#%d", mci->mc_idx);
|
|
|
|
/* Store pci devices at mci for faster access */
|
|
rc = ibridge_mci_bind_devs(mci, sbridge_dev);
|
|
if (unlikely(rc < 0))
|
|
goto fail0;
|
|
} else {
|
|
pvt->info.rankcfgr = SB_RANK_CFG_A;
|
|
pvt->info.get_tolm = sbridge_get_tolm;
|
|
pvt->info.get_tohm = sbridge_get_tohm;
|
|
pvt->info.dram_rule = sbridge_dram_rule;
|
|
pvt->info.max_sad = ARRAY_SIZE(sbridge_dram_rule);
|
|
pvt->info.interleave_list = sbridge_interleave_list;
|
|
pvt->info.max_interleave = ARRAY_SIZE(sbridge_interleave_list);
|
|
pvt->info.interleave_pkg = sbridge_interleave_pkg;
|
|
mci->ctl_name = kasprintf(GFP_KERNEL, "Sandy Bridge Socket#%d", mci->mc_idx);
|
|
|
|
/* Store pci devices at mci for faster access */
|
|
rc = sbridge_mci_bind_devs(mci, sbridge_dev);
|
|
if (unlikely(rc < 0))
|
|
goto fail0;
|
|
}
|
|
|
|
|
|
/* Get dimm basic config and the memory layout */
|
|
get_dimm_config(mci);
|
|
get_memory_layout(mci);
|
|
|
|
/* record ptr to the generic device */
|
|
mci->pdev = &pdev->dev;
|
|
|
|
/* add this new MC control structure to EDAC's list of MCs */
|
|
if (unlikely(edac_mc_add_mc(mci))) {
|
|
edac_dbg(0, "MC: failed edac_mc_add_mc()\n");
|
|
rc = -EINVAL;
|
|
goto fail0;
|
|
}
|
|
|
|
return 0;
|
|
|
|
fail0:
|
|
kfree(mci->ctl_name);
|
|
edac_mc_free(mci);
|
|
sbridge_dev->mci = NULL;
|
|
return rc;
|
|
}
|
|
|
|
/*
|
|
* sbridge_probe Probe for ONE instance of device to see if it is
|
|
* present.
|
|
* return:
|
|
* 0 for FOUND a device
|
|
* < 0 for error code
|
|
*/
|
|
|
|
static int sbridge_probe(struct pci_dev *pdev, const struct pci_device_id *id)
|
|
{
|
|
int rc;
|
|
u8 mc, num_mc = 0;
|
|
struct sbridge_dev *sbridge_dev;
|
|
enum type type;
|
|
|
|
/* get the pci devices we want to reserve for our use */
|
|
mutex_lock(&sbridge_edac_lock);
|
|
|
|
/*
|
|
* All memory controllers are allocated at the first pass.
|
|
*/
|
|
if (unlikely(probed >= 1)) {
|
|
mutex_unlock(&sbridge_edac_lock);
|
|
return -ENODEV;
|
|
}
|
|
probed++;
|
|
|
|
if (pdev->device == PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TA) {
|
|
rc = sbridge_get_all_devices(&num_mc, pci_dev_descr_ibridge_table);
|
|
type = IVY_BRIDGE;
|
|
} else {
|
|
rc = sbridge_get_all_devices(&num_mc, pci_dev_descr_sbridge_table);
|
|
type = SANDY_BRIDGE;
|
|
}
|
|
if (unlikely(rc < 0))
|
|
goto fail0;
|
|
mc = 0;
|
|
|
|
list_for_each_entry(sbridge_dev, &sbridge_edac_list, list) {
|
|
edac_dbg(0, "Registering MC#%d (%d of %d)\n",
|
|
mc, mc + 1, num_mc);
|
|
sbridge_dev->mc = mc++;
|
|
rc = sbridge_register_mci(sbridge_dev, type);
|
|
if (unlikely(rc < 0))
|
|
goto fail1;
|
|
}
|
|
|
|
sbridge_printk(KERN_INFO, "Driver loaded.\n");
|
|
|
|
mutex_unlock(&sbridge_edac_lock);
|
|
return 0;
|
|
|
|
fail1:
|
|
list_for_each_entry(sbridge_dev, &sbridge_edac_list, list)
|
|
sbridge_unregister_mci(sbridge_dev);
|
|
|
|
sbridge_put_all_devices();
|
|
fail0:
|
|
mutex_unlock(&sbridge_edac_lock);
|
|
return rc;
|
|
}
|
|
|
|
/*
|
|
* sbridge_remove destructor for one instance of device
|
|
*
|
|
*/
|
|
static void sbridge_remove(struct pci_dev *pdev)
|
|
{
|
|
struct sbridge_dev *sbridge_dev;
|
|
|
|
edac_dbg(0, "\n");
|
|
|
|
/*
|
|
* we have a trouble here: pdev value for removal will be wrong, since
|
|
* it will point to the X58 register used to detect that the machine
|
|
* is a Nehalem or upper design. However, due to the way several PCI
|
|
* devices are grouped together to provide MC functionality, we need
|
|
* to use a different method for releasing the devices
|
|
*/
|
|
|
|
mutex_lock(&sbridge_edac_lock);
|
|
|
|
if (unlikely(!probed)) {
|
|
mutex_unlock(&sbridge_edac_lock);
|
|
return;
|
|
}
|
|
|
|
list_for_each_entry(sbridge_dev, &sbridge_edac_list, list)
|
|
sbridge_unregister_mci(sbridge_dev);
|
|
|
|
/* Release PCI resources */
|
|
sbridge_put_all_devices();
|
|
|
|
probed--;
|
|
|
|
mutex_unlock(&sbridge_edac_lock);
|
|
}
|
|
|
|
MODULE_DEVICE_TABLE(pci, sbridge_pci_tbl);
|
|
|
|
/*
|
|
* sbridge_driver pci_driver structure for this module
|
|
*
|
|
*/
|
|
static struct pci_driver sbridge_driver = {
|
|
.name = "sbridge_edac",
|
|
.probe = sbridge_probe,
|
|
.remove = sbridge_remove,
|
|
.id_table = sbridge_pci_tbl,
|
|
};
|
|
|
|
/*
|
|
* sbridge_init Module entry function
|
|
* Try to initialize this module for its devices
|
|
*/
|
|
static int __init sbridge_init(void)
|
|
{
|
|
int pci_rc;
|
|
|
|
edac_dbg(2, "\n");
|
|
|
|
/* Ensure that the OPSTATE is set correctly for POLL or NMI */
|
|
opstate_init();
|
|
|
|
pci_rc = pci_register_driver(&sbridge_driver);
|
|
|
|
if (pci_rc >= 0) {
|
|
mce_register_decode_chain(&sbridge_mce_dec);
|
|
return 0;
|
|
}
|
|
|
|
sbridge_printk(KERN_ERR, "Failed to register device with error %d.\n",
|
|
pci_rc);
|
|
|
|
return pci_rc;
|
|
}
|
|
|
|
/*
|
|
* sbridge_exit() Module exit function
|
|
* Unregister the driver
|
|
*/
|
|
static void __exit sbridge_exit(void)
|
|
{
|
|
edac_dbg(2, "\n");
|
|
pci_unregister_driver(&sbridge_driver);
|
|
mce_unregister_decode_chain(&sbridge_mce_dec);
|
|
}
|
|
|
|
module_init(sbridge_init);
|
|
module_exit(sbridge_exit);
|
|
|
|
module_param(edac_op_state, int, 0444);
|
|
MODULE_PARM_DESC(edac_op_state, "EDAC Error Reporting state: 0=Poll,1=NMI");
|
|
|
|
MODULE_LICENSE("GPL");
|
|
MODULE_AUTHOR("Mauro Carvalho Chehab <mchehab@redhat.com>");
|
|
MODULE_AUTHOR("Red Hat Inc. (http://www.redhat.com)");
|
|
MODULE_DESCRIPTION("MC Driver for Intel Sandy Bridge and Ivy Bridge memory controllers - "
|
|
SBRIDGE_REVISION);
|