2467 lines
63 KiB
C
2467 lines
63 KiB
C
/* Intel i7 core/Nehalem Memory Controller kernel module
|
||
*
|
||
* This driver supports the memory controllers found on the Intel
|
||
* processor families i7core, i7core 7xx/8xx, i5core, Xeon 35xx,
|
||
* Xeon 55xx and Xeon 56xx also known as Nehalem, Nehalem-EP, Lynnfield
|
||
* and Westmere-EP.
|
||
*
|
||
* This file may be distributed under the terms of the
|
||
* GNU General Public License version 2 only.
|
||
*
|
||
* Copyright (c) 2009-2010 by:
|
||
* Mauro Carvalho Chehab
|
||
*
|
||
* Red Hat Inc. http://www.redhat.com
|
||
*
|
||
* Forked and adapted from the i5400_edac driver
|
||
*
|
||
* Based on the following public Intel datasheets:
|
||
* Intel Core i7 Processor Extreme Edition and Intel Core i7 Processor
|
||
* Datasheet, Volume 2:
|
||
* http://download.intel.com/design/processor/datashts/320835.pdf
|
||
* Intel Xeon Processor 5500 Series Datasheet Volume 2
|
||
* http://www.intel.com/Assets/PDF/datasheet/321322.pdf
|
||
* also available at:
|
||
* http://www.arrownac.com/manufacturers/intel/s/nehalem/5500-datasheet-v2.pdf
|
||
*/
|
||
|
||
#include <linux/module.h>
|
||
#include <linux/init.h>
|
||
#include <linux/pci.h>
|
||
#include <linux/pci_ids.h>
|
||
#include <linux/slab.h>
|
||
#include <linux/delay.h>
|
||
#include <linux/dmi.h>
|
||
#include <linux/edac.h>
|
||
#include <linux/mmzone.h>
|
||
#include <linux/smp.h>
|
||
#include <asm/mce.h>
|
||
#include <asm/processor.h>
|
||
#include <asm/div64.h>
|
||
|
||
#include "edac_core.h"
|
||
|
||
/* Static vars */
|
||
static LIST_HEAD(i7core_edac_list);
|
||
static DEFINE_MUTEX(i7core_edac_lock);
|
||
static int probed;
|
||
|
||
static int use_pci_fixup;
|
||
module_param(use_pci_fixup, int, 0444);
|
||
MODULE_PARM_DESC(use_pci_fixup, "Enable PCI fixup to seek for hidden devices");
|
||
/*
|
||
* This is used for Nehalem-EP and Nehalem-EX devices, where the non-core
|
||
* registers start at bus 255, and are not reported by BIOS.
|
||
* We currently find devices with only 2 sockets. In order to support more QPI
|
||
* Quick Path Interconnect, just increment this number.
|
||
*/
|
||
#define MAX_SOCKET_BUSES 2
|
||
|
||
|
||
/*
|
||
* Alter this version for the module when modifications are made
|
||
*/
|
||
#define I7CORE_REVISION " Ver: 1.0.0"
|
||
#define EDAC_MOD_STR "i7core_edac"
|
||
|
||
/*
|
||
* Debug macros
|
||
*/
|
||
#define i7core_printk(level, fmt, arg...) \
|
||
edac_printk(level, "i7core", fmt, ##arg)
|
||
|
||
#define i7core_mc_printk(mci, level, fmt, arg...) \
|
||
edac_mc_chipset_printk(mci, level, "i7core", fmt, ##arg)
|
||
|
||
/*
|
||
* i7core Memory Controller Registers
|
||
*/
|
||
|
||
/* OFFSETS for Device 0 Function 0 */
|
||
|
||
#define MC_CFG_CONTROL 0x90
|
||
#define MC_CFG_UNLOCK 0x02
|
||
#define MC_CFG_LOCK 0x00
|
||
|
||
/* OFFSETS for Device 3 Function 0 */
|
||
|
||
#define MC_CONTROL 0x48
|
||
#define MC_STATUS 0x4c
|
||
#define MC_MAX_DOD 0x64
|
||
|
||
/*
|
||
* OFFSETS for Device 3 Function 4, as indicated on Xeon 5500 datasheet:
|
||
* http://www.arrownac.com/manufacturers/intel/s/nehalem/5500-datasheet-v2.pdf
|
||
*/
|
||
|
||
#define MC_TEST_ERR_RCV1 0x60
|
||
#define DIMM2_COR_ERR(r) ((r) & 0x7fff)
|
||
|
||
#define MC_TEST_ERR_RCV0 0x64
|
||
#define DIMM1_COR_ERR(r) (((r) >> 16) & 0x7fff)
|
||
#define DIMM0_COR_ERR(r) ((r) & 0x7fff)
|
||
|
||
/* OFFSETS for Device 3 Function 2, as indicated on Xeon 5500 datasheet */
|
||
#define MC_SSRCONTROL 0x48
|
||
#define SSR_MODE_DISABLE 0x00
|
||
#define SSR_MODE_ENABLE 0x01
|
||
#define SSR_MODE_MASK 0x03
|
||
|
||
#define MC_SCRUB_CONTROL 0x4c
|
||
#define STARTSCRUB (1 << 24)
|
||
#define SCRUBINTERVAL_MASK 0xffffff
|
||
|
||
#define MC_COR_ECC_CNT_0 0x80
|
||
#define MC_COR_ECC_CNT_1 0x84
|
||
#define MC_COR_ECC_CNT_2 0x88
|
||
#define MC_COR_ECC_CNT_3 0x8c
|
||
#define MC_COR_ECC_CNT_4 0x90
|
||
#define MC_COR_ECC_CNT_5 0x94
|
||
|
||
#define DIMM_TOP_COR_ERR(r) (((r) >> 16) & 0x7fff)
|
||
#define DIMM_BOT_COR_ERR(r) ((r) & 0x7fff)
|
||
|
||
|
||
/* OFFSETS for Devices 4,5 and 6 Function 0 */
|
||
|
||
#define MC_CHANNEL_DIMM_INIT_PARAMS 0x58
|
||
#define THREE_DIMMS_PRESENT (1 << 24)
|
||
#define SINGLE_QUAD_RANK_PRESENT (1 << 23)
|
||
#define QUAD_RANK_PRESENT (1 << 22)
|
||
#define REGISTERED_DIMM (1 << 15)
|
||
|
||
#define MC_CHANNEL_MAPPER 0x60
|
||
#define RDLCH(r, ch) ((((r) >> (3 + (ch * 6))) & 0x07) - 1)
|
||
#define WRLCH(r, ch) ((((r) >> (ch * 6)) & 0x07) - 1)
|
||
|
||
#define MC_CHANNEL_RANK_PRESENT 0x7c
|
||
#define RANK_PRESENT_MASK 0xffff
|
||
|
||
#define MC_CHANNEL_ADDR_MATCH 0xf0
|
||
#define MC_CHANNEL_ERROR_MASK 0xf8
|
||
#define MC_CHANNEL_ERROR_INJECT 0xfc
|
||
#define INJECT_ADDR_PARITY 0x10
|
||
#define INJECT_ECC 0x08
|
||
#define MASK_CACHELINE 0x06
|
||
#define MASK_FULL_CACHELINE 0x06
|
||
#define MASK_MSB32_CACHELINE 0x04
|
||
#define MASK_LSB32_CACHELINE 0x02
|
||
#define NO_MASK_CACHELINE 0x00
|
||
#define REPEAT_EN 0x01
|
||
|
||
/* OFFSETS for Devices 4,5 and 6 Function 1 */
|
||
|
||
#define MC_DOD_CH_DIMM0 0x48
|
||
#define MC_DOD_CH_DIMM1 0x4c
|
||
#define MC_DOD_CH_DIMM2 0x50
|
||
#define RANKOFFSET_MASK ((1 << 12) | (1 << 11) | (1 << 10))
|
||
#define RANKOFFSET(x) ((x & RANKOFFSET_MASK) >> 10)
|
||
#define DIMM_PRESENT_MASK (1 << 9)
|
||
#define DIMM_PRESENT(x) (((x) & DIMM_PRESENT_MASK) >> 9)
|
||
#define MC_DOD_NUMBANK_MASK ((1 << 8) | (1 << 7))
|
||
#define MC_DOD_NUMBANK(x) (((x) & MC_DOD_NUMBANK_MASK) >> 7)
|
||
#define MC_DOD_NUMRANK_MASK ((1 << 6) | (1 << 5))
|
||
#define MC_DOD_NUMRANK(x) (((x) & MC_DOD_NUMRANK_MASK) >> 5)
|
||
#define MC_DOD_NUMROW_MASK ((1 << 4) | (1 << 3) | (1 << 2))
|
||
#define MC_DOD_NUMROW(x) (((x) & MC_DOD_NUMROW_MASK) >> 2)
|
||
#define MC_DOD_NUMCOL_MASK 3
|
||
#define MC_DOD_NUMCOL(x) ((x) & MC_DOD_NUMCOL_MASK)
|
||
|
||
#define MC_RANK_PRESENT 0x7c
|
||
|
||
#define MC_SAG_CH_0 0x80
|
||
#define MC_SAG_CH_1 0x84
|
||
#define MC_SAG_CH_2 0x88
|
||
#define MC_SAG_CH_3 0x8c
|
||
#define MC_SAG_CH_4 0x90
|
||
#define MC_SAG_CH_5 0x94
|
||
#define MC_SAG_CH_6 0x98
|
||
#define MC_SAG_CH_7 0x9c
|
||
|
||
#define MC_RIR_LIMIT_CH_0 0x40
|
||
#define MC_RIR_LIMIT_CH_1 0x44
|
||
#define MC_RIR_LIMIT_CH_2 0x48
|
||
#define MC_RIR_LIMIT_CH_3 0x4C
|
||
#define MC_RIR_LIMIT_CH_4 0x50
|
||
#define MC_RIR_LIMIT_CH_5 0x54
|
||
#define MC_RIR_LIMIT_CH_6 0x58
|
||
#define MC_RIR_LIMIT_CH_7 0x5C
|
||
#define MC_RIR_LIMIT_MASK ((1 << 10) - 1)
|
||
|
||
#define MC_RIR_WAY_CH 0x80
|
||
#define MC_RIR_WAY_OFFSET_MASK (((1 << 14) - 1) & ~0x7)
|
||
#define MC_RIR_WAY_RANK_MASK 0x7
|
||
|
||
/*
|
||
* i7core structs
|
||
*/
|
||
|
||
#define NUM_CHANS 3
|
||
#define MAX_DIMMS 3 /* Max DIMMS per channel */
|
||
#define MAX_MCR_FUNC 4
|
||
#define MAX_CHAN_FUNC 3
|
||
|
||
struct i7core_info {
|
||
u32 mc_control;
|
||
u32 mc_status;
|
||
u32 max_dod;
|
||
u32 ch_map;
|
||
};
|
||
|
||
|
||
struct i7core_inject {
|
||
int enable;
|
||
|
||
u32 section;
|
||
u32 type;
|
||
u32 eccmask;
|
||
|
||
/* Error address mask */
|
||
int channel, dimm, rank, bank, page, col;
|
||
};
|
||
|
||
struct i7core_channel {
|
||
bool is_3dimms_present;
|
||
bool is_single_4rank;
|
||
bool has_4rank;
|
||
u32 dimms;
|
||
};
|
||
|
||
struct pci_id_descr {
|
||
int dev;
|
||
int func;
|
||
int dev_id;
|
||
int optional;
|
||
};
|
||
|
||
struct pci_id_table {
|
||
const struct pci_id_descr *descr;
|
||
int n_devs;
|
||
};
|
||
|
||
struct i7core_dev {
|
||
struct list_head list;
|
||
u8 socket;
|
||
struct pci_dev **pdev;
|
||
int n_devs;
|
||
struct mem_ctl_info *mci;
|
||
};
|
||
|
||
struct i7core_pvt {
|
||
struct device *addrmatch_dev, *chancounts_dev;
|
||
|
||
struct pci_dev *pci_noncore;
|
||
struct pci_dev *pci_mcr[MAX_MCR_FUNC + 1];
|
||
struct pci_dev *pci_ch[NUM_CHANS][MAX_CHAN_FUNC + 1];
|
||
|
||
struct i7core_dev *i7core_dev;
|
||
|
||
struct i7core_info info;
|
||
struct i7core_inject inject;
|
||
struct i7core_channel channel[NUM_CHANS];
|
||
|
||
int ce_count_available;
|
||
|
||
/* ECC corrected errors counts per udimm */
|
||
unsigned long udimm_ce_count[MAX_DIMMS];
|
||
int udimm_last_ce_count[MAX_DIMMS];
|
||
/* ECC corrected errors counts per rdimm */
|
||
unsigned long rdimm_ce_count[NUM_CHANS][MAX_DIMMS];
|
||
int rdimm_last_ce_count[NUM_CHANS][MAX_DIMMS];
|
||
|
||
bool is_registered, enable_scrub;
|
||
|
||
/* Fifo double buffers */
|
||
struct mce mce_entry[MCE_LOG_LEN];
|
||
struct mce mce_outentry[MCE_LOG_LEN];
|
||
|
||
/* Fifo in/out counters */
|
||
unsigned mce_in, mce_out;
|
||
|
||
/* Count indicator to show errors not got */
|
||
unsigned mce_overrun;
|
||
|
||
/* DCLK Frequency used for computing scrub rate */
|
||
int dclk_freq;
|
||
|
||
/* Struct to control EDAC polling */
|
||
struct edac_pci_ctl_info *i7core_pci;
|
||
};
|
||
|
||
#define PCI_DESCR(device, function, device_id) \
|
||
.dev = (device), \
|
||
.func = (function), \
|
||
.dev_id = (device_id)
|
||
|
||
static const struct pci_id_descr pci_dev_descr_i7core_nehalem[] = {
|
||
/* Memory controller */
|
||
{ PCI_DESCR(3, 0, PCI_DEVICE_ID_INTEL_I7_MCR) },
|
||
{ PCI_DESCR(3, 1, PCI_DEVICE_ID_INTEL_I7_MC_TAD) },
|
||
/* Exists only for RDIMM */
|
||
{ PCI_DESCR(3, 2, PCI_DEVICE_ID_INTEL_I7_MC_RAS), .optional = 1 },
|
||
{ PCI_DESCR(3, 4, PCI_DEVICE_ID_INTEL_I7_MC_TEST) },
|
||
|
||
/* Channel 0 */
|
||
{ PCI_DESCR(4, 0, PCI_DEVICE_ID_INTEL_I7_MC_CH0_CTRL) },
|
||
{ PCI_DESCR(4, 1, PCI_DEVICE_ID_INTEL_I7_MC_CH0_ADDR) },
|
||
{ PCI_DESCR(4, 2, PCI_DEVICE_ID_INTEL_I7_MC_CH0_RANK) },
|
||
{ PCI_DESCR(4, 3, PCI_DEVICE_ID_INTEL_I7_MC_CH0_TC) },
|
||
|
||
/* Channel 1 */
|
||
{ PCI_DESCR(5, 0, PCI_DEVICE_ID_INTEL_I7_MC_CH1_CTRL) },
|
||
{ PCI_DESCR(5, 1, PCI_DEVICE_ID_INTEL_I7_MC_CH1_ADDR) },
|
||
{ PCI_DESCR(5, 2, PCI_DEVICE_ID_INTEL_I7_MC_CH1_RANK) },
|
||
{ PCI_DESCR(5, 3, PCI_DEVICE_ID_INTEL_I7_MC_CH1_TC) },
|
||
|
||
/* Channel 2 */
|
||
{ PCI_DESCR(6, 0, PCI_DEVICE_ID_INTEL_I7_MC_CH2_CTRL) },
|
||
{ PCI_DESCR(6, 1, PCI_DEVICE_ID_INTEL_I7_MC_CH2_ADDR) },
|
||
{ PCI_DESCR(6, 2, PCI_DEVICE_ID_INTEL_I7_MC_CH2_RANK) },
|
||
{ PCI_DESCR(6, 3, PCI_DEVICE_ID_INTEL_I7_MC_CH2_TC) },
|
||
|
||
/* Generic Non-core registers */
|
||
/*
|
||
* This is the PCI device on i7core and on Xeon 35xx (8086:2c41)
|
||
* On Xeon 55xx, however, it has a different id (8086:2c40). So,
|
||
* the probing code needs to test for the other address in case of
|
||
* failure of this one
|
||
*/
|
||
{ PCI_DESCR(0, 0, PCI_DEVICE_ID_INTEL_I7_NONCORE) },
|
||
|
||
};
|
||
|
||
static const struct pci_id_descr pci_dev_descr_lynnfield[] = {
|
||
{ PCI_DESCR( 3, 0, PCI_DEVICE_ID_INTEL_LYNNFIELD_MCR) },
|
||
{ PCI_DESCR( 3, 1, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_TAD) },
|
||
{ PCI_DESCR( 3, 4, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_TEST) },
|
||
|
||
{ PCI_DESCR( 4, 0, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH0_CTRL) },
|
||
{ PCI_DESCR( 4, 1, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH0_ADDR) },
|
||
{ PCI_DESCR( 4, 2, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH0_RANK) },
|
||
{ PCI_DESCR( 4, 3, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH0_TC) },
|
||
|
||
{ PCI_DESCR( 5, 0, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH1_CTRL) },
|
||
{ PCI_DESCR( 5, 1, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH1_ADDR) },
|
||
{ PCI_DESCR( 5, 2, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH1_RANK) },
|
||
{ PCI_DESCR( 5, 3, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH1_TC) },
|
||
|
||
/*
|
||
* This is the PCI device has an alternate address on some
|
||
* processors like Core i7 860
|
||
*/
|
||
{ PCI_DESCR( 0, 0, PCI_DEVICE_ID_INTEL_LYNNFIELD_NONCORE) },
|
||
};
|
||
|
||
static const struct pci_id_descr pci_dev_descr_i7core_westmere[] = {
|
||
/* Memory controller */
|
||
{ PCI_DESCR(3, 0, PCI_DEVICE_ID_INTEL_LYNNFIELD_MCR_REV2) },
|
||
{ PCI_DESCR(3, 1, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_TAD_REV2) },
|
||
/* Exists only for RDIMM */
|
||
{ PCI_DESCR(3, 2, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_RAS_REV2), .optional = 1 },
|
||
{ PCI_DESCR(3, 4, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_TEST_REV2) },
|
||
|
||
/* Channel 0 */
|
||
{ PCI_DESCR(4, 0, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH0_CTRL_REV2) },
|
||
{ PCI_DESCR(4, 1, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH0_ADDR_REV2) },
|
||
{ PCI_DESCR(4, 2, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH0_RANK_REV2) },
|
||
{ PCI_DESCR(4, 3, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH0_TC_REV2) },
|
||
|
||
/* Channel 1 */
|
||
{ PCI_DESCR(5, 0, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH1_CTRL_REV2) },
|
||
{ PCI_DESCR(5, 1, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH1_ADDR_REV2) },
|
||
{ PCI_DESCR(5, 2, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH1_RANK_REV2) },
|
||
{ PCI_DESCR(5, 3, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH1_TC_REV2) },
|
||
|
||
/* Channel 2 */
|
||
{ PCI_DESCR(6, 0, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH2_CTRL_REV2) },
|
||
{ PCI_DESCR(6, 1, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH2_ADDR_REV2) },
|
||
{ PCI_DESCR(6, 2, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH2_RANK_REV2) },
|
||
{ PCI_DESCR(6, 3, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH2_TC_REV2) },
|
||
|
||
/* Generic Non-core registers */
|
||
{ PCI_DESCR(0, 0, PCI_DEVICE_ID_INTEL_LYNNFIELD_NONCORE_REV2) },
|
||
|
||
};
|
||
|
||
#define PCI_ID_TABLE_ENTRY(A) { .descr=A, .n_devs = ARRAY_SIZE(A) }
|
||
static const struct pci_id_table pci_dev_table[] = {
|
||
PCI_ID_TABLE_ENTRY(pci_dev_descr_i7core_nehalem),
|
||
PCI_ID_TABLE_ENTRY(pci_dev_descr_lynnfield),
|
||
PCI_ID_TABLE_ENTRY(pci_dev_descr_i7core_westmere),
|
||
{0,} /* 0 terminated list. */
|
||
};
|
||
|
||
/*
|
||
* pci_device_id table for which devices we are looking for
|
||
*/
|
||
static const struct pci_device_id i7core_pci_tbl[] = {
|
||
{PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_X58_HUB_MGMT)},
|
||
{PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_LYNNFIELD_QPI_LINK0)},
|
||
{0,} /* 0 terminated list. */
|
||
};
|
||
|
||
/****************************************************************************
|
||
Ancillary status routines
|
||
****************************************************************************/
|
||
|
||
/* MC_CONTROL bits */
|
||
#define CH_ACTIVE(pvt, ch) ((pvt)->info.mc_control & (1 << (8 + ch)))
|
||
#define ECCx8(pvt) ((pvt)->info.mc_control & (1 << 1))
|
||
|
||
/* MC_STATUS bits */
|
||
#define ECC_ENABLED(pvt) ((pvt)->info.mc_status & (1 << 4))
|
||
#define CH_DISABLED(pvt, ch) ((pvt)->info.mc_status & (1 << ch))
|
||
|
||
/* MC_MAX_DOD read functions */
|
||
static inline int numdimms(u32 dimms)
|
||
{
|
||
return (dimms & 0x3) + 1;
|
||
}
|
||
|
||
static inline int numrank(u32 rank)
|
||
{
|
||
static const int ranks[] = { 1, 2, 4, -EINVAL };
|
||
|
||
return ranks[rank & 0x3];
|
||
}
|
||
|
||
static inline int numbank(u32 bank)
|
||
{
|
||
static const int banks[] = { 4, 8, 16, -EINVAL };
|
||
|
||
return banks[bank & 0x3];
|
||
}
|
||
|
||
static inline int numrow(u32 row)
|
||
{
|
||
static const int rows[] = {
|
||
1 << 12, 1 << 13, 1 << 14, 1 << 15,
|
||
1 << 16, -EINVAL, -EINVAL, -EINVAL,
|
||
};
|
||
|
||
return rows[row & 0x7];
|
||
}
|
||
|
||
static inline int numcol(u32 col)
|
||
{
|
||
static const int cols[] = {
|
||
1 << 10, 1 << 11, 1 << 12, -EINVAL,
|
||
};
|
||
return cols[col & 0x3];
|
||
}
|
||
|
||
static struct i7core_dev *get_i7core_dev(u8 socket)
|
||
{
|
||
struct i7core_dev *i7core_dev;
|
||
|
||
list_for_each_entry(i7core_dev, &i7core_edac_list, list) {
|
||
if (i7core_dev->socket == socket)
|
||
return i7core_dev;
|
||
}
|
||
|
||
return NULL;
|
||
}
|
||
|
||
static struct i7core_dev *alloc_i7core_dev(u8 socket,
|
||
const struct pci_id_table *table)
|
||
{
|
||
struct i7core_dev *i7core_dev;
|
||
|
||
i7core_dev = kzalloc(sizeof(*i7core_dev), GFP_KERNEL);
|
||
if (!i7core_dev)
|
||
return NULL;
|
||
|
||
i7core_dev->pdev = kzalloc(sizeof(*i7core_dev->pdev) * table->n_devs,
|
||
GFP_KERNEL);
|
||
if (!i7core_dev->pdev) {
|
||
kfree(i7core_dev);
|
||
return NULL;
|
||
}
|
||
|
||
i7core_dev->socket = socket;
|
||
i7core_dev->n_devs = table->n_devs;
|
||
list_add_tail(&i7core_dev->list, &i7core_edac_list);
|
||
|
||
return i7core_dev;
|
||
}
|
||
|
||
static void free_i7core_dev(struct i7core_dev *i7core_dev)
|
||
{
|
||
list_del(&i7core_dev->list);
|
||
kfree(i7core_dev->pdev);
|
||
kfree(i7core_dev);
|
||
}
|
||
|
||
/****************************************************************************
|
||
Memory check routines
|
||
****************************************************************************/
|
||
|
||
static int get_dimm_config(struct mem_ctl_info *mci)
|
||
{
|
||
struct i7core_pvt *pvt = mci->pvt_info;
|
||
struct pci_dev *pdev;
|
||
int i, j;
|
||
enum edac_type mode;
|
||
enum mem_type mtype;
|
||
struct dimm_info *dimm;
|
||
|
||
/* Get data from the MC register, function 0 */
|
||
pdev = pvt->pci_mcr[0];
|
||
if (!pdev)
|
||
return -ENODEV;
|
||
|
||
/* Device 3 function 0 reads */
|
||
pci_read_config_dword(pdev, MC_CONTROL, &pvt->info.mc_control);
|
||
pci_read_config_dword(pdev, MC_STATUS, &pvt->info.mc_status);
|
||
pci_read_config_dword(pdev, MC_MAX_DOD, &pvt->info.max_dod);
|
||
pci_read_config_dword(pdev, MC_CHANNEL_MAPPER, &pvt->info.ch_map);
|
||
|
||
edac_dbg(0, "QPI %d control=0x%08x status=0x%08x dod=0x%08x map=0x%08x\n",
|
||
pvt->i7core_dev->socket, pvt->info.mc_control,
|
||
pvt->info.mc_status, pvt->info.max_dod, pvt->info.ch_map);
|
||
|
||
if (ECC_ENABLED(pvt)) {
|
||
edac_dbg(0, "ECC enabled with x%d SDCC\n", ECCx8(pvt) ? 8 : 4);
|
||
if (ECCx8(pvt))
|
||
mode = EDAC_S8ECD8ED;
|
||
else
|
||
mode = EDAC_S4ECD4ED;
|
||
} else {
|
||
edac_dbg(0, "ECC disabled\n");
|
||
mode = EDAC_NONE;
|
||
}
|
||
|
||
/* FIXME: need to handle the error codes */
|
||
edac_dbg(0, "DOD Max limits: DIMMS: %d, %d-ranked, %d-banked x%x x 0x%x\n",
|
||
numdimms(pvt->info.max_dod),
|
||
numrank(pvt->info.max_dod >> 2),
|
||
numbank(pvt->info.max_dod >> 4),
|
||
numrow(pvt->info.max_dod >> 6),
|
||
numcol(pvt->info.max_dod >> 9));
|
||
|
||
for (i = 0; i < NUM_CHANS; i++) {
|
||
u32 data, dimm_dod[3], value[8];
|
||
|
||
if (!pvt->pci_ch[i][0])
|
||
continue;
|
||
|
||
if (!CH_ACTIVE(pvt, i)) {
|
||
edac_dbg(0, "Channel %i is not active\n", i);
|
||
continue;
|
||
}
|
||
if (CH_DISABLED(pvt, i)) {
|
||
edac_dbg(0, "Channel %i is disabled\n", i);
|
||
continue;
|
||
}
|
||
|
||
/* Devices 4-6 function 0 */
|
||
pci_read_config_dword(pvt->pci_ch[i][0],
|
||
MC_CHANNEL_DIMM_INIT_PARAMS, &data);
|
||
|
||
|
||
if (data & THREE_DIMMS_PRESENT)
|
||
pvt->channel[i].is_3dimms_present = true;
|
||
|
||
if (data & SINGLE_QUAD_RANK_PRESENT)
|
||
pvt->channel[i].is_single_4rank = true;
|
||
|
||
if (data & QUAD_RANK_PRESENT)
|
||
pvt->channel[i].has_4rank = true;
|
||
|
||
if (data & REGISTERED_DIMM)
|
||
mtype = MEM_RDDR3;
|
||
else
|
||
mtype = MEM_DDR3;
|
||
|
||
/* Devices 4-6 function 1 */
|
||
pci_read_config_dword(pvt->pci_ch[i][1],
|
||
MC_DOD_CH_DIMM0, &dimm_dod[0]);
|
||
pci_read_config_dword(pvt->pci_ch[i][1],
|
||
MC_DOD_CH_DIMM1, &dimm_dod[1]);
|
||
pci_read_config_dword(pvt->pci_ch[i][1],
|
||
MC_DOD_CH_DIMM2, &dimm_dod[2]);
|
||
|
||
edac_dbg(0, "Ch%d phy rd%d, wr%d (0x%08x): %s%s%s%cDIMMs\n",
|
||
i,
|
||
RDLCH(pvt->info.ch_map, i), WRLCH(pvt->info.ch_map, i),
|
||
data,
|
||
pvt->channel[i].is_3dimms_present ? "3DIMMS " : "",
|
||
pvt->channel[i].is_3dimms_present ? "SINGLE_4R " : "",
|
||
pvt->channel[i].has_4rank ? "HAS_4R " : "",
|
||
(data & REGISTERED_DIMM) ? 'R' : 'U');
|
||
|
||
for (j = 0; j < 3; j++) {
|
||
u32 banks, ranks, rows, cols;
|
||
u32 size, npages;
|
||
|
||
if (!DIMM_PRESENT(dimm_dod[j]))
|
||
continue;
|
||
|
||
dimm = EDAC_DIMM_PTR(mci->layers, mci->dimms, mci->n_layers,
|
||
i, j, 0);
|
||
banks = numbank(MC_DOD_NUMBANK(dimm_dod[j]));
|
||
ranks = numrank(MC_DOD_NUMRANK(dimm_dod[j]));
|
||
rows = numrow(MC_DOD_NUMROW(dimm_dod[j]));
|
||
cols = numcol(MC_DOD_NUMCOL(dimm_dod[j]));
|
||
|
||
/* DDR3 has 8 I/O banks */
|
||
size = (rows * cols * banks * ranks) >> (20 - 3);
|
||
|
||
edac_dbg(0, "\tdimm %d %d Mb offset: %x, bank: %d, rank: %d, row: %#x, col: %#x\n",
|
||
j, size,
|
||
RANKOFFSET(dimm_dod[j]),
|
||
banks, ranks, rows, cols);
|
||
|
||
npages = MiB_TO_PAGES(size);
|
||
|
||
dimm->nr_pages = npages;
|
||
|
||
switch (banks) {
|
||
case 4:
|
||
dimm->dtype = DEV_X4;
|
||
break;
|
||
case 8:
|
||
dimm->dtype = DEV_X8;
|
||
break;
|
||
case 16:
|
||
dimm->dtype = DEV_X16;
|
||
break;
|
||
default:
|
||
dimm->dtype = DEV_UNKNOWN;
|
||
}
|
||
|
||
snprintf(dimm->label, sizeof(dimm->label),
|
||
"CPU#%uChannel#%u_DIMM#%u",
|
||
pvt->i7core_dev->socket, i, j);
|
||
dimm->grain = 8;
|
||
dimm->edac_mode = mode;
|
||
dimm->mtype = mtype;
|
||
}
|
||
|
||
pci_read_config_dword(pdev, MC_SAG_CH_0, &value[0]);
|
||
pci_read_config_dword(pdev, MC_SAG_CH_1, &value[1]);
|
||
pci_read_config_dword(pdev, MC_SAG_CH_2, &value[2]);
|
||
pci_read_config_dword(pdev, MC_SAG_CH_3, &value[3]);
|
||
pci_read_config_dword(pdev, MC_SAG_CH_4, &value[4]);
|
||
pci_read_config_dword(pdev, MC_SAG_CH_5, &value[5]);
|
||
pci_read_config_dword(pdev, MC_SAG_CH_6, &value[6]);
|
||
pci_read_config_dword(pdev, MC_SAG_CH_7, &value[7]);
|
||
edac_dbg(1, "\t[%i] DIVBY3\tREMOVED\tOFFSET\n", i);
|
||
for (j = 0; j < 8; j++)
|
||
edac_dbg(1, "\t\t%#x\t%#x\t%#x\n",
|
||
(value[j] >> 27) & 0x1,
|
||
(value[j] >> 24) & 0x7,
|
||
(value[j] & ((1 << 24) - 1)));
|
||
}
|
||
|
||
return 0;
|
||
}
|
||
|
||
/****************************************************************************
|
||
Error insertion routines
|
||
****************************************************************************/
|
||
|
||
#define to_mci(k) container_of(k, struct mem_ctl_info, dev)
|
||
|
||
/* The i7core has independent error injection features per channel.
|
||
However, to have a simpler code, we don't allow enabling error injection
|
||
on more than one channel.
|
||
Also, since a change at an inject parameter will be applied only at enable,
|
||
we're disabling error injection on all write calls to the sysfs nodes that
|
||
controls the error code injection.
|
||
*/
|
||
static int disable_inject(const struct mem_ctl_info *mci)
|
||
{
|
||
struct i7core_pvt *pvt = mci->pvt_info;
|
||
|
||
pvt->inject.enable = 0;
|
||
|
||
if (!pvt->pci_ch[pvt->inject.channel][0])
|
||
return -ENODEV;
|
||
|
||
pci_write_config_dword(pvt->pci_ch[pvt->inject.channel][0],
|
||
MC_CHANNEL_ERROR_INJECT, 0);
|
||
|
||
return 0;
|
||
}
|
||
|
||
/*
|
||
* i7core inject inject.section
|
||
*
|
||
* accept and store error injection inject.section value
|
||
* bit 0 - refers to the lower 32-byte half cacheline
|
||
* bit 1 - refers to the upper 32-byte half cacheline
|
||
*/
|
||
static ssize_t i7core_inject_section_store(struct device *dev,
|
||
struct device_attribute *mattr,
|
||
const char *data, size_t count)
|
||
{
|
||
struct mem_ctl_info *mci = to_mci(dev);
|
||
struct i7core_pvt *pvt = mci->pvt_info;
|
||
unsigned long value;
|
||
int rc;
|
||
|
||
if (pvt->inject.enable)
|
||
disable_inject(mci);
|
||
|
||
rc = kstrtoul(data, 10, &value);
|
||
if ((rc < 0) || (value > 3))
|
||
return -EIO;
|
||
|
||
pvt->inject.section = (u32) value;
|
||
return count;
|
||
}
|
||
|
||
static ssize_t i7core_inject_section_show(struct device *dev,
|
||
struct device_attribute *mattr,
|
||
char *data)
|
||
{
|
||
struct mem_ctl_info *mci = to_mci(dev);
|
||
struct i7core_pvt *pvt = mci->pvt_info;
|
||
return sprintf(data, "0x%08x\n", pvt->inject.section);
|
||
}
|
||
|
||
/*
|
||
* i7core inject.type
|
||
*
|
||
* accept and store error injection inject.section value
|
||
* bit 0 - repeat enable - Enable error repetition
|
||
* bit 1 - inject ECC error
|
||
* bit 2 - inject parity error
|
||
*/
|
||
static ssize_t i7core_inject_type_store(struct device *dev,
|
||
struct device_attribute *mattr,
|
||
const char *data, size_t count)
|
||
{
|
||
struct mem_ctl_info *mci = to_mci(dev);
|
||
struct i7core_pvt *pvt = mci->pvt_info;
|
||
unsigned long value;
|
||
int rc;
|
||
|
||
if (pvt->inject.enable)
|
||
disable_inject(mci);
|
||
|
||
rc = kstrtoul(data, 10, &value);
|
||
if ((rc < 0) || (value > 7))
|
||
return -EIO;
|
||
|
||
pvt->inject.type = (u32) value;
|
||
return count;
|
||
}
|
||
|
||
static ssize_t i7core_inject_type_show(struct device *dev,
|
||
struct device_attribute *mattr,
|
||
char *data)
|
||
{
|
||
struct mem_ctl_info *mci = to_mci(dev);
|
||
struct i7core_pvt *pvt = mci->pvt_info;
|
||
|
||
return sprintf(data, "0x%08x\n", pvt->inject.type);
|
||
}
|
||
|
||
/*
|
||
* i7core_inject_inject.eccmask_store
|
||
*
|
||
* The type of error (UE/CE) will depend on the inject.eccmask value:
|
||
* Any bits set to a 1 will flip the corresponding ECC bit
|
||
* Correctable errors can be injected by flipping 1 bit or the bits within
|
||
* a symbol pair (2 consecutive aligned 8-bit pairs - i.e. 7:0 and 15:8 or
|
||
* 23:16 and 31:24). Flipping bits in two symbol pairs will cause an
|
||
* uncorrectable error to be injected.
|
||
*/
|
||
static ssize_t i7core_inject_eccmask_store(struct device *dev,
|
||
struct device_attribute *mattr,
|
||
const char *data, size_t count)
|
||
{
|
||
struct mem_ctl_info *mci = to_mci(dev);
|
||
struct i7core_pvt *pvt = mci->pvt_info;
|
||
unsigned long value;
|
||
int rc;
|
||
|
||
if (pvt->inject.enable)
|
||
disable_inject(mci);
|
||
|
||
rc = kstrtoul(data, 10, &value);
|
||
if (rc < 0)
|
||
return -EIO;
|
||
|
||
pvt->inject.eccmask = (u32) value;
|
||
return count;
|
||
}
|
||
|
||
static ssize_t i7core_inject_eccmask_show(struct device *dev,
|
||
struct device_attribute *mattr,
|
||
char *data)
|
||
{
|
||
struct mem_ctl_info *mci = to_mci(dev);
|
||
struct i7core_pvt *pvt = mci->pvt_info;
|
||
|
||
return sprintf(data, "0x%08x\n", pvt->inject.eccmask);
|
||
}
|
||
|
||
/*
|
||
* i7core_addrmatch
|
||
*
|
||
* The type of error (UE/CE) will depend on the inject.eccmask value:
|
||
* Any bits set to a 1 will flip the corresponding ECC bit
|
||
* Correctable errors can be injected by flipping 1 bit or the bits within
|
||
* a symbol pair (2 consecutive aligned 8-bit pairs - i.e. 7:0 and 15:8 or
|
||
* 23:16 and 31:24). Flipping bits in two symbol pairs will cause an
|
||
* uncorrectable error to be injected.
|
||
*/
|
||
|
||
#define DECLARE_ADDR_MATCH(param, limit) \
|
||
static ssize_t i7core_inject_store_##param( \
|
||
struct device *dev, \
|
||
struct device_attribute *mattr, \
|
||
const char *data, size_t count) \
|
||
{ \
|
||
struct mem_ctl_info *mci = dev_get_drvdata(dev); \
|
||
struct i7core_pvt *pvt; \
|
||
long value; \
|
||
int rc; \
|
||
\
|
||
edac_dbg(1, "\n"); \
|
||
pvt = mci->pvt_info; \
|
||
\
|
||
if (pvt->inject.enable) \
|
||
disable_inject(mci); \
|
||
\
|
||
if (!strcasecmp(data, "any") || !strcasecmp(data, "any\n"))\
|
||
value = -1; \
|
||
else { \
|
||
rc = kstrtoul(data, 10, &value); \
|
||
if ((rc < 0) || (value >= limit)) \
|
||
return -EIO; \
|
||
} \
|
||
\
|
||
pvt->inject.param = value; \
|
||
\
|
||
return count; \
|
||
} \
|
||
\
|
||
static ssize_t i7core_inject_show_##param( \
|
||
struct device *dev, \
|
||
struct device_attribute *mattr, \
|
||
char *data) \
|
||
{ \
|
||
struct mem_ctl_info *mci = dev_get_drvdata(dev); \
|
||
struct i7core_pvt *pvt; \
|
||
\
|
||
pvt = mci->pvt_info; \
|
||
edac_dbg(1, "pvt=%p\n", pvt); \
|
||
if (pvt->inject.param < 0) \
|
||
return sprintf(data, "any\n"); \
|
||
else \
|
||
return sprintf(data, "%d\n", pvt->inject.param);\
|
||
}
|
||
|
||
#define ATTR_ADDR_MATCH(param) \
|
||
static DEVICE_ATTR(param, S_IRUGO | S_IWUSR, \
|
||
i7core_inject_show_##param, \
|
||
i7core_inject_store_##param)
|
||
|
||
DECLARE_ADDR_MATCH(channel, 3);
|
||
DECLARE_ADDR_MATCH(dimm, 3);
|
||
DECLARE_ADDR_MATCH(rank, 4);
|
||
DECLARE_ADDR_MATCH(bank, 32);
|
||
DECLARE_ADDR_MATCH(page, 0x10000);
|
||
DECLARE_ADDR_MATCH(col, 0x4000);
|
||
|
||
ATTR_ADDR_MATCH(channel);
|
||
ATTR_ADDR_MATCH(dimm);
|
||
ATTR_ADDR_MATCH(rank);
|
||
ATTR_ADDR_MATCH(bank);
|
||
ATTR_ADDR_MATCH(page);
|
||
ATTR_ADDR_MATCH(col);
|
||
|
||
static int write_and_test(struct pci_dev *dev, const int where, const u32 val)
|
||
{
|
||
u32 read;
|
||
int count;
|
||
|
||
edac_dbg(0, "setting pci %02x:%02x.%x reg=%02x value=%08x\n",
|
||
dev->bus->number, PCI_SLOT(dev->devfn), PCI_FUNC(dev->devfn),
|
||
where, val);
|
||
|
||
for (count = 0; count < 10; count++) {
|
||
if (count)
|
||
msleep(100);
|
||
pci_write_config_dword(dev, where, val);
|
||
pci_read_config_dword(dev, where, &read);
|
||
|
||
if (read == val)
|
||
return 0;
|
||
}
|
||
|
||
i7core_printk(KERN_ERR, "Error during set pci %02x:%02x.%x reg=%02x "
|
||
"write=%08x. Read=%08x\n",
|
||
dev->bus->number, PCI_SLOT(dev->devfn), PCI_FUNC(dev->devfn),
|
||
where, val, read);
|
||
|
||
return -EINVAL;
|
||
}
|
||
|
||
/*
|
||
* This routine prepares the Memory Controller for error injection.
|
||
* The error will be injected when some process tries to write to the
|
||
* memory that matches the given criteria.
|
||
* The criteria can be set in terms of a mask where dimm, rank, bank, page
|
||
* and col can be specified.
|
||
* A -1 value for any of the mask items will make the MCU to ignore
|
||
* that matching criteria for error injection.
|
||
*
|
||
* It should be noticed that the error will only happen after a write operation
|
||
* on a memory that matches the condition. if REPEAT_EN is not enabled at
|
||
* inject mask, then it will produce just one error. Otherwise, it will repeat
|
||
* until the injectmask would be cleaned.
|
||
*
|
||
* FIXME: This routine assumes that MAXNUMDIMMS value of MC_MAX_DOD
|
||
* is reliable enough to check if the MC is using the
|
||
* three channels. However, this is not clear at the datasheet.
|
||
*/
|
||
static ssize_t i7core_inject_enable_store(struct device *dev,
|
||
struct device_attribute *mattr,
|
||
const char *data, size_t count)
|
||
{
|
||
struct mem_ctl_info *mci = to_mci(dev);
|
||
struct i7core_pvt *pvt = mci->pvt_info;
|
||
u32 injectmask;
|
||
u64 mask = 0;
|
||
int rc;
|
||
long enable;
|
||
|
||
if (!pvt->pci_ch[pvt->inject.channel][0])
|
||
return 0;
|
||
|
||
rc = kstrtoul(data, 10, &enable);
|
||
if ((rc < 0))
|
||
return 0;
|
||
|
||
if (enable) {
|
||
pvt->inject.enable = 1;
|
||
} else {
|
||
disable_inject(mci);
|
||
return count;
|
||
}
|
||
|
||
/* Sets pvt->inject.dimm mask */
|
||
if (pvt->inject.dimm < 0)
|
||
mask |= 1LL << 41;
|
||
else {
|
||
if (pvt->channel[pvt->inject.channel].dimms > 2)
|
||
mask |= (pvt->inject.dimm & 0x3LL) << 35;
|
||
else
|
||
mask |= (pvt->inject.dimm & 0x1LL) << 36;
|
||
}
|
||
|
||
/* Sets pvt->inject.rank mask */
|
||
if (pvt->inject.rank < 0)
|
||
mask |= 1LL << 40;
|
||
else {
|
||
if (pvt->channel[pvt->inject.channel].dimms > 2)
|
||
mask |= (pvt->inject.rank & 0x1LL) << 34;
|
||
else
|
||
mask |= (pvt->inject.rank & 0x3LL) << 34;
|
||
}
|
||
|
||
/* Sets pvt->inject.bank mask */
|
||
if (pvt->inject.bank < 0)
|
||
mask |= 1LL << 39;
|
||
else
|
||
mask |= (pvt->inject.bank & 0x15LL) << 30;
|
||
|
||
/* Sets pvt->inject.page mask */
|
||
if (pvt->inject.page < 0)
|
||
mask |= 1LL << 38;
|
||
else
|
||
mask |= (pvt->inject.page & 0xffff) << 14;
|
||
|
||
/* Sets pvt->inject.column mask */
|
||
if (pvt->inject.col < 0)
|
||
mask |= 1LL << 37;
|
||
else
|
||
mask |= (pvt->inject.col & 0x3fff);
|
||
|
||
/*
|
||
* bit 0: REPEAT_EN
|
||
* bits 1-2: MASK_HALF_CACHELINE
|
||
* bit 3: INJECT_ECC
|
||
* bit 4: INJECT_ADDR_PARITY
|
||
*/
|
||
|
||
injectmask = (pvt->inject.type & 1) |
|
||
(pvt->inject.section & 0x3) << 1 |
|
||
(pvt->inject.type & 0x6) << (3 - 1);
|
||
|
||
/* Unlock writes to registers - this register is write only */
|
||
pci_write_config_dword(pvt->pci_noncore,
|
||
MC_CFG_CONTROL, 0x2);
|
||
|
||
write_and_test(pvt->pci_ch[pvt->inject.channel][0],
|
||
MC_CHANNEL_ADDR_MATCH, mask);
|
||
write_and_test(pvt->pci_ch[pvt->inject.channel][0],
|
||
MC_CHANNEL_ADDR_MATCH + 4, mask >> 32L);
|
||
|
||
write_and_test(pvt->pci_ch[pvt->inject.channel][0],
|
||
MC_CHANNEL_ERROR_MASK, pvt->inject.eccmask);
|
||
|
||
write_and_test(pvt->pci_ch[pvt->inject.channel][0],
|
||
MC_CHANNEL_ERROR_INJECT, injectmask);
|
||
|
||
/*
|
||
* This is something undocumented, based on my tests
|
||
* Without writing 8 to this register, errors aren't injected. Not sure
|
||
* why.
|
||
*/
|
||
pci_write_config_dword(pvt->pci_noncore,
|
||
MC_CFG_CONTROL, 8);
|
||
|
||
edac_dbg(0, "Error inject addr match 0x%016llx, ecc 0x%08x, inject 0x%08x\n",
|
||
mask, pvt->inject.eccmask, injectmask);
|
||
|
||
|
||
return count;
|
||
}
|
||
|
||
static ssize_t i7core_inject_enable_show(struct device *dev,
|
||
struct device_attribute *mattr,
|
||
char *data)
|
||
{
|
||
struct mem_ctl_info *mci = to_mci(dev);
|
||
struct i7core_pvt *pvt = mci->pvt_info;
|
||
u32 injectmask;
|
||
|
||
if (!pvt->pci_ch[pvt->inject.channel][0])
|
||
return 0;
|
||
|
||
pci_read_config_dword(pvt->pci_ch[pvt->inject.channel][0],
|
||
MC_CHANNEL_ERROR_INJECT, &injectmask);
|
||
|
||
edac_dbg(0, "Inject error read: 0x%018x\n", injectmask);
|
||
|
||
if (injectmask & 0x0c)
|
||
pvt->inject.enable = 1;
|
||
|
||
return sprintf(data, "%d\n", pvt->inject.enable);
|
||
}
|
||
|
||
#define DECLARE_COUNTER(param) \
|
||
static ssize_t i7core_show_counter_##param( \
|
||
struct device *dev, \
|
||
struct device_attribute *mattr, \
|
||
char *data) \
|
||
{ \
|
||
struct mem_ctl_info *mci = dev_get_drvdata(dev); \
|
||
struct i7core_pvt *pvt = mci->pvt_info; \
|
||
\
|
||
edac_dbg(1, "\n"); \
|
||
if (!pvt->ce_count_available || (pvt->is_registered)) \
|
||
return sprintf(data, "data unavailable\n"); \
|
||
return sprintf(data, "%lu\n", \
|
||
pvt->udimm_ce_count[param]); \
|
||
}
|
||
|
||
#define ATTR_COUNTER(param) \
|
||
static DEVICE_ATTR(udimm##param, S_IRUGO | S_IWUSR, \
|
||
i7core_show_counter_##param, \
|
||
NULL)
|
||
|
||
DECLARE_COUNTER(0);
|
||
DECLARE_COUNTER(1);
|
||
DECLARE_COUNTER(2);
|
||
|
||
ATTR_COUNTER(0);
|
||
ATTR_COUNTER(1);
|
||
ATTR_COUNTER(2);
|
||
|
||
/*
|
||
* inject_addrmatch device sysfs struct
|
||
*/
|
||
|
||
static struct attribute *i7core_addrmatch_attrs[] = {
|
||
&dev_attr_channel.attr,
|
||
&dev_attr_dimm.attr,
|
||
&dev_attr_rank.attr,
|
||
&dev_attr_bank.attr,
|
||
&dev_attr_page.attr,
|
||
&dev_attr_col.attr,
|
||
NULL
|
||
};
|
||
|
||
static struct attribute_group addrmatch_grp = {
|
||
.attrs = i7core_addrmatch_attrs,
|
||
};
|
||
|
||
static const struct attribute_group *addrmatch_groups[] = {
|
||
&addrmatch_grp,
|
||
NULL
|
||
};
|
||
|
||
static void addrmatch_release(struct device *device)
|
||
{
|
||
edac_dbg(1, "Releasing device %s\n", dev_name(device));
|
||
kfree(device);
|
||
}
|
||
|
||
static struct device_type addrmatch_type = {
|
||
.groups = addrmatch_groups,
|
||
.release = addrmatch_release,
|
||
};
|
||
|
||
/*
|
||
* all_channel_counts sysfs struct
|
||
*/
|
||
|
||
static struct attribute *i7core_udimm_counters_attrs[] = {
|
||
&dev_attr_udimm0.attr,
|
||
&dev_attr_udimm1.attr,
|
||
&dev_attr_udimm2.attr,
|
||
NULL
|
||
};
|
||
|
||
static struct attribute_group all_channel_counts_grp = {
|
||
.attrs = i7core_udimm_counters_attrs,
|
||
};
|
||
|
||
static const struct attribute_group *all_channel_counts_groups[] = {
|
||
&all_channel_counts_grp,
|
||
NULL
|
||
};
|
||
|
||
static void all_channel_counts_release(struct device *device)
|
||
{
|
||
edac_dbg(1, "Releasing device %s\n", dev_name(device));
|
||
kfree(device);
|
||
}
|
||
|
||
static struct device_type all_channel_counts_type = {
|
||
.groups = all_channel_counts_groups,
|
||
.release = all_channel_counts_release,
|
||
};
|
||
|
||
/*
|
||
* inject sysfs attributes
|
||
*/
|
||
|
||
static DEVICE_ATTR(inject_section, S_IRUGO | S_IWUSR,
|
||
i7core_inject_section_show, i7core_inject_section_store);
|
||
|
||
static DEVICE_ATTR(inject_type, S_IRUGO | S_IWUSR,
|
||
i7core_inject_type_show, i7core_inject_type_store);
|
||
|
||
|
||
static DEVICE_ATTR(inject_eccmask, S_IRUGO | S_IWUSR,
|
||
i7core_inject_eccmask_show, i7core_inject_eccmask_store);
|
||
|
||
static DEVICE_ATTR(inject_enable, S_IRUGO | S_IWUSR,
|
||
i7core_inject_enable_show, i7core_inject_enable_store);
|
||
|
||
static int i7core_create_sysfs_devices(struct mem_ctl_info *mci)
|
||
{
|
||
struct i7core_pvt *pvt = mci->pvt_info;
|
||
int rc;
|
||
|
||
rc = device_create_file(&mci->dev, &dev_attr_inject_section);
|
||
if (rc < 0)
|
||
return rc;
|
||
rc = device_create_file(&mci->dev, &dev_attr_inject_type);
|
||
if (rc < 0)
|
||
return rc;
|
||
rc = device_create_file(&mci->dev, &dev_attr_inject_eccmask);
|
||
if (rc < 0)
|
||
return rc;
|
||
rc = device_create_file(&mci->dev, &dev_attr_inject_enable);
|
||
if (rc < 0)
|
||
return rc;
|
||
|
||
pvt->addrmatch_dev = kzalloc(sizeof(*pvt->addrmatch_dev), GFP_KERNEL);
|
||
if (!pvt->addrmatch_dev)
|
||
return rc;
|
||
|
||
pvt->addrmatch_dev->type = &addrmatch_type;
|
||
pvt->addrmatch_dev->bus = mci->dev.bus;
|
||
device_initialize(pvt->addrmatch_dev);
|
||
pvt->addrmatch_dev->parent = &mci->dev;
|
||
dev_set_name(pvt->addrmatch_dev, "inject_addrmatch");
|
||
dev_set_drvdata(pvt->addrmatch_dev, mci);
|
||
|
||
edac_dbg(1, "creating %s\n", dev_name(pvt->addrmatch_dev));
|
||
|
||
rc = device_add(pvt->addrmatch_dev);
|
||
if (rc < 0)
|
||
return rc;
|
||
|
||
if (!pvt->is_registered) {
|
||
pvt->chancounts_dev = kzalloc(sizeof(*pvt->chancounts_dev),
|
||
GFP_KERNEL);
|
||
if (!pvt->chancounts_dev) {
|
||
put_device(pvt->addrmatch_dev);
|
||
device_del(pvt->addrmatch_dev);
|
||
return rc;
|
||
}
|
||
|
||
pvt->chancounts_dev->type = &all_channel_counts_type;
|
||
pvt->chancounts_dev->bus = mci->dev.bus;
|
||
device_initialize(pvt->chancounts_dev);
|
||
pvt->chancounts_dev->parent = &mci->dev;
|
||
dev_set_name(pvt->chancounts_dev, "all_channel_counts");
|
||
dev_set_drvdata(pvt->chancounts_dev, mci);
|
||
|
||
edac_dbg(1, "creating %s\n", dev_name(pvt->chancounts_dev));
|
||
|
||
rc = device_add(pvt->chancounts_dev);
|
||
if (rc < 0)
|
||
return rc;
|
||
}
|
||
return 0;
|
||
}
|
||
|
||
static void i7core_delete_sysfs_devices(struct mem_ctl_info *mci)
|
||
{
|
||
struct i7core_pvt *pvt = mci->pvt_info;
|
||
|
||
edac_dbg(1, "\n");
|
||
|
||
device_remove_file(&mci->dev, &dev_attr_inject_section);
|
||
device_remove_file(&mci->dev, &dev_attr_inject_type);
|
||
device_remove_file(&mci->dev, &dev_attr_inject_eccmask);
|
||
device_remove_file(&mci->dev, &dev_attr_inject_enable);
|
||
|
||
if (!pvt->is_registered) {
|
||
put_device(pvt->chancounts_dev);
|
||
device_del(pvt->chancounts_dev);
|
||
}
|
||
put_device(pvt->addrmatch_dev);
|
||
device_del(pvt->addrmatch_dev);
|
||
}
|
||
|
||
/****************************************************************************
|
||
Device initialization routines: put/get, init/exit
|
||
****************************************************************************/
|
||
|
||
/*
|
||
* i7core_put_all_devices 'put' all the devices that we have
|
||
* reserved via 'get'
|
||
*/
|
||
static void i7core_put_devices(struct i7core_dev *i7core_dev)
|
||
{
|
||
int i;
|
||
|
||
edac_dbg(0, "\n");
|
||
for (i = 0; i < i7core_dev->n_devs; i++) {
|
||
struct pci_dev *pdev = i7core_dev->pdev[i];
|
||
if (!pdev)
|
||
continue;
|
||
edac_dbg(0, "Removing dev %02x:%02x.%d\n",
|
||
pdev->bus->number,
|
||
PCI_SLOT(pdev->devfn), PCI_FUNC(pdev->devfn));
|
||
pci_dev_put(pdev);
|
||
}
|
||
}
|
||
|
||
static void i7core_put_all_devices(void)
|
||
{
|
||
struct i7core_dev *i7core_dev, *tmp;
|
||
|
||
list_for_each_entry_safe(i7core_dev, tmp, &i7core_edac_list, list) {
|
||
i7core_put_devices(i7core_dev);
|
||
free_i7core_dev(i7core_dev);
|
||
}
|
||
}
|
||
|
||
static void __init i7core_xeon_pci_fixup(const struct pci_id_table *table)
|
||
{
|
||
struct pci_dev *pdev = NULL;
|
||
int i;
|
||
|
||
/*
|
||
* On Xeon 55xx, the Intel Quick Path Arch Generic Non-core pci buses
|
||
* aren't announced by acpi. So, we need to use a legacy scan probing
|
||
* to detect them
|
||
*/
|
||
while (table && table->descr) {
|
||
pdev = pci_get_device(PCI_VENDOR_ID_INTEL, table->descr[0].dev_id, NULL);
|
||
if (unlikely(!pdev)) {
|
||
for (i = 0; i < MAX_SOCKET_BUSES; i++)
|
||
pcibios_scan_specific_bus(255-i);
|
||
}
|
||
pci_dev_put(pdev);
|
||
table++;
|
||
}
|
||
}
|
||
|
||
static unsigned i7core_pci_lastbus(void)
|
||
{
|
||
int last_bus = 0, bus;
|
||
struct pci_bus *b = NULL;
|
||
|
||
while ((b = pci_find_next_bus(b)) != NULL) {
|
||
bus = b->number;
|
||
edac_dbg(0, "Found bus %d\n", bus);
|
||
if (bus > last_bus)
|
||
last_bus = bus;
|
||
}
|
||
|
||
edac_dbg(0, "Last bus %d\n", last_bus);
|
||
|
||
return last_bus;
|
||
}
|
||
|
||
/*
|
||
* i7core_get_all_devices Find and perform 'get' operation on the MCH's
|
||
* device/functions we want to reference for this driver
|
||
*
|
||
* Need to 'get' device 16 func 1 and func 2
|
||
*/
|
||
static int i7core_get_onedevice(struct pci_dev **prev,
|
||
const struct pci_id_table *table,
|
||
const unsigned devno,
|
||
const unsigned last_bus)
|
||
{
|
||
struct i7core_dev *i7core_dev;
|
||
const struct pci_id_descr *dev_descr = &table->descr[devno];
|
||
|
||
struct pci_dev *pdev = NULL;
|
||
u8 bus = 0;
|
||
u8 socket = 0;
|
||
|
||
pdev = pci_get_device(PCI_VENDOR_ID_INTEL,
|
||
dev_descr->dev_id, *prev);
|
||
|
||
/*
|
||
* On Xeon 55xx, the Intel QuickPath Arch Generic Non-core regs
|
||
* is at addr 8086:2c40, instead of 8086:2c41. So, we need
|
||
* to probe for the alternate address in case of failure
|
||
*/
|
||
if (dev_descr->dev_id == PCI_DEVICE_ID_INTEL_I7_NONCORE && !pdev) {
|
||
pci_dev_get(*prev); /* pci_get_device will put it */
|
||
pdev = pci_get_device(PCI_VENDOR_ID_INTEL,
|
||
PCI_DEVICE_ID_INTEL_I7_NONCORE_ALT, *prev);
|
||
}
|
||
|
||
if (dev_descr->dev_id == PCI_DEVICE_ID_INTEL_LYNNFIELD_NONCORE &&
|
||
!pdev) {
|
||
pci_dev_get(*prev); /* pci_get_device will put it */
|
||
pdev = pci_get_device(PCI_VENDOR_ID_INTEL,
|
||
PCI_DEVICE_ID_INTEL_LYNNFIELD_NONCORE_ALT,
|
||
*prev);
|
||
}
|
||
|
||
if (!pdev) {
|
||
if (*prev) {
|
||
*prev = pdev;
|
||
return 0;
|
||
}
|
||
|
||
if (dev_descr->optional)
|
||
return 0;
|
||
|
||
if (devno == 0)
|
||
return -ENODEV;
|
||
|
||
i7core_printk(KERN_INFO,
|
||
"Device not found: dev %02x.%d PCI ID %04x:%04x\n",
|
||
dev_descr->dev, dev_descr->func,
|
||
PCI_VENDOR_ID_INTEL, dev_descr->dev_id);
|
||
|
||
/* End of list, leave */
|
||
return -ENODEV;
|
||
}
|
||
bus = pdev->bus->number;
|
||
|
||
socket = last_bus - bus;
|
||
|
||
i7core_dev = get_i7core_dev(socket);
|
||
if (!i7core_dev) {
|
||
i7core_dev = alloc_i7core_dev(socket, table);
|
||
if (!i7core_dev) {
|
||
pci_dev_put(pdev);
|
||
return -ENOMEM;
|
||
}
|
||
}
|
||
|
||
if (i7core_dev->pdev[devno]) {
|
||
i7core_printk(KERN_ERR,
|
||
"Duplicated device for "
|
||
"dev %02x:%02x.%d PCI ID %04x:%04x\n",
|
||
bus, dev_descr->dev, dev_descr->func,
|
||
PCI_VENDOR_ID_INTEL, dev_descr->dev_id);
|
||
pci_dev_put(pdev);
|
||
return -ENODEV;
|
||
}
|
||
|
||
i7core_dev->pdev[devno] = pdev;
|
||
|
||
/* Sanity check */
|
||
if (unlikely(PCI_SLOT(pdev->devfn) != dev_descr->dev ||
|
||
PCI_FUNC(pdev->devfn) != dev_descr->func)) {
|
||
i7core_printk(KERN_ERR,
|
||
"Device PCI ID %04x:%04x "
|
||
"has dev %02x:%02x.%d instead of dev %02x:%02x.%d\n",
|
||
PCI_VENDOR_ID_INTEL, dev_descr->dev_id,
|
||
bus, PCI_SLOT(pdev->devfn), PCI_FUNC(pdev->devfn),
|
||
bus, dev_descr->dev, dev_descr->func);
|
||
return -ENODEV;
|
||
}
|
||
|
||
/* Be sure that the device is enabled */
|
||
if (unlikely(pci_enable_device(pdev) < 0)) {
|
||
i7core_printk(KERN_ERR,
|
||
"Couldn't enable "
|
||
"dev %02x:%02x.%d PCI ID %04x:%04x\n",
|
||
bus, dev_descr->dev, dev_descr->func,
|
||
PCI_VENDOR_ID_INTEL, dev_descr->dev_id);
|
||
return -ENODEV;
|
||
}
|
||
|
||
edac_dbg(0, "Detected socket %d dev %02x:%02x.%d PCI ID %04x:%04x\n",
|
||
socket, bus, dev_descr->dev,
|
||
dev_descr->func,
|
||
PCI_VENDOR_ID_INTEL, dev_descr->dev_id);
|
||
|
||
/*
|
||
* As stated on drivers/pci/search.c, the reference count for
|
||
* @from is always decremented if it is not %NULL. So, as we need
|
||
* to get all devices up to null, we need to do a get for the device
|
||
*/
|
||
pci_dev_get(pdev);
|
||
|
||
*prev = pdev;
|
||
|
||
return 0;
|
||
}
|
||
|
||
static int i7core_get_all_devices(void)
|
||
{
|
||
int i, rc, last_bus;
|
||
struct pci_dev *pdev = NULL;
|
||
const struct pci_id_table *table = pci_dev_table;
|
||
|
||
last_bus = i7core_pci_lastbus();
|
||
|
||
while (table && table->descr) {
|
||
for (i = 0; i < table->n_devs; i++) {
|
||
pdev = NULL;
|
||
do {
|
||
rc = i7core_get_onedevice(&pdev, table, i,
|
||
last_bus);
|
||
if (rc < 0) {
|
||
if (i == 0) {
|
||
i = table->n_devs;
|
||
break;
|
||
}
|
||
i7core_put_all_devices();
|
||
return -ENODEV;
|
||
}
|
||
} while (pdev);
|
||
}
|
||
table++;
|
||
}
|
||
|
||
return 0;
|
||
}
|
||
|
||
static int mci_bind_devs(struct mem_ctl_info *mci,
|
||
struct i7core_dev *i7core_dev)
|
||
{
|
||
struct i7core_pvt *pvt = mci->pvt_info;
|
||
struct pci_dev *pdev;
|
||
int i, func, slot;
|
||
char *family;
|
||
|
||
pvt->is_registered = false;
|
||
pvt->enable_scrub = false;
|
||
for (i = 0; i < i7core_dev->n_devs; i++) {
|
||
pdev = i7core_dev->pdev[i];
|
||
if (!pdev)
|
||
continue;
|
||
|
||
func = PCI_FUNC(pdev->devfn);
|
||
slot = PCI_SLOT(pdev->devfn);
|
||
if (slot == 3) {
|
||
if (unlikely(func > MAX_MCR_FUNC))
|
||
goto error;
|
||
pvt->pci_mcr[func] = pdev;
|
||
} else if (likely(slot >= 4 && slot < 4 + NUM_CHANS)) {
|
||
if (unlikely(func > MAX_CHAN_FUNC))
|
||
goto error;
|
||
pvt->pci_ch[slot - 4][func] = pdev;
|
||
} else if (!slot && !func) {
|
||
pvt->pci_noncore = pdev;
|
||
|
||
/* Detect the processor family */
|
||
switch (pdev->device) {
|
||
case PCI_DEVICE_ID_INTEL_I7_NONCORE:
|
||
family = "Xeon 35xx/ i7core";
|
||
pvt->enable_scrub = false;
|
||
break;
|
||
case PCI_DEVICE_ID_INTEL_LYNNFIELD_NONCORE_ALT:
|
||
family = "i7-800/i5-700";
|
||
pvt->enable_scrub = false;
|
||
break;
|
||
case PCI_DEVICE_ID_INTEL_LYNNFIELD_NONCORE:
|
||
family = "Xeon 34xx";
|
||
pvt->enable_scrub = false;
|
||
break;
|
||
case PCI_DEVICE_ID_INTEL_I7_NONCORE_ALT:
|
||
family = "Xeon 55xx";
|
||
pvt->enable_scrub = true;
|
||
break;
|
||
case PCI_DEVICE_ID_INTEL_LYNNFIELD_NONCORE_REV2:
|
||
family = "Xeon 56xx / i7-900";
|
||
pvt->enable_scrub = true;
|
||
break;
|
||
default:
|
||
family = "unknown";
|
||
pvt->enable_scrub = false;
|
||
}
|
||
edac_dbg(0, "Detected a processor type %s\n", family);
|
||
} else
|
||
goto error;
|
||
|
||
edac_dbg(0, "Associated fn %d.%d, dev = %p, socket %d\n",
|
||
PCI_SLOT(pdev->devfn), PCI_FUNC(pdev->devfn),
|
||
pdev, i7core_dev->socket);
|
||
|
||
if (PCI_SLOT(pdev->devfn) == 3 &&
|
||
PCI_FUNC(pdev->devfn) == 2)
|
||
pvt->is_registered = true;
|
||
}
|
||
|
||
return 0;
|
||
|
||
error:
|
||
i7core_printk(KERN_ERR, "Device %d, function %d "
|
||
"is out of the expected range\n",
|
||
slot, func);
|
||
return -EINVAL;
|
||
}
|
||
|
||
/****************************************************************************
|
||
Error check routines
|
||
****************************************************************************/
|
||
|
||
static void i7core_rdimm_update_ce_count(struct mem_ctl_info *mci,
|
||
const int chan,
|
||
const int new0,
|
||
const int new1,
|
||
const int new2)
|
||
{
|
||
struct i7core_pvt *pvt = mci->pvt_info;
|
||
int add0 = 0, add1 = 0, add2 = 0;
|
||
/* Updates CE counters if it is not the first time here */
|
||
if (pvt->ce_count_available) {
|
||
/* Updates CE counters */
|
||
|
||
add2 = new2 - pvt->rdimm_last_ce_count[chan][2];
|
||
add1 = new1 - pvt->rdimm_last_ce_count[chan][1];
|
||
add0 = new0 - pvt->rdimm_last_ce_count[chan][0];
|
||
|
||
if (add2 < 0)
|
||
add2 += 0x7fff;
|
||
pvt->rdimm_ce_count[chan][2] += add2;
|
||
|
||
if (add1 < 0)
|
||
add1 += 0x7fff;
|
||
pvt->rdimm_ce_count[chan][1] += add1;
|
||
|
||
if (add0 < 0)
|
||
add0 += 0x7fff;
|
||
pvt->rdimm_ce_count[chan][0] += add0;
|
||
} else
|
||
pvt->ce_count_available = 1;
|
||
|
||
/* Store the new values */
|
||
pvt->rdimm_last_ce_count[chan][2] = new2;
|
||
pvt->rdimm_last_ce_count[chan][1] = new1;
|
||
pvt->rdimm_last_ce_count[chan][0] = new0;
|
||
|
||
/*updated the edac core */
|
||
if (add0 != 0)
|
||
edac_mc_handle_error(HW_EVENT_ERR_CORRECTED, mci, add0,
|
||
0, 0, 0,
|
||
chan, 0, -1, "error", "");
|
||
if (add1 != 0)
|
||
edac_mc_handle_error(HW_EVENT_ERR_CORRECTED, mci, add1,
|
||
0, 0, 0,
|
||
chan, 1, -1, "error", "");
|
||
if (add2 != 0)
|
||
edac_mc_handle_error(HW_EVENT_ERR_CORRECTED, mci, add2,
|
||
0, 0, 0,
|
||
chan, 2, -1, "error", "");
|
||
}
|
||
|
||
static void i7core_rdimm_check_mc_ecc_err(struct mem_ctl_info *mci)
|
||
{
|
||
struct i7core_pvt *pvt = mci->pvt_info;
|
||
u32 rcv[3][2];
|
||
int i, new0, new1, new2;
|
||
|
||
/*Read DEV 3: FUN 2: MC_COR_ECC_CNT regs directly*/
|
||
pci_read_config_dword(pvt->pci_mcr[2], MC_COR_ECC_CNT_0,
|
||
&rcv[0][0]);
|
||
pci_read_config_dword(pvt->pci_mcr[2], MC_COR_ECC_CNT_1,
|
||
&rcv[0][1]);
|
||
pci_read_config_dword(pvt->pci_mcr[2], MC_COR_ECC_CNT_2,
|
||
&rcv[1][0]);
|
||
pci_read_config_dword(pvt->pci_mcr[2], MC_COR_ECC_CNT_3,
|
||
&rcv[1][1]);
|
||
pci_read_config_dword(pvt->pci_mcr[2], MC_COR_ECC_CNT_4,
|
||
&rcv[2][0]);
|
||
pci_read_config_dword(pvt->pci_mcr[2], MC_COR_ECC_CNT_5,
|
||
&rcv[2][1]);
|
||
for (i = 0 ; i < 3; i++) {
|
||
edac_dbg(3, "MC_COR_ECC_CNT%d = 0x%x; MC_COR_ECC_CNT%d = 0x%x\n",
|
||
(i * 2), rcv[i][0], (i * 2) + 1, rcv[i][1]);
|
||
/*if the channel has 3 dimms*/
|
||
if (pvt->channel[i].dimms > 2) {
|
||
new0 = DIMM_BOT_COR_ERR(rcv[i][0]);
|
||
new1 = DIMM_TOP_COR_ERR(rcv[i][0]);
|
||
new2 = DIMM_BOT_COR_ERR(rcv[i][1]);
|
||
} else {
|
||
new0 = DIMM_TOP_COR_ERR(rcv[i][0]) +
|
||
DIMM_BOT_COR_ERR(rcv[i][0]);
|
||
new1 = DIMM_TOP_COR_ERR(rcv[i][1]) +
|
||
DIMM_BOT_COR_ERR(rcv[i][1]);
|
||
new2 = 0;
|
||
}
|
||
|
||
i7core_rdimm_update_ce_count(mci, i, new0, new1, new2);
|
||
}
|
||
}
|
||
|
||
/* This function is based on the device 3 function 4 registers as described on:
|
||
* Intel Xeon Processor 5500 Series Datasheet Volume 2
|
||
* http://www.intel.com/Assets/PDF/datasheet/321322.pdf
|
||
* also available at:
|
||
* http://www.arrownac.com/manufacturers/intel/s/nehalem/5500-datasheet-v2.pdf
|
||
*/
|
||
static void i7core_udimm_check_mc_ecc_err(struct mem_ctl_info *mci)
|
||
{
|
||
struct i7core_pvt *pvt = mci->pvt_info;
|
||
u32 rcv1, rcv0;
|
||
int new0, new1, new2;
|
||
|
||
if (!pvt->pci_mcr[4]) {
|
||
edac_dbg(0, "MCR registers not found\n");
|
||
return;
|
||
}
|
||
|
||
/* Corrected test errors */
|
||
pci_read_config_dword(pvt->pci_mcr[4], MC_TEST_ERR_RCV1, &rcv1);
|
||
pci_read_config_dword(pvt->pci_mcr[4], MC_TEST_ERR_RCV0, &rcv0);
|
||
|
||
/* Store the new values */
|
||
new2 = DIMM2_COR_ERR(rcv1);
|
||
new1 = DIMM1_COR_ERR(rcv0);
|
||
new0 = DIMM0_COR_ERR(rcv0);
|
||
|
||
/* Updates CE counters if it is not the first time here */
|
||
if (pvt->ce_count_available) {
|
||
/* Updates CE counters */
|
||
int add0, add1, add2;
|
||
|
||
add2 = new2 - pvt->udimm_last_ce_count[2];
|
||
add1 = new1 - pvt->udimm_last_ce_count[1];
|
||
add0 = new0 - pvt->udimm_last_ce_count[0];
|
||
|
||
if (add2 < 0)
|
||
add2 += 0x7fff;
|
||
pvt->udimm_ce_count[2] += add2;
|
||
|
||
if (add1 < 0)
|
||
add1 += 0x7fff;
|
||
pvt->udimm_ce_count[1] += add1;
|
||
|
||
if (add0 < 0)
|
||
add0 += 0x7fff;
|
||
pvt->udimm_ce_count[0] += add0;
|
||
|
||
if (add0 | add1 | add2)
|
||
i7core_printk(KERN_ERR, "New Corrected error(s): "
|
||
"dimm0: +%d, dimm1: +%d, dimm2 +%d\n",
|
||
add0, add1, add2);
|
||
} else
|
||
pvt->ce_count_available = 1;
|
||
|
||
/* Store the new values */
|
||
pvt->udimm_last_ce_count[2] = new2;
|
||
pvt->udimm_last_ce_count[1] = new1;
|
||
pvt->udimm_last_ce_count[0] = new0;
|
||
}
|
||
|
||
/*
|
||
* According with tables E-11 and E-12 of chapter E.3.3 of Intel 64 and IA-32
|
||
* Architectures Software Developer’s Manual Volume 3B.
|
||
* Nehalem are defined as family 0x06, model 0x1a
|
||
*
|
||
* The MCA registers used here are the following ones:
|
||
* struct mce field MCA Register
|
||
* m->status MSR_IA32_MC8_STATUS
|
||
* m->addr MSR_IA32_MC8_ADDR
|
||
* m->misc MSR_IA32_MC8_MISC
|
||
* In the case of Nehalem, the error information is masked at .status and .misc
|
||
* fields
|
||
*/
|
||
static void i7core_mce_output_error(struct mem_ctl_info *mci,
|
||
const struct mce *m)
|
||
{
|
||
struct i7core_pvt *pvt = mci->pvt_info;
|
||
char *optype, *err;
|
||
enum hw_event_mc_err_type tp_event;
|
||
unsigned long error = m->status & 0x1ff0000l;
|
||
bool uncorrected_error = m->mcgstatus & 1ll << 61;
|
||
bool ripv = m->mcgstatus & 1;
|
||
u32 optypenum = (m->status >> 4) & 0x07;
|
||
u32 core_err_cnt = (m->status >> 38) & 0x7fff;
|
||
u32 dimm = (m->misc >> 16) & 0x3;
|
||
u32 channel = (m->misc >> 18) & 0x3;
|
||
u32 syndrome = m->misc >> 32;
|
||
u32 errnum = find_first_bit(&error, 32);
|
||
|
||
if (uncorrected_error) {
|
||
if (ripv)
|
||
tp_event = HW_EVENT_ERR_FATAL;
|
||
else
|
||
tp_event = HW_EVENT_ERR_UNCORRECTED;
|
||
} else {
|
||
tp_event = HW_EVENT_ERR_CORRECTED;
|
||
}
|
||
|
||
switch (optypenum) {
|
||
case 0:
|
||
optype = "generic undef request";
|
||
break;
|
||
case 1:
|
||
optype = "read error";
|
||
break;
|
||
case 2:
|
||
optype = "write error";
|
||
break;
|
||
case 3:
|
||
optype = "addr/cmd error";
|
||
break;
|
||
case 4:
|
||
optype = "scrubbing error";
|
||
break;
|
||
default:
|
||
optype = "reserved";
|
||
break;
|
||
}
|
||
|
||
switch (errnum) {
|
||
case 16:
|
||
err = "read ECC error";
|
||
break;
|
||
case 17:
|
||
err = "RAS ECC error";
|
||
break;
|
||
case 18:
|
||
err = "write parity error";
|
||
break;
|
||
case 19:
|
||
err = "redundacy loss";
|
||
break;
|
||
case 20:
|
||
err = "reserved";
|
||
break;
|
||
case 21:
|
||
err = "memory range error";
|
||
break;
|
||
case 22:
|
||
err = "RTID out of range";
|
||
break;
|
||
case 23:
|
||
err = "address parity error";
|
||
break;
|
||
case 24:
|
||
err = "byte enable parity error";
|
||
break;
|
||
default:
|
||
err = "unknown";
|
||
}
|
||
|
||
/*
|
||
* Call the helper to output message
|
||
* FIXME: what to do if core_err_cnt > 1? Currently, it generates
|
||
* only one event
|
||
*/
|
||
if (uncorrected_error || !pvt->is_registered)
|
||
edac_mc_handle_error(tp_event, mci, core_err_cnt,
|
||
m->addr >> PAGE_SHIFT,
|
||
m->addr & ~PAGE_MASK,
|
||
syndrome,
|
||
channel, dimm, -1,
|
||
err, optype);
|
||
}
|
||
|
||
/*
|
||
* i7core_check_error Retrieve and process errors reported by the
|
||
* hardware. Called by the Core module.
|
||
*/
|
||
static void i7core_check_error(struct mem_ctl_info *mci)
|
||
{
|
||
struct i7core_pvt *pvt = mci->pvt_info;
|
||
int i;
|
||
unsigned count = 0;
|
||
struct mce *m;
|
||
|
||
/*
|
||
* MCE first step: Copy all mce errors into a temporary buffer
|
||
* We use a double buffering here, to reduce the risk of
|
||
* losing an error.
|
||
*/
|
||
smp_rmb();
|
||
count = (pvt->mce_out + MCE_LOG_LEN - pvt->mce_in)
|
||
% MCE_LOG_LEN;
|
||
if (!count)
|
||
goto check_ce_error;
|
||
|
||
m = pvt->mce_outentry;
|
||
if (pvt->mce_in + count > MCE_LOG_LEN) {
|
||
unsigned l = MCE_LOG_LEN - pvt->mce_in;
|
||
|
||
memcpy(m, &pvt->mce_entry[pvt->mce_in], sizeof(*m) * l);
|
||
smp_wmb();
|
||
pvt->mce_in = 0;
|
||
count -= l;
|
||
m += l;
|
||
}
|
||
memcpy(m, &pvt->mce_entry[pvt->mce_in], sizeof(*m) * count);
|
||
smp_wmb();
|
||
pvt->mce_in += count;
|
||
|
||
smp_rmb();
|
||
if (pvt->mce_overrun) {
|
||
i7core_printk(KERN_ERR, "Lost %d memory errors\n",
|
||
pvt->mce_overrun);
|
||
smp_wmb();
|
||
pvt->mce_overrun = 0;
|
||
}
|
||
|
||
/*
|
||
* MCE second step: parse errors and display
|
||
*/
|
||
for (i = 0; i < count; i++)
|
||
i7core_mce_output_error(mci, &pvt->mce_outentry[i]);
|
||
|
||
/*
|
||
* Now, let's increment CE error counts
|
||
*/
|
||
check_ce_error:
|
||
if (!pvt->is_registered)
|
||
i7core_udimm_check_mc_ecc_err(mci);
|
||
else
|
||
i7core_rdimm_check_mc_ecc_err(mci);
|
||
}
|
||
|
||
/*
|
||
* i7core_mce_check_error Replicates mcelog routine to get errors
|
||
* This routine simply queues mcelog errors, and
|
||
* return. The error itself should be handled later
|
||
* by i7core_check_error.
|
||
* WARNING: As this routine should be called at NMI time, extra care should
|
||
* be taken to avoid deadlocks, and to be as fast as possible.
|
||
*/
|
||
static int i7core_mce_check_error(struct notifier_block *nb, unsigned long val,
|
||
void *data)
|
||
{
|
||
struct mce *mce = (struct mce *)data;
|
||
struct i7core_dev *i7_dev;
|
||
struct mem_ctl_info *mci;
|
||
struct i7core_pvt *pvt;
|
||
|
||
i7_dev = get_i7core_dev(mce->socketid);
|
||
if (!i7_dev)
|
||
return NOTIFY_BAD;
|
||
|
||
mci = i7_dev->mci;
|
||
pvt = mci->pvt_info;
|
||
|
||
/*
|
||
* Just let mcelog handle it if the error is
|
||
* outside the memory controller
|
||
*/
|
||
if (((mce->status & 0xffff) >> 7) != 1)
|
||
return NOTIFY_DONE;
|
||
|
||
/* Bank 8 registers are the only ones that we know how to handle */
|
||
if (mce->bank != 8)
|
||
return NOTIFY_DONE;
|
||
|
||
smp_rmb();
|
||
if ((pvt->mce_out + 1) % MCE_LOG_LEN == pvt->mce_in) {
|
||
smp_wmb();
|
||
pvt->mce_overrun++;
|
||
return NOTIFY_DONE;
|
||
}
|
||
|
||
/* Copy memory error at the ringbuffer */
|
||
memcpy(&pvt->mce_entry[pvt->mce_out], mce, sizeof(*mce));
|
||
smp_wmb();
|
||
pvt->mce_out = (pvt->mce_out + 1) % MCE_LOG_LEN;
|
||
|
||
/* Handle fatal errors immediately */
|
||
if (mce->mcgstatus & 1)
|
||
i7core_check_error(mci);
|
||
|
||
/* Advise mcelog that the errors were handled */
|
||
return NOTIFY_STOP;
|
||
}
|
||
|
||
static struct notifier_block i7_mce_dec = {
|
||
.notifier_call = i7core_mce_check_error,
|
||
};
|
||
|
||
struct memdev_dmi_entry {
|
||
u8 type;
|
||
u8 length;
|
||
u16 handle;
|
||
u16 phys_mem_array_handle;
|
||
u16 mem_err_info_handle;
|
||
u16 total_width;
|
||
u16 data_width;
|
||
u16 size;
|
||
u8 form;
|
||
u8 device_set;
|
||
u8 device_locator;
|
||
u8 bank_locator;
|
||
u8 memory_type;
|
||
u16 type_detail;
|
||
u16 speed;
|
||
u8 manufacturer;
|
||
u8 serial_number;
|
||
u8 asset_tag;
|
||
u8 part_number;
|
||
u8 attributes;
|
||
u32 extended_size;
|
||
u16 conf_mem_clk_speed;
|
||
} __attribute__((__packed__));
|
||
|
||
|
||
/*
|
||
* Decode the DRAM Clock Frequency, be paranoid, make sure that all
|
||
* memory devices show the same speed, and if they don't then consider
|
||
* all speeds to be invalid.
|
||
*/
|
||
static void decode_dclk(const struct dmi_header *dh, void *_dclk_freq)
|
||
{
|
||
int *dclk_freq = _dclk_freq;
|
||
u16 dmi_mem_clk_speed;
|
||
|
||
if (*dclk_freq == -1)
|
||
return;
|
||
|
||
if (dh->type == DMI_ENTRY_MEM_DEVICE) {
|
||
struct memdev_dmi_entry *memdev_dmi_entry =
|
||
(struct memdev_dmi_entry *)dh;
|
||
unsigned long conf_mem_clk_speed_offset =
|
||
(unsigned long)&memdev_dmi_entry->conf_mem_clk_speed -
|
||
(unsigned long)&memdev_dmi_entry->type;
|
||
unsigned long speed_offset =
|
||
(unsigned long)&memdev_dmi_entry->speed -
|
||
(unsigned long)&memdev_dmi_entry->type;
|
||
|
||
/* Check that a DIMM is present */
|
||
if (memdev_dmi_entry->size == 0)
|
||
return;
|
||
|
||
/*
|
||
* Pick the configured speed if it's available, otherwise
|
||
* pick the DIMM speed, or we don't have a speed.
|
||
*/
|
||
if (memdev_dmi_entry->length > conf_mem_clk_speed_offset) {
|
||
dmi_mem_clk_speed =
|
||
memdev_dmi_entry->conf_mem_clk_speed;
|
||
} else if (memdev_dmi_entry->length > speed_offset) {
|
||
dmi_mem_clk_speed = memdev_dmi_entry->speed;
|
||
} else {
|
||
*dclk_freq = -1;
|
||
return;
|
||
}
|
||
|
||
if (*dclk_freq == 0) {
|
||
/* First pass, speed was 0 */
|
||
if (dmi_mem_clk_speed > 0) {
|
||
/* Set speed if a valid speed is read */
|
||
*dclk_freq = dmi_mem_clk_speed;
|
||
} else {
|
||
/* Otherwise we don't have a valid speed */
|
||
*dclk_freq = -1;
|
||
}
|
||
} else if (*dclk_freq > 0 &&
|
||
*dclk_freq != dmi_mem_clk_speed) {
|
||
/*
|
||
* If we have a speed, check that all DIMMS are the same
|
||
* speed, otherwise set the speed as invalid.
|
||
*/
|
||
*dclk_freq = -1;
|
||
}
|
||
}
|
||
}
|
||
|
||
/*
|
||
* The default DCLK frequency is used as a fallback if we
|
||
* fail to find anything reliable in the DMI. The value
|
||
* is taken straight from the datasheet.
|
||
*/
|
||
#define DEFAULT_DCLK_FREQ 800
|
||
|
||
static int get_dclk_freq(void)
|
||
{
|
||
int dclk_freq = 0;
|
||
|
||
dmi_walk(decode_dclk, (void *)&dclk_freq);
|
||
|
||
if (dclk_freq < 1)
|
||
return DEFAULT_DCLK_FREQ;
|
||
|
||
return dclk_freq;
|
||
}
|
||
|
||
/*
|
||
* set_sdram_scrub_rate This routine sets byte/sec bandwidth scrub rate
|
||
* to hardware according to SCRUBINTERVAL formula
|
||
* found in datasheet.
|
||
*/
|
||
static int set_sdram_scrub_rate(struct mem_ctl_info *mci, u32 new_bw)
|
||
{
|
||
struct i7core_pvt *pvt = mci->pvt_info;
|
||
struct pci_dev *pdev;
|
||
u32 dw_scrub;
|
||
u32 dw_ssr;
|
||
|
||
/* Get data from the MC register, function 2 */
|
||
pdev = pvt->pci_mcr[2];
|
||
if (!pdev)
|
||
return -ENODEV;
|
||
|
||
pci_read_config_dword(pdev, MC_SCRUB_CONTROL, &dw_scrub);
|
||
|
||
if (new_bw == 0) {
|
||
/* Prepare to disable petrol scrub */
|
||
dw_scrub &= ~STARTSCRUB;
|
||
/* Stop the patrol scrub engine */
|
||
write_and_test(pdev, MC_SCRUB_CONTROL,
|
||
dw_scrub & ~SCRUBINTERVAL_MASK);
|
||
|
||
/* Get current status of scrub rate and set bit to disable */
|
||
pci_read_config_dword(pdev, MC_SSRCONTROL, &dw_ssr);
|
||
dw_ssr &= ~SSR_MODE_MASK;
|
||
dw_ssr |= SSR_MODE_DISABLE;
|
||
} else {
|
||
const int cache_line_size = 64;
|
||
const u32 freq_dclk_mhz = pvt->dclk_freq;
|
||
unsigned long long scrub_interval;
|
||
/*
|
||
* Translate the desired scrub rate to a register value and
|
||
* program the corresponding register value.
|
||
*/
|
||
scrub_interval = (unsigned long long)freq_dclk_mhz *
|
||
cache_line_size * 1000000;
|
||
do_div(scrub_interval, new_bw);
|
||
|
||
if (!scrub_interval || scrub_interval > SCRUBINTERVAL_MASK)
|
||
return -EINVAL;
|
||
|
||
dw_scrub = SCRUBINTERVAL_MASK & scrub_interval;
|
||
|
||
/* Start the patrol scrub engine */
|
||
pci_write_config_dword(pdev, MC_SCRUB_CONTROL,
|
||
STARTSCRUB | dw_scrub);
|
||
|
||
/* Get current status of scrub rate and set bit to enable */
|
||
pci_read_config_dword(pdev, MC_SSRCONTROL, &dw_ssr);
|
||
dw_ssr &= ~SSR_MODE_MASK;
|
||
dw_ssr |= SSR_MODE_ENABLE;
|
||
}
|
||
/* Disable or enable scrubbing */
|
||
pci_write_config_dword(pdev, MC_SSRCONTROL, dw_ssr);
|
||
|
||
return new_bw;
|
||
}
|
||
|
||
/*
|
||
* get_sdram_scrub_rate This routine convert current scrub rate value
|
||
* into byte/sec bandwidth according to
|
||
* SCRUBINTERVAL formula found in datasheet.
|
||
*/
|
||
static int get_sdram_scrub_rate(struct mem_ctl_info *mci)
|
||
{
|
||
struct i7core_pvt *pvt = mci->pvt_info;
|
||
struct pci_dev *pdev;
|
||
const u32 cache_line_size = 64;
|
||
const u32 freq_dclk_mhz = pvt->dclk_freq;
|
||
unsigned long long scrub_rate;
|
||
u32 scrubval;
|
||
|
||
/* Get data from the MC register, function 2 */
|
||
pdev = pvt->pci_mcr[2];
|
||
if (!pdev)
|
||
return -ENODEV;
|
||
|
||
/* Get current scrub control data */
|
||
pci_read_config_dword(pdev, MC_SCRUB_CONTROL, &scrubval);
|
||
|
||
/* Mask highest 8-bits to 0 */
|
||
scrubval &= SCRUBINTERVAL_MASK;
|
||
if (!scrubval)
|
||
return 0;
|
||
|
||
/* Calculate scrub rate value into byte/sec bandwidth */
|
||
scrub_rate = (unsigned long long)freq_dclk_mhz *
|
||
1000000 * cache_line_size;
|
||
do_div(scrub_rate, scrubval);
|
||
return (int)scrub_rate;
|
||
}
|
||
|
||
static void enable_sdram_scrub_setting(struct mem_ctl_info *mci)
|
||
{
|
||
struct i7core_pvt *pvt = mci->pvt_info;
|
||
u32 pci_lock;
|
||
|
||
/* Unlock writes to pci registers */
|
||
pci_read_config_dword(pvt->pci_noncore, MC_CFG_CONTROL, &pci_lock);
|
||
pci_lock &= ~0x3;
|
||
pci_write_config_dword(pvt->pci_noncore, MC_CFG_CONTROL,
|
||
pci_lock | MC_CFG_UNLOCK);
|
||
|
||
mci->set_sdram_scrub_rate = set_sdram_scrub_rate;
|
||
mci->get_sdram_scrub_rate = get_sdram_scrub_rate;
|
||
}
|
||
|
||
static void disable_sdram_scrub_setting(struct mem_ctl_info *mci)
|
||
{
|
||
struct i7core_pvt *pvt = mci->pvt_info;
|
||
u32 pci_lock;
|
||
|
||
/* Lock writes to pci registers */
|
||
pci_read_config_dword(pvt->pci_noncore, MC_CFG_CONTROL, &pci_lock);
|
||
pci_lock &= ~0x3;
|
||
pci_write_config_dword(pvt->pci_noncore, MC_CFG_CONTROL,
|
||
pci_lock | MC_CFG_LOCK);
|
||
}
|
||
|
||
static void i7core_pci_ctl_create(struct i7core_pvt *pvt)
|
||
{
|
||
pvt->i7core_pci = edac_pci_create_generic_ctl(
|
||
&pvt->i7core_dev->pdev[0]->dev,
|
||
EDAC_MOD_STR);
|
||
if (unlikely(!pvt->i7core_pci))
|
||
i7core_printk(KERN_WARNING,
|
||
"Unable to setup PCI error report via EDAC\n");
|
||
}
|
||
|
||
static void i7core_pci_ctl_release(struct i7core_pvt *pvt)
|
||
{
|
||
if (likely(pvt->i7core_pci))
|
||
edac_pci_release_generic_ctl(pvt->i7core_pci);
|
||
else
|
||
i7core_printk(KERN_ERR,
|
||
"Couldn't find mem_ctl_info for socket %d\n",
|
||
pvt->i7core_dev->socket);
|
||
pvt->i7core_pci = NULL;
|
||
}
|
||
|
||
static void i7core_unregister_mci(struct i7core_dev *i7core_dev)
|
||
{
|
||
struct mem_ctl_info *mci = i7core_dev->mci;
|
||
struct i7core_pvt *pvt;
|
||
|
||
if (unlikely(!mci || !mci->pvt_info)) {
|
||
edac_dbg(0, "MC: dev = %p\n", &i7core_dev->pdev[0]->dev);
|
||
|
||
i7core_printk(KERN_ERR, "Couldn't find mci handler\n");
|
||
return;
|
||
}
|
||
|
||
pvt = mci->pvt_info;
|
||
|
||
edac_dbg(0, "MC: mci = %p, dev = %p\n", mci, &i7core_dev->pdev[0]->dev);
|
||
|
||
/* Disable scrubrate setting */
|
||
if (pvt->enable_scrub)
|
||
disable_sdram_scrub_setting(mci);
|
||
|
||
/* Disable EDAC polling */
|
||
i7core_pci_ctl_release(pvt);
|
||
|
||
/* Remove MC sysfs nodes */
|
||
i7core_delete_sysfs_devices(mci);
|
||
edac_mc_del_mc(mci->pdev);
|
||
|
||
edac_dbg(1, "%s: free mci struct\n", mci->ctl_name);
|
||
kfree(mci->ctl_name);
|
||
edac_mc_free(mci);
|
||
i7core_dev->mci = NULL;
|
||
}
|
||
|
||
static int i7core_register_mci(struct i7core_dev *i7core_dev)
|
||
{
|
||
struct mem_ctl_info *mci;
|
||
struct i7core_pvt *pvt;
|
||
int rc;
|
||
struct edac_mc_layer layers[2];
|
||
|
||
/* allocate a new MC control structure */
|
||
|
||
layers[0].type = EDAC_MC_LAYER_CHANNEL;
|
||
layers[0].size = NUM_CHANS;
|
||
layers[0].is_virt_csrow = false;
|
||
layers[1].type = EDAC_MC_LAYER_SLOT;
|
||
layers[1].size = MAX_DIMMS;
|
||
layers[1].is_virt_csrow = true;
|
||
mci = edac_mc_alloc(i7core_dev->socket, ARRAY_SIZE(layers), layers,
|
||
sizeof(*pvt));
|
||
if (unlikely(!mci))
|
||
return -ENOMEM;
|
||
|
||
edac_dbg(0, "MC: mci = %p, dev = %p\n", mci, &i7core_dev->pdev[0]->dev);
|
||
|
||
pvt = mci->pvt_info;
|
||
memset(pvt, 0, sizeof(*pvt));
|
||
|
||
/* Associates i7core_dev and mci for future usage */
|
||
pvt->i7core_dev = i7core_dev;
|
||
i7core_dev->mci = mci;
|
||
|
||
/*
|
||
* FIXME: how to handle RDDR3 at MCI level? It is possible to have
|
||
* Mixed RDDR3/UDDR3 with Nehalem, provided that they are on different
|
||
* memory channels
|
||
*/
|
||
mci->mtype_cap = MEM_FLAG_DDR3;
|
||
mci->edac_ctl_cap = EDAC_FLAG_NONE;
|
||
mci->edac_cap = EDAC_FLAG_NONE;
|
||
mci->mod_name = "i7core_edac.c";
|
||
mci->mod_ver = I7CORE_REVISION;
|
||
mci->ctl_name = kasprintf(GFP_KERNEL, "i7 core #%d",
|
||
i7core_dev->socket);
|
||
mci->dev_name = pci_name(i7core_dev->pdev[0]);
|
||
mci->ctl_page_to_phys = NULL;
|
||
|
||
/* Store pci devices at mci for faster access */
|
||
rc = mci_bind_devs(mci, i7core_dev);
|
||
if (unlikely(rc < 0))
|
||
goto fail0;
|
||
|
||
|
||
/* Get dimm basic config */
|
||
get_dimm_config(mci);
|
||
/* record ptr to the generic device */
|
||
mci->pdev = &i7core_dev->pdev[0]->dev;
|
||
/* Set the function pointer to an actual operation function */
|
||
mci->edac_check = i7core_check_error;
|
||
|
||
/* Enable scrubrate setting */
|
||
if (pvt->enable_scrub)
|
||
enable_sdram_scrub_setting(mci);
|
||
|
||
/* add this new MC control structure to EDAC's list of MCs */
|
||
if (unlikely(edac_mc_add_mc(mci))) {
|
||
edac_dbg(0, "MC: failed edac_mc_add_mc()\n");
|
||
/* FIXME: perhaps some code should go here that disables error
|
||
* reporting if we just enabled it
|
||
*/
|
||
|
||
rc = -EINVAL;
|
||
goto fail0;
|
||
}
|
||
if (i7core_create_sysfs_devices(mci)) {
|
||
edac_dbg(0, "MC: failed to create sysfs nodes\n");
|
||
edac_mc_del_mc(mci->pdev);
|
||
rc = -EINVAL;
|
||
goto fail0;
|
||
}
|
||
|
||
/* Default error mask is any memory */
|
||
pvt->inject.channel = 0;
|
||
pvt->inject.dimm = -1;
|
||
pvt->inject.rank = -1;
|
||
pvt->inject.bank = -1;
|
||
pvt->inject.page = -1;
|
||
pvt->inject.col = -1;
|
||
|
||
/* allocating generic PCI control info */
|
||
i7core_pci_ctl_create(pvt);
|
||
|
||
/* DCLK for scrub rate setting */
|
||
pvt->dclk_freq = get_dclk_freq();
|
||
|
||
return 0;
|
||
|
||
fail0:
|
||
kfree(mci->ctl_name);
|
||
edac_mc_free(mci);
|
||
i7core_dev->mci = NULL;
|
||
return rc;
|
||
}
|
||
|
||
/*
|
||
* i7core_probe Probe for ONE instance of device to see if it is
|
||
* present.
|
||
* return:
|
||
* 0 for FOUND a device
|
||
* < 0 for error code
|
||
*/
|
||
|
||
static int i7core_probe(struct pci_dev *pdev, const struct pci_device_id *id)
|
||
{
|
||
int rc, count = 0;
|
||
struct i7core_dev *i7core_dev;
|
||
|
||
/* get the pci devices we want to reserve for our use */
|
||
mutex_lock(&i7core_edac_lock);
|
||
|
||
/*
|
||
* All memory controllers are allocated at the first pass.
|
||
*/
|
||
if (unlikely(probed >= 1)) {
|
||
mutex_unlock(&i7core_edac_lock);
|
||
return -ENODEV;
|
||
}
|
||
probed++;
|
||
|
||
rc = i7core_get_all_devices();
|
||
if (unlikely(rc < 0))
|
||
goto fail0;
|
||
|
||
list_for_each_entry(i7core_dev, &i7core_edac_list, list) {
|
||
count++;
|
||
rc = i7core_register_mci(i7core_dev);
|
||
if (unlikely(rc < 0))
|
||
goto fail1;
|
||
}
|
||
|
||
/*
|
||
* Nehalem-EX uses a different memory controller. However, as the
|
||
* memory controller is not visible on some Nehalem/Nehalem-EP, we
|
||
* need to indirectly probe via a X58 PCI device. The same devices
|
||
* are found on (some) Nehalem-EX. So, on those machines, the
|
||
* probe routine needs to return -ENODEV, as the actual Memory
|
||
* Controller registers won't be detected.
|
||
*/
|
||
if (!count) {
|
||
rc = -ENODEV;
|
||
goto fail1;
|
||
}
|
||
|
||
i7core_printk(KERN_INFO,
|
||
"Driver loaded, %d memory controller(s) found.\n",
|
||
count);
|
||
|
||
mutex_unlock(&i7core_edac_lock);
|
||
return 0;
|
||
|
||
fail1:
|
||
list_for_each_entry(i7core_dev, &i7core_edac_list, list)
|
||
i7core_unregister_mci(i7core_dev);
|
||
|
||
i7core_put_all_devices();
|
||
fail0:
|
||
mutex_unlock(&i7core_edac_lock);
|
||
return rc;
|
||
}
|
||
|
||
/*
|
||
* i7core_remove destructor for one instance of device
|
||
*
|
||
*/
|
||
static void i7core_remove(struct pci_dev *pdev)
|
||
{
|
||
struct i7core_dev *i7core_dev;
|
||
|
||
edac_dbg(0, "\n");
|
||
|
||
/*
|
||
* we have a trouble here: pdev value for removal will be wrong, since
|
||
* it will point to the X58 register used to detect that the machine
|
||
* is a Nehalem or upper design. However, due to the way several PCI
|
||
* devices are grouped together to provide MC functionality, we need
|
||
* to use a different method for releasing the devices
|
||
*/
|
||
|
||
mutex_lock(&i7core_edac_lock);
|
||
|
||
if (unlikely(!probed)) {
|
||
mutex_unlock(&i7core_edac_lock);
|
||
return;
|
||
}
|
||
|
||
list_for_each_entry(i7core_dev, &i7core_edac_list, list)
|
||
i7core_unregister_mci(i7core_dev);
|
||
|
||
/* Release PCI resources */
|
||
i7core_put_all_devices();
|
||
|
||
probed--;
|
||
|
||
mutex_unlock(&i7core_edac_lock);
|
||
}
|
||
|
||
MODULE_DEVICE_TABLE(pci, i7core_pci_tbl);
|
||
|
||
/*
|
||
* i7core_driver pci_driver structure for this module
|
||
*
|
||
*/
|
||
static struct pci_driver i7core_driver = {
|
||
.name = "i7core_edac",
|
||
.probe = i7core_probe,
|
||
.remove = i7core_remove,
|
||
.id_table = i7core_pci_tbl,
|
||
};
|
||
|
||
/*
|
||
* i7core_init Module entry function
|
||
* Try to initialize this module for its devices
|
||
*/
|
||
static int __init i7core_init(void)
|
||
{
|
||
int pci_rc;
|
||
|
||
edac_dbg(2, "\n");
|
||
|
||
/* Ensure that the OPSTATE is set correctly for POLL or NMI */
|
||
opstate_init();
|
||
|
||
if (use_pci_fixup)
|
||
i7core_xeon_pci_fixup(pci_dev_table);
|
||
|
||
pci_rc = pci_register_driver(&i7core_driver);
|
||
|
||
if (pci_rc >= 0) {
|
||
mce_register_decode_chain(&i7_mce_dec);
|
||
return 0;
|
||
}
|
||
|
||
i7core_printk(KERN_ERR, "Failed to register device with error %d.\n",
|
||
pci_rc);
|
||
|
||
return pci_rc;
|
||
}
|
||
|
||
/*
|
||
* i7core_exit() Module exit function
|
||
* Unregister the driver
|
||
*/
|
||
static void __exit i7core_exit(void)
|
||
{
|
||
edac_dbg(2, "\n");
|
||
pci_unregister_driver(&i7core_driver);
|
||
mce_unregister_decode_chain(&i7_mce_dec);
|
||
}
|
||
|
||
module_init(i7core_init);
|
||
module_exit(i7core_exit);
|
||
|
||
MODULE_LICENSE("GPL");
|
||
MODULE_AUTHOR("Mauro Carvalho Chehab");
|
||
MODULE_AUTHOR("Red Hat Inc. (http://www.redhat.com)");
|
||
MODULE_DESCRIPTION("MC Driver for Intel i7 Core memory controllers - "
|
||
I7CORE_REVISION);
|
||
|
||
module_param(edac_op_state, int, 0444);
|
||
MODULE_PARM_DESC(edac_op_state, "EDAC Error Reporting state: 0=Poll,1=NMI");
|