linux/drivers/mtd/mtdchar.c
Geert Uytterhoeven f62cde49f9 mtd: Fix warning in access_ok() parameter passing
On m68k, where access_ok() doesn't cast the address parameter:

drivers/mtd/mtdchar.c: In function 'mtdchar_write_ioctl':
drivers/mtd/mtdchar.c:575:4: warning: passing argument 2 of 'access_ok' makes pointer from integer without a cast [enabled by default]
arch/m68k/include/asm/uaccess_mm.h:17:90: note: expected 'const void *' but argument is of type '__u64'
drivers/mtd/mtdchar.c:576:4: warning: passing argument 2 of 'access_ok' makes pointer from integer without a cast [enabled by default]
arch/m68k/include/asm/uaccess_mm.h:17:90: note: expected 'const void *' but argument is of type '__u64'

The address parameter of access_ok() is really a userspace pointer.
On most architectures, access_ok() is a macro that casts the address
parameter, hiding issues in its users.

Move around and use the existing usr_data and usr_oob temporary variables
to kill the warnings. Add a few "consts", and make more use of the
temporaries while we're at it.

Signed-off-by: Geert Uytterhoeven <geert@linux-m68k.org>
Signed-off-by: Brian Norris <computersforpeace@gmail.com>
2014-05-20 16:35:29 -07:00

1214 lines
27 KiB
C

/*
* Copyright © 1999-2010 David Woodhouse <dwmw2@infradead.org>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
*
*/
#include <linux/device.h>
#include <linux/fs.h>
#include <linux/mm.h>
#include <linux/err.h>
#include <linux/init.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/slab.h>
#include <linux/sched.h>
#include <linux/mutex.h>
#include <linux/backing-dev.h>
#include <linux/compat.h>
#include <linux/mount.h>
#include <linux/blkpg.h>
#include <linux/magic.h>
#include <linux/major.h>
#include <linux/mtd/mtd.h>
#include <linux/mtd/partitions.h>
#include <linux/mtd/map.h>
#include <asm/uaccess.h>
#include "mtdcore.h"
static DEFINE_MUTEX(mtd_mutex);
/*
* Data structure to hold the pointer to the mtd device as well
* as mode information of various use cases.
*/
struct mtd_file_info {
struct mtd_info *mtd;
struct inode *ino;
enum mtd_file_modes mode;
};
static loff_t mtdchar_lseek(struct file *file, loff_t offset, int orig)
{
struct mtd_file_info *mfi = file->private_data;
return fixed_size_llseek(file, offset, orig, mfi->mtd->size);
}
static int count;
static struct vfsmount *mnt;
static struct file_system_type mtd_inodefs_type;
static int mtdchar_open(struct inode *inode, struct file *file)
{
int minor = iminor(inode);
int devnum = minor >> 1;
int ret = 0;
struct mtd_info *mtd;
struct mtd_file_info *mfi;
struct inode *mtd_ino;
pr_debug("MTD_open\n");
/* You can't open the RO devices RW */
if ((file->f_mode & FMODE_WRITE) && (minor & 1))
return -EACCES;
ret = simple_pin_fs(&mtd_inodefs_type, &mnt, &count);
if (ret)
return ret;
mutex_lock(&mtd_mutex);
mtd = get_mtd_device(NULL, devnum);
if (IS_ERR(mtd)) {
ret = PTR_ERR(mtd);
goto out;
}
if (mtd->type == MTD_ABSENT) {
ret = -ENODEV;
goto out1;
}
mtd_ino = iget_locked(mnt->mnt_sb, devnum);
if (!mtd_ino) {
ret = -ENOMEM;
goto out1;
}
if (mtd_ino->i_state & I_NEW) {
mtd_ino->i_private = mtd;
mtd_ino->i_mode = S_IFCHR;
mtd_ino->i_data.backing_dev_info = mtd->backing_dev_info;
unlock_new_inode(mtd_ino);
}
file->f_mapping = mtd_ino->i_mapping;
/* You can't open it RW if it's not a writeable device */
if ((file->f_mode & FMODE_WRITE) && !(mtd->flags & MTD_WRITEABLE)) {
ret = -EACCES;
goto out2;
}
mfi = kzalloc(sizeof(*mfi), GFP_KERNEL);
if (!mfi) {
ret = -ENOMEM;
goto out2;
}
mfi->ino = mtd_ino;
mfi->mtd = mtd;
file->private_data = mfi;
mutex_unlock(&mtd_mutex);
return 0;
out2:
iput(mtd_ino);
out1:
put_mtd_device(mtd);
out:
mutex_unlock(&mtd_mutex);
simple_release_fs(&mnt, &count);
return ret;
} /* mtdchar_open */
/*====================================================================*/
static int mtdchar_close(struct inode *inode, struct file *file)
{
struct mtd_file_info *mfi = file->private_data;
struct mtd_info *mtd = mfi->mtd;
pr_debug("MTD_close\n");
/* Only sync if opened RW */
if ((file->f_mode & FMODE_WRITE))
mtd_sync(mtd);
iput(mfi->ino);
put_mtd_device(mtd);
file->private_data = NULL;
kfree(mfi);
simple_release_fs(&mnt, &count);
return 0;
} /* mtdchar_close */
/* Back in June 2001, dwmw2 wrote:
*
* FIXME: This _really_ needs to die. In 2.5, we should lock the
* userspace buffer down and use it directly with readv/writev.
*
* The implementation below, using mtd_kmalloc_up_to, mitigates
* allocation failures when the system is under low-memory situations
* or if memory is highly fragmented at the cost of reducing the
* performance of the requested transfer due to a smaller buffer size.
*
* A more complex but more memory-efficient implementation based on
* get_user_pages and iovecs to cover extents of those pages is a
* longer-term goal, as intimated by dwmw2 above. However, for the
* write case, this requires yet more complex head and tail transfer
* handling when those head and tail offsets and sizes are such that
* alignment requirements are not met in the NAND subdriver.
*/
static ssize_t mtdchar_read(struct file *file, char __user *buf, size_t count,
loff_t *ppos)
{
struct mtd_file_info *mfi = file->private_data;
struct mtd_info *mtd = mfi->mtd;
size_t retlen;
size_t total_retlen=0;
int ret=0;
int len;
size_t size = count;
char *kbuf;
pr_debug("MTD_read\n");
if (*ppos + count > mtd->size)
count = mtd->size - *ppos;
if (!count)
return 0;
kbuf = mtd_kmalloc_up_to(mtd, &size);
if (!kbuf)
return -ENOMEM;
while (count) {
len = min_t(size_t, count, size);
switch (mfi->mode) {
case MTD_FILE_MODE_OTP_FACTORY:
ret = mtd_read_fact_prot_reg(mtd, *ppos, len,
&retlen, kbuf);
break;
case MTD_FILE_MODE_OTP_USER:
ret = mtd_read_user_prot_reg(mtd, *ppos, len,
&retlen, kbuf);
break;
case MTD_FILE_MODE_RAW:
{
struct mtd_oob_ops ops;
ops.mode = MTD_OPS_RAW;
ops.datbuf = kbuf;
ops.oobbuf = NULL;
ops.len = len;
ret = mtd_read_oob(mtd, *ppos, &ops);
retlen = ops.retlen;
break;
}
default:
ret = mtd_read(mtd, *ppos, len, &retlen, kbuf);
}
/* Nand returns -EBADMSG on ECC errors, but it returns
* the data. For our userspace tools it is important
* to dump areas with ECC errors!
* For kernel internal usage it also might return -EUCLEAN
* to signal the caller that a bitflip has occurred and has
* been corrected by the ECC algorithm.
* Userspace software which accesses NAND this way
* must be aware of the fact that it deals with NAND
*/
if (!ret || mtd_is_bitflip_or_eccerr(ret)) {
*ppos += retlen;
if (copy_to_user(buf, kbuf, retlen)) {
kfree(kbuf);
return -EFAULT;
}
else
total_retlen += retlen;
count -= retlen;
buf += retlen;
if (retlen == 0)
count = 0;
}
else {
kfree(kbuf);
return ret;
}
}
kfree(kbuf);
return total_retlen;
} /* mtdchar_read */
static ssize_t mtdchar_write(struct file *file, const char __user *buf, size_t count,
loff_t *ppos)
{
struct mtd_file_info *mfi = file->private_data;
struct mtd_info *mtd = mfi->mtd;
size_t size = count;
char *kbuf;
size_t retlen;
size_t total_retlen=0;
int ret=0;
int len;
pr_debug("MTD_write\n");
if (*ppos == mtd->size)
return -ENOSPC;
if (*ppos + count > mtd->size)
count = mtd->size - *ppos;
if (!count)
return 0;
kbuf = mtd_kmalloc_up_to(mtd, &size);
if (!kbuf)
return -ENOMEM;
while (count) {
len = min_t(size_t, count, size);
if (copy_from_user(kbuf, buf, len)) {
kfree(kbuf);
return -EFAULT;
}
switch (mfi->mode) {
case MTD_FILE_MODE_OTP_FACTORY:
ret = -EROFS;
break;
case MTD_FILE_MODE_OTP_USER:
ret = mtd_write_user_prot_reg(mtd, *ppos, len,
&retlen, kbuf);
break;
case MTD_FILE_MODE_RAW:
{
struct mtd_oob_ops ops;
ops.mode = MTD_OPS_RAW;
ops.datbuf = kbuf;
ops.oobbuf = NULL;
ops.ooboffs = 0;
ops.len = len;
ret = mtd_write_oob(mtd, *ppos, &ops);
retlen = ops.retlen;
break;
}
default:
ret = mtd_write(mtd, *ppos, len, &retlen, kbuf);
}
/*
* Return -ENOSPC only if no data could be written at all.
* Otherwise just return the number of bytes that actually
* have been written.
*/
if ((ret == -ENOSPC) && (total_retlen))
break;
if (!ret) {
*ppos += retlen;
total_retlen += retlen;
count -= retlen;
buf += retlen;
}
else {
kfree(kbuf);
return ret;
}
}
kfree(kbuf);
return total_retlen;
} /* mtdchar_write */
/*======================================================================
IOCTL calls for getting device parameters.
======================================================================*/
static void mtdchar_erase_callback (struct erase_info *instr)
{
wake_up((wait_queue_head_t *)instr->priv);
}
static int otp_select_filemode(struct mtd_file_info *mfi, int mode)
{
struct mtd_info *mtd = mfi->mtd;
size_t retlen;
switch (mode) {
case MTD_OTP_FACTORY:
if (mtd_read_fact_prot_reg(mtd, -1, 0, &retlen, NULL) ==
-EOPNOTSUPP)
return -EOPNOTSUPP;
mfi->mode = MTD_FILE_MODE_OTP_FACTORY;
break;
case MTD_OTP_USER:
if (mtd_read_user_prot_reg(mtd, -1, 0, &retlen, NULL) ==
-EOPNOTSUPP)
return -EOPNOTSUPP;
mfi->mode = MTD_FILE_MODE_OTP_USER;
break;
case MTD_OTP_OFF:
mfi->mode = MTD_FILE_MODE_NORMAL;
break;
default:
return -EINVAL;
}
return 0;
}
static int mtdchar_writeoob(struct file *file, struct mtd_info *mtd,
uint64_t start, uint32_t length, void __user *ptr,
uint32_t __user *retp)
{
struct mtd_file_info *mfi = file->private_data;
struct mtd_oob_ops ops;
uint32_t retlen;
int ret = 0;
if (!(file->f_mode & FMODE_WRITE))
return -EPERM;
if (length > 4096)
return -EINVAL;
if (!mtd->_write_oob)
ret = -EOPNOTSUPP;
else
ret = access_ok(VERIFY_READ, ptr, length) ? 0 : -EFAULT;
if (ret)
return ret;
ops.ooblen = length;
ops.ooboffs = start & (mtd->writesize - 1);
ops.datbuf = NULL;
ops.mode = (mfi->mode == MTD_FILE_MODE_RAW) ? MTD_OPS_RAW :
MTD_OPS_PLACE_OOB;
if (ops.ooboffs && ops.ooblen > (mtd->oobsize - ops.ooboffs))
return -EINVAL;
ops.oobbuf = memdup_user(ptr, length);
if (IS_ERR(ops.oobbuf))
return PTR_ERR(ops.oobbuf);
start &= ~((uint64_t)mtd->writesize - 1);
ret = mtd_write_oob(mtd, start, &ops);
if (ops.oobretlen > 0xFFFFFFFFU)
ret = -EOVERFLOW;
retlen = ops.oobretlen;
if (copy_to_user(retp, &retlen, sizeof(length)))
ret = -EFAULT;
kfree(ops.oobbuf);
return ret;
}
static int mtdchar_readoob(struct file *file, struct mtd_info *mtd,
uint64_t start, uint32_t length, void __user *ptr,
uint32_t __user *retp)
{
struct mtd_file_info *mfi = file->private_data;
struct mtd_oob_ops ops;
int ret = 0;
if (length > 4096)
return -EINVAL;
if (!access_ok(VERIFY_WRITE, ptr, length))
return -EFAULT;
ops.ooblen = length;
ops.ooboffs = start & (mtd->writesize - 1);
ops.datbuf = NULL;
ops.mode = (mfi->mode == MTD_FILE_MODE_RAW) ? MTD_OPS_RAW :
MTD_OPS_PLACE_OOB;
if (ops.ooboffs && ops.ooblen > (mtd->oobsize - ops.ooboffs))
return -EINVAL;
ops.oobbuf = kmalloc(length, GFP_KERNEL);
if (!ops.oobbuf)
return -ENOMEM;
start &= ~((uint64_t)mtd->writesize - 1);
ret = mtd_read_oob(mtd, start, &ops);
if (put_user(ops.oobretlen, retp))
ret = -EFAULT;
else if (ops.oobretlen && copy_to_user(ptr, ops.oobbuf,
ops.oobretlen))
ret = -EFAULT;
kfree(ops.oobbuf);
/*
* NAND returns -EBADMSG on ECC errors, but it returns the OOB
* data. For our userspace tools it is important to dump areas
* with ECC errors!
* For kernel internal usage it also might return -EUCLEAN
* to signal the caller that a bitflip has occured and has
* been corrected by the ECC algorithm.
*
* Note: currently the standard NAND function, nand_read_oob_std,
* does not calculate ECC for the OOB area, so do not rely on
* this behavior unless you have replaced it with your own.
*/
if (mtd_is_bitflip_or_eccerr(ret))
return 0;
return ret;
}
/*
* Copies (and truncates, if necessary) data from the larger struct,
* nand_ecclayout, to the smaller, deprecated layout struct,
* nand_ecclayout_user. This is necessary only to support the deprecated
* API ioctl ECCGETLAYOUT while allowing all new functionality to use
* nand_ecclayout flexibly (i.e. the struct may change size in new
* releases without requiring major rewrites).
*/
static int shrink_ecclayout(const struct nand_ecclayout *from,
struct nand_ecclayout_user *to)
{
int i;
if (!from || !to)
return -EINVAL;
memset(to, 0, sizeof(*to));
to->eccbytes = min((int)from->eccbytes, MTD_MAX_ECCPOS_ENTRIES);
for (i = 0; i < to->eccbytes; i++)
to->eccpos[i] = from->eccpos[i];
for (i = 0; i < MTD_MAX_OOBFREE_ENTRIES; i++) {
if (from->oobfree[i].length == 0 &&
from->oobfree[i].offset == 0)
break;
to->oobavail += from->oobfree[i].length;
to->oobfree[i] = from->oobfree[i];
}
return 0;
}
static int mtdchar_blkpg_ioctl(struct mtd_info *mtd,
struct blkpg_ioctl_arg __user *arg)
{
struct blkpg_ioctl_arg a;
struct blkpg_partition p;
if (!capable(CAP_SYS_ADMIN))
return -EPERM;
if (copy_from_user(&a, arg, sizeof(struct blkpg_ioctl_arg)))
return -EFAULT;
if (copy_from_user(&p, a.data, sizeof(struct blkpg_partition)))
return -EFAULT;
switch (a.op) {
case BLKPG_ADD_PARTITION:
/* Only master mtd device must be used to add partitions */
if (mtd_is_partition(mtd))
return -EINVAL;
return mtd_add_partition(mtd, p.devname, p.start, p.length);
case BLKPG_DEL_PARTITION:
if (p.pno < 0)
return -EINVAL;
return mtd_del_partition(mtd, p.pno);
default:
return -EINVAL;
}
}
static int mtdchar_write_ioctl(struct mtd_info *mtd,
struct mtd_write_req __user *argp)
{
struct mtd_write_req req;
struct mtd_oob_ops ops;
const void __user *usr_data, *usr_oob;
int ret;
if (copy_from_user(&req, argp, sizeof(req)))
return -EFAULT;
usr_data = (const void __user *)(uintptr_t)req.usr_data;
usr_oob = (const void __user *)(uintptr_t)req.usr_oob;
if (!access_ok(VERIFY_READ, usr_data, req.len) ||
!access_ok(VERIFY_READ, usr_oob, req.ooblen))
return -EFAULT;
if (!mtd->_write_oob)
return -EOPNOTSUPP;
ops.mode = req.mode;
ops.len = (size_t)req.len;
ops.ooblen = (size_t)req.ooblen;
ops.ooboffs = 0;
if (usr_data) {
ops.datbuf = memdup_user(usr_data, ops.len);
if (IS_ERR(ops.datbuf))
return PTR_ERR(ops.datbuf);
} else {
ops.datbuf = NULL;
}
if (usr_oob) {
ops.oobbuf = memdup_user(usr_oob, ops.ooblen);
if (IS_ERR(ops.oobbuf)) {
kfree(ops.datbuf);
return PTR_ERR(ops.oobbuf);
}
} else {
ops.oobbuf = NULL;
}
ret = mtd_write_oob(mtd, (loff_t)req.start, &ops);
kfree(ops.datbuf);
kfree(ops.oobbuf);
return ret;
}
static int mtdchar_ioctl(struct file *file, u_int cmd, u_long arg)
{
struct mtd_file_info *mfi = file->private_data;
struct mtd_info *mtd = mfi->mtd;
void __user *argp = (void __user *)arg;
int ret = 0;
u_long size;
struct mtd_info_user info;
pr_debug("MTD_ioctl\n");
size = (cmd & IOCSIZE_MASK) >> IOCSIZE_SHIFT;
if (cmd & IOC_IN) {
if (!access_ok(VERIFY_READ, argp, size))
return -EFAULT;
}
if (cmd & IOC_OUT) {
if (!access_ok(VERIFY_WRITE, argp, size))
return -EFAULT;
}
switch (cmd) {
case MEMGETREGIONCOUNT:
if (copy_to_user(argp, &(mtd->numeraseregions), sizeof(int)))
return -EFAULT;
break;
case MEMGETREGIONINFO:
{
uint32_t ur_idx;
struct mtd_erase_region_info *kr;
struct region_info_user __user *ur = argp;
if (get_user(ur_idx, &(ur->regionindex)))
return -EFAULT;
if (ur_idx >= mtd->numeraseregions)
return -EINVAL;
kr = &(mtd->eraseregions[ur_idx]);
if (put_user(kr->offset, &(ur->offset))
|| put_user(kr->erasesize, &(ur->erasesize))
|| put_user(kr->numblocks, &(ur->numblocks)))
return -EFAULT;
break;
}
case MEMGETINFO:
memset(&info, 0, sizeof(info));
info.type = mtd->type;
info.flags = mtd->flags;
info.size = mtd->size;
info.erasesize = mtd->erasesize;
info.writesize = mtd->writesize;
info.oobsize = mtd->oobsize;
/* The below field is obsolete */
info.padding = 0;
if (copy_to_user(argp, &info, sizeof(struct mtd_info_user)))
return -EFAULT;
break;
case MEMERASE:
case MEMERASE64:
{
struct erase_info *erase;
if(!(file->f_mode & FMODE_WRITE))
return -EPERM;
erase=kzalloc(sizeof(struct erase_info),GFP_KERNEL);
if (!erase)
ret = -ENOMEM;
else {
wait_queue_head_t waitq;
DECLARE_WAITQUEUE(wait, current);
init_waitqueue_head(&waitq);
if (cmd == MEMERASE64) {
struct erase_info_user64 einfo64;
if (copy_from_user(&einfo64, argp,
sizeof(struct erase_info_user64))) {
kfree(erase);
return -EFAULT;
}
erase->addr = einfo64.start;
erase->len = einfo64.length;
} else {
struct erase_info_user einfo32;
if (copy_from_user(&einfo32, argp,
sizeof(struct erase_info_user))) {
kfree(erase);
return -EFAULT;
}
erase->addr = einfo32.start;
erase->len = einfo32.length;
}
erase->mtd = mtd;
erase->callback = mtdchar_erase_callback;
erase->priv = (unsigned long)&waitq;
/*
FIXME: Allow INTERRUPTIBLE. Which means
not having the wait_queue head on the stack.
If the wq_head is on the stack, and we
leave because we got interrupted, then the
wq_head is no longer there when the
callback routine tries to wake us up.
*/
ret = mtd_erase(mtd, erase);
if (!ret) {
set_current_state(TASK_UNINTERRUPTIBLE);
add_wait_queue(&waitq, &wait);
if (erase->state != MTD_ERASE_DONE &&
erase->state != MTD_ERASE_FAILED)
schedule();
remove_wait_queue(&waitq, &wait);
set_current_state(TASK_RUNNING);
ret = (erase->state == MTD_ERASE_FAILED)?-EIO:0;
}
kfree(erase);
}
break;
}
case MEMWRITEOOB:
{
struct mtd_oob_buf buf;
struct mtd_oob_buf __user *buf_user = argp;
/* NOTE: writes return length to buf_user->length */
if (copy_from_user(&buf, argp, sizeof(buf)))
ret = -EFAULT;
else
ret = mtdchar_writeoob(file, mtd, buf.start, buf.length,
buf.ptr, &buf_user->length);
break;
}
case MEMREADOOB:
{
struct mtd_oob_buf buf;
struct mtd_oob_buf __user *buf_user = argp;
/* NOTE: writes return length to buf_user->start */
if (copy_from_user(&buf, argp, sizeof(buf)))
ret = -EFAULT;
else
ret = mtdchar_readoob(file, mtd, buf.start, buf.length,
buf.ptr, &buf_user->start);
break;
}
case MEMWRITEOOB64:
{
struct mtd_oob_buf64 buf;
struct mtd_oob_buf64 __user *buf_user = argp;
if (copy_from_user(&buf, argp, sizeof(buf)))
ret = -EFAULT;
else
ret = mtdchar_writeoob(file, mtd, buf.start, buf.length,
(void __user *)(uintptr_t)buf.usr_ptr,
&buf_user->length);
break;
}
case MEMREADOOB64:
{
struct mtd_oob_buf64 buf;
struct mtd_oob_buf64 __user *buf_user = argp;
if (copy_from_user(&buf, argp, sizeof(buf)))
ret = -EFAULT;
else
ret = mtdchar_readoob(file, mtd, buf.start, buf.length,
(void __user *)(uintptr_t)buf.usr_ptr,
&buf_user->length);
break;
}
case MEMWRITE:
{
ret = mtdchar_write_ioctl(mtd,
(struct mtd_write_req __user *)arg);
break;
}
case MEMLOCK:
{
struct erase_info_user einfo;
if (copy_from_user(&einfo, argp, sizeof(einfo)))
return -EFAULT;
ret = mtd_lock(mtd, einfo.start, einfo.length);
break;
}
case MEMUNLOCK:
{
struct erase_info_user einfo;
if (copy_from_user(&einfo, argp, sizeof(einfo)))
return -EFAULT;
ret = mtd_unlock(mtd, einfo.start, einfo.length);
break;
}
case MEMISLOCKED:
{
struct erase_info_user einfo;
if (copy_from_user(&einfo, argp, sizeof(einfo)))
return -EFAULT;
ret = mtd_is_locked(mtd, einfo.start, einfo.length);
break;
}
/* Legacy interface */
case MEMGETOOBSEL:
{
struct nand_oobinfo oi;
if (!mtd->ecclayout)
return -EOPNOTSUPP;
if (mtd->ecclayout->eccbytes > ARRAY_SIZE(oi.eccpos))
return -EINVAL;
oi.useecc = MTD_NANDECC_AUTOPLACE;
memcpy(&oi.eccpos, mtd->ecclayout->eccpos, sizeof(oi.eccpos));
memcpy(&oi.oobfree, mtd->ecclayout->oobfree,
sizeof(oi.oobfree));
oi.eccbytes = mtd->ecclayout->eccbytes;
if (copy_to_user(argp, &oi, sizeof(struct nand_oobinfo)))
return -EFAULT;
break;
}
case MEMGETBADBLOCK:
{
loff_t offs;
if (copy_from_user(&offs, argp, sizeof(loff_t)))
return -EFAULT;
return mtd_block_isbad(mtd, offs);
break;
}
case MEMSETBADBLOCK:
{
loff_t offs;
if (copy_from_user(&offs, argp, sizeof(loff_t)))
return -EFAULT;
return mtd_block_markbad(mtd, offs);
break;
}
case OTPSELECT:
{
int mode;
if (copy_from_user(&mode, argp, sizeof(int)))
return -EFAULT;
mfi->mode = MTD_FILE_MODE_NORMAL;
ret = otp_select_filemode(mfi, mode);
file->f_pos = 0;
break;
}
case OTPGETREGIONCOUNT:
case OTPGETREGIONINFO:
{
struct otp_info *buf = kmalloc(4096, GFP_KERNEL);
size_t retlen;
if (!buf)
return -ENOMEM;
switch (mfi->mode) {
case MTD_FILE_MODE_OTP_FACTORY:
ret = mtd_get_fact_prot_info(mtd, 4096, &retlen, buf);
break;
case MTD_FILE_MODE_OTP_USER:
ret = mtd_get_user_prot_info(mtd, 4096, &retlen, buf);
break;
default:
ret = -EINVAL;
break;
}
if (!ret) {
if (cmd == OTPGETREGIONCOUNT) {
int nbr = retlen / sizeof(struct otp_info);
ret = copy_to_user(argp, &nbr, sizeof(int));
} else
ret = copy_to_user(argp, buf, retlen);
if (ret)
ret = -EFAULT;
}
kfree(buf);
break;
}
case OTPLOCK:
{
struct otp_info oinfo;
if (mfi->mode != MTD_FILE_MODE_OTP_USER)
return -EINVAL;
if (copy_from_user(&oinfo, argp, sizeof(oinfo)))
return -EFAULT;
ret = mtd_lock_user_prot_reg(mtd, oinfo.start, oinfo.length);
break;
}
/* This ioctl is being deprecated - it truncates the ECC layout */
case ECCGETLAYOUT:
{
struct nand_ecclayout_user *usrlay;
if (!mtd->ecclayout)
return -EOPNOTSUPP;
usrlay = kmalloc(sizeof(*usrlay), GFP_KERNEL);
if (!usrlay)
return -ENOMEM;
shrink_ecclayout(mtd->ecclayout, usrlay);
if (copy_to_user(argp, usrlay, sizeof(*usrlay)))
ret = -EFAULT;
kfree(usrlay);
break;
}
case ECCGETSTATS:
{
if (copy_to_user(argp, &mtd->ecc_stats,
sizeof(struct mtd_ecc_stats)))
return -EFAULT;
break;
}
case MTDFILEMODE:
{
mfi->mode = 0;
switch(arg) {
case MTD_FILE_MODE_OTP_FACTORY:
case MTD_FILE_MODE_OTP_USER:
ret = otp_select_filemode(mfi, arg);
break;
case MTD_FILE_MODE_RAW:
if (!mtd_has_oob(mtd))
return -EOPNOTSUPP;
mfi->mode = arg;
case MTD_FILE_MODE_NORMAL:
break;
default:
ret = -EINVAL;
}
file->f_pos = 0;
break;
}
case BLKPG:
{
ret = mtdchar_blkpg_ioctl(mtd,
(struct blkpg_ioctl_arg __user *)arg);
break;
}
case BLKRRPART:
{
/* No reread partition feature. Just return ok */
ret = 0;
break;
}
default:
ret = -ENOTTY;
}
return ret;
} /* memory_ioctl */
static long mtdchar_unlocked_ioctl(struct file *file, u_int cmd, u_long arg)
{
int ret;
mutex_lock(&mtd_mutex);
ret = mtdchar_ioctl(file, cmd, arg);
mutex_unlock(&mtd_mutex);
return ret;
}
#ifdef CONFIG_COMPAT
struct mtd_oob_buf32 {
u_int32_t start;
u_int32_t length;
compat_caddr_t ptr; /* unsigned char* */
};
#define MEMWRITEOOB32 _IOWR('M', 3, struct mtd_oob_buf32)
#define MEMREADOOB32 _IOWR('M', 4, struct mtd_oob_buf32)
static long mtdchar_compat_ioctl(struct file *file, unsigned int cmd,
unsigned long arg)
{
struct mtd_file_info *mfi = file->private_data;
struct mtd_info *mtd = mfi->mtd;
void __user *argp = compat_ptr(arg);
int ret = 0;
mutex_lock(&mtd_mutex);
switch (cmd) {
case MEMWRITEOOB32:
{
struct mtd_oob_buf32 buf;
struct mtd_oob_buf32 __user *buf_user = argp;
if (copy_from_user(&buf, argp, sizeof(buf)))
ret = -EFAULT;
else
ret = mtdchar_writeoob(file, mtd, buf.start,
buf.length, compat_ptr(buf.ptr),
&buf_user->length);
break;
}
case MEMREADOOB32:
{
struct mtd_oob_buf32 buf;
struct mtd_oob_buf32 __user *buf_user = argp;
/* NOTE: writes return length to buf->start */
if (copy_from_user(&buf, argp, sizeof(buf)))
ret = -EFAULT;
else
ret = mtdchar_readoob(file, mtd, buf.start,
buf.length, compat_ptr(buf.ptr),
&buf_user->start);
break;
}
default:
ret = mtdchar_ioctl(file, cmd, (unsigned long)argp);
}
mutex_unlock(&mtd_mutex);
return ret;
}
#endif /* CONFIG_COMPAT */
/*
* try to determine where a shared mapping can be made
* - only supported for NOMMU at the moment (MMU can't doesn't copy private
* mappings)
*/
#ifndef CONFIG_MMU
static unsigned long mtdchar_get_unmapped_area(struct file *file,
unsigned long addr,
unsigned long len,
unsigned long pgoff,
unsigned long flags)
{
struct mtd_file_info *mfi = file->private_data;
struct mtd_info *mtd = mfi->mtd;
unsigned long offset;
int ret;
if (addr != 0)
return (unsigned long) -EINVAL;
if (len > mtd->size || pgoff >= (mtd->size >> PAGE_SHIFT))
return (unsigned long) -EINVAL;
offset = pgoff << PAGE_SHIFT;
if (offset > mtd->size - len)
return (unsigned long) -EINVAL;
ret = mtd_get_unmapped_area(mtd, len, offset, flags);
return ret == -EOPNOTSUPP ? -ENODEV : ret;
}
#endif
/*
* set up a mapping for shared memory segments
*/
static int mtdchar_mmap(struct file *file, struct vm_area_struct *vma)
{
#ifdef CONFIG_MMU
struct mtd_file_info *mfi = file->private_data;
struct mtd_info *mtd = mfi->mtd;
struct map_info *map = mtd->priv;
/* This is broken because it assumes the MTD device is map-based
and that mtd->priv is a valid struct map_info. It should be
replaced with something that uses the mtd_get_unmapped_area()
operation properly. */
if (0 /*mtd->type == MTD_RAM || mtd->type == MTD_ROM*/) {
#ifdef pgprot_noncached
if (file->f_flags & O_DSYNC || map->phys >= __pa(high_memory))
vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot);
#endif
return vm_iomap_memory(vma, map->phys, map->size);
}
return -ENODEV;
#else
return vma->vm_flags & VM_SHARED ? 0 : -EACCES;
#endif
}
static const struct file_operations mtd_fops = {
.owner = THIS_MODULE,
.llseek = mtdchar_lseek,
.read = mtdchar_read,
.write = mtdchar_write,
.unlocked_ioctl = mtdchar_unlocked_ioctl,
#ifdef CONFIG_COMPAT
.compat_ioctl = mtdchar_compat_ioctl,
#endif
.open = mtdchar_open,
.release = mtdchar_close,
.mmap = mtdchar_mmap,
#ifndef CONFIG_MMU
.get_unmapped_area = mtdchar_get_unmapped_area,
#endif
};
static const struct super_operations mtd_ops = {
.drop_inode = generic_delete_inode,
.statfs = simple_statfs,
};
static struct dentry *mtd_inodefs_mount(struct file_system_type *fs_type,
int flags, const char *dev_name, void *data)
{
return mount_pseudo(fs_type, "mtd_inode:", &mtd_ops, NULL, MTD_INODE_FS_MAGIC);
}
static struct file_system_type mtd_inodefs_type = {
.name = "mtd_inodefs",
.mount = mtd_inodefs_mount,
.kill_sb = kill_anon_super,
};
MODULE_ALIAS_FS("mtd_inodefs");
int __init init_mtdchar(void)
{
int ret;
ret = __register_chrdev(MTD_CHAR_MAJOR, 0, 1 << MINORBITS,
"mtd", &mtd_fops);
if (ret < 0) {
pr_err("Can't allocate major number %d for MTD\n",
MTD_CHAR_MAJOR);
return ret;
}
ret = register_filesystem(&mtd_inodefs_type);
if (ret) {
pr_err("Can't register mtd_inodefs filesystem, error %d\n",
ret);
goto err_unregister_chdev;
}
return ret;
err_unregister_chdev:
__unregister_chrdev(MTD_CHAR_MAJOR, 0, 1 << MINORBITS, "mtd");
return ret;
}
void __exit cleanup_mtdchar(void)
{
unregister_filesystem(&mtd_inodefs_type);
__unregister_chrdev(MTD_CHAR_MAJOR, 0, 1 << MINORBITS, "mtd");
}
MODULE_ALIAS_CHARDEV_MAJOR(MTD_CHAR_MAJOR);