0a9e9b110c
Completely unused, and it just makes the SMP message passing code on 32-bit sparc look more complex than it is. Signed-off-by: David S. Miller <davem@davemloft.net>
374 lines
8.4 KiB
C
374 lines
8.4 KiB
C
/* sun4m_smp.c: Sparc SUN4M SMP support.
|
|
*
|
|
* Copyright (C) 1996 David S. Miller (davem@caip.rutgers.edu)
|
|
*/
|
|
|
|
#include <asm/head.h>
|
|
|
|
#include <linux/kernel.h>
|
|
#include <linux/sched.h>
|
|
#include <linux/threads.h>
|
|
#include <linux/smp.h>
|
|
#include <linux/interrupt.h>
|
|
#include <linux/kernel_stat.h>
|
|
#include <linux/init.h>
|
|
#include <linux/spinlock.h>
|
|
#include <linux/mm.h>
|
|
#include <linux/swap.h>
|
|
#include <linux/profile.h>
|
|
#include <linux/delay.h>
|
|
|
|
#include <asm/cacheflush.h>
|
|
#include <asm/tlbflush.h>
|
|
#include <asm/irq_regs.h>
|
|
|
|
#include <asm/ptrace.h>
|
|
#include <asm/atomic.h>
|
|
|
|
#include <asm/irq.h>
|
|
#include <asm/page.h>
|
|
#include <asm/pgalloc.h>
|
|
#include <asm/pgtable.h>
|
|
#include <asm/oplib.h>
|
|
#include <asm/cpudata.h>
|
|
|
|
#include "irq.h"
|
|
|
|
#define IRQ_CROSS_CALL 15
|
|
|
|
extern ctxd_t *srmmu_ctx_table_phys;
|
|
|
|
extern volatile unsigned long cpu_callin_map[NR_CPUS];
|
|
extern unsigned char boot_cpu_id;
|
|
|
|
extern cpumask_t smp_commenced_mask;
|
|
|
|
extern int __smp4m_processor_id(void);
|
|
|
|
/*#define SMP_DEBUG*/
|
|
|
|
#ifdef SMP_DEBUG
|
|
#define SMP_PRINTK(x) printk x
|
|
#else
|
|
#define SMP_PRINTK(x)
|
|
#endif
|
|
|
|
static inline unsigned long swap(volatile unsigned long *ptr, unsigned long val)
|
|
{
|
|
__asm__ __volatile__("swap [%1], %0\n\t" :
|
|
"=&r" (val), "=&r" (ptr) :
|
|
"0" (val), "1" (ptr));
|
|
return val;
|
|
}
|
|
|
|
static void smp_setup_percpu_timer(void);
|
|
extern void cpu_probe(void);
|
|
|
|
void __cpuinit smp4m_callin(void)
|
|
{
|
|
int cpuid = hard_smp_processor_id();
|
|
|
|
local_flush_cache_all();
|
|
local_flush_tlb_all();
|
|
|
|
/* Get our local ticker going. */
|
|
smp_setup_percpu_timer();
|
|
|
|
calibrate_delay();
|
|
smp_store_cpu_info(cpuid);
|
|
|
|
local_flush_cache_all();
|
|
local_flush_tlb_all();
|
|
|
|
/*
|
|
* Unblock the master CPU _only_ when the scheduler state
|
|
* of all secondary CPUs will be up-to-date, so after
|
|
* the SMP initialization the master will be just allowed
|
|
* to call the scheduler code.
|
|
*/
|
|
/* Allow master to continue. */
|
|
swap(&cpu_callin_map[cpuid], 1);
|
|
|
|
/* XXX: What's up with all the flushes? */
|
|
local_flush_cache_all();
|
|
local_flush_tlb_all();
|
|
|
|
cpu_probe();
|
|
|
|
/* Fix idle thread fields. */
|
|
__asm__ __volatile__("ld [%0], %%g6\n\t"
|
|
: : "r" (¤t_set[cpuid])
|
|
: "memory" /* paranoid */);
|
|
|
|
/* Attach to the address space of init_task. */
|
|
atomic_inc(&init_mm.mm_count);
|
|
current->active_mm = &init_mm;
|
|
|
|
while (!cpu_isset(cpuid, smp_commenced_mask))
|
|
mb();
|
|
|
|
local_irq_enable();
|
|
|
|
cpu_set(cpuid, cpu_online_map);
|
|
}
|
|
|
|
/*
|
|
* Cycle through the processors asking the PROM to start each one.
|
|
*/
|
|
|
|
extern struct linux_prom_registers smp_penguin_ctable;
|
|
extern unsigned long trapbase_cpu1[];
|
|
extern unsigned long trapbase_cpu2[];
|
|
extern unsigned long trapbase_cpu3[];
|
|
|
|
void __init smp4m_boot_cpus(void)
|
|
{
|
|
smp_setup_percpu_timer();
|
|
local_flush_cache_all();
|
|
}
|
|
|
|
int __cpuinit smp4m_boot_one_cpu(int i)
|
|
{
|
|
extern unsigned long sun4m_cpu_startup;
|
|
unsigned long *entry = &sun4m_cpu_startup;
|
|
struct task_struct *p;
|
|
int timeout;
|
|
int cpu_node;
|
|
|
|
cpu_find_by_mid(i, &cpu_node);
|
|
|
|
/* Cook up an idler for this guy. */
|
|
p = fork_idle(i);
|
|
current_set[i] = task_thread_info(p);
|
|
/* See trampoline.S for details... */
|
|
entry += ((i-1) * 3);
|
|
|
|
/*
|
|
* Initialize the contexts table
|
|
* Since the call to prom_startcpu() trashes the structure,
|
|
* we need to re-initialize it for each cpu
|
|
*/
|
|
smp_penguin_ctable.which_io = 0;
|
|
smp_penguin_ctable.phys_addr = (unsigned int) srmmu_ctx_table_phys;
|
|
smp_penguin_ctable.reg_size = 0;
|
|
|
|
/* whirrr, whirrr, whirrrrrrrrr... */
|
|
printk("Starting CPU %d at %p\n", i, entry);
|
|
local_flush_cache_all();
|
|
prom_startcpu(cpu_node,
|
|
&smp_penguin_ctable, 0, (char *)entry);
|
|
|
|
/* wheee... it's going... */
|
|
for(timeout = 0; timeout < 10000; timeout++) {
|
|
if(cpu_callin_map[i])
|
|
break;
|
|
udelay(200);
|
|
}
|
|
|
|
if (!(cpu_callin_map[i])) {
|
|
printk("Processor %d is stuck.\n", i);
|
|
return -ENODEV;
|
|
}
|
|
|
|
local_flush_cache_all();
|
|
return 0;
|
|
}
|
|
|
|
void __init smp4m_smp_done(void)
|
|
{
|
|
int i, first;
|
|
int *prev;
|
|
|
|
/* setup cpu list for irq rotation */
|
|
first = 0;
|
|
prev = &first;
|
|
for (i = 0; i < NR_CPUS; i++) {
|
|
if (cpu_online(i)) {
|
|
*prev = i;
|
|
prev = &cpu_data(i).next;
|
|
}
|
|
}
|
|
*prev = first;
|
|
local_flush_cache_all();
|
|
|
|
/* Free unneeded trap tables */
|
|
if (!cpu_isset(1, cpu_present_map)) {
|
|
ClearPageReserved(virt_to_page(trapbase_cpu1));
|
|
init_page_count(virt_to_page(trapbase_cpu1));
|
|
free_page((unsigned long)trapbase_cpu1);
|
|
totalram_pages++;
|
|
num_physpages++;
|
|
}
|
|
if (!cpu_isset(2, cpu_present_map)) {
|
|
ClearPageReserved(virt_to_page(trapbase_cpu2));
|
|
init_page_count(virt_to_page(trapbase_cpu2));
|
|
free_page((unsigned long)trapbase_cpu2);
|
|
totalram_pages++;
|
|
num_physpages++;
|
|
}
|
|
if (!cpu_isset(3, cpu_present_map)) {
|
|
ClearPageReserved(virt_to_page(trapbase_cpu3));
|
|
init_page_count(virt_to_page(trapbase_cpu3));
|
|
free_page((unsigned long)trapbase_cpu3);
|
|
totalram_pages++;
|
|
num_physpages++;
|
|
}
|
|
|
|
/* Ok, they are spinning and ready to go. */
|
|
}
|
|
|
|
/* At each hardware IRQ, we get this called to forward IRQ reception
|
|
* to the next processor. The caller must disable the IRQ level being
|
|
* serviced globally so that there are no double interrupts received.
|
|
*
|
|
* XXX See sparc64 irq.c.
|
|
*/
|
|
void smp4m_irq_rotate(int cpu)
|
|
{
|
|
int next = cpu_data(cpu).next;
|
|
if (next != cpu)
|
|
set_irq_udt(next);
|
|
}
|
|
|
|
static struct smp_funcall {
|
|
smpfunc_t func;
|
|
unsigned long arg1;
|
|
unsigned long arg2;
|
|
unsigned long arg3;
|
|
unsigned long arg4;
|
|
unsigned long arg5;
|
|
unsigned long processors_in[SUN4M_NCPUS]; /* Set when ipi entered. */
|
|
unsigned long processors_out[SUN4M_NCPUS]; /* Set when ipi exited. */
|
|
} ccall_info;
|
|
|
|
static DEFINE_SPINLOCK(cross_call_lock);
|
|
|
|
/* Cross calls must be serialized, at least currently. */
|
|
void smp4m_cross_call(smpfunc_t func, unsigned long arg1, unsigned long arg2,
|
|
unsigned long arg3, unsigned long arg4, unsigned long arg5)
|
|
{
|
|
register int ncpus = SUN4M_NCPUS;
|
|
unsigned long flags;
|
|
|
|
spin_lock_irqsave(&cross_call_lock, flags);
|
|
|
|
/* Init function glue. */
|
|
ccall_info.func = func;
|
|
ccall_info.arg1 = arg1;
|
|
ccall_info.arg2 = arg2;
|
|
ccall_info.arg3 = arg3;
|
|
ccall_info.arg4 = arg4;
|
|
ccall_info.arg5 = arg5;
|
|
|
|
/* Init receive/complete mapping, plus fire the IPI's off. */
|
|
{
|
|
cpumask_t mask = cpu_online_map;
|
|
register int i;
|
|
|
|
cpu_clear(smp_processor_id(), mask);
|
|
for(i = 0; i < ncpus; i++) {
|
|
if (cpu_isset(i, mask)) {
|
|
ccall_info.processors_in[i] = 0;
|
|
ccall_info.processors_out[i] = 0;
|
|
set_cpu_int(i, IRQ_CROSS_CALL);
|
|
} else {
|
|
ccall_info.processors_in[i] = 1;
|
|
ccall_info.processors_out[i] = 1;
|
|
}
|
|
}
|
|
}
|
|
|
|
{
|
|
register int i;
|
|
|
|
i = 0;
|
|
do {
|
|
while(!ccall_info.processors_in[i])
|
|
barrier();
|
|
} while(++i < ncpus);
|
|
|
|
i = 0;
|
|
do {
|
|
while(!ccall_info.processors_out[i])
|
|
barrier();
|
|
} while(++i < ncpus);
|
|
}
|
|
|
|
spin_unlock_irqrestore(&cross_call_lock, flags);
|
|
}
|
|
|
|
/* Running cross calls. */
|
|
void smp4m_cross_call_irq(void)
|
|
{
|
|
int i = smp_processor_id();
|
|
|
|
ccall_info.processors_in[i] = 1;
|
|
ccall_info.func(ccall_info.arg1, ccall_info.arg2, ccall_info.arg3,
|
|
ccall_info.arg4, ccall_info.arg5);
|
|
ccall_info.processors_out[i] = 1;
|
|
}
|
|
|
|
void smp4m_percpu_timer_interrupt(struct pt_regs *regs)
|
|
{
|
|
struct pt_regs *old_regs;
|
|
int cpu = smp_processor_id();
|
|
|
|
old_regs = set_irq_regs(regs);
|
|
|
|
clear_profile_irq(cpu);
|
|
|
|
profile_tick(CPU_PROFILING);
|
|
|
|
if(!--prof_counter(cpu)) {
|
|
int user = user_mode(regs);
|
|
|
|
irq_enter();
|
|
update_process_times(user);
|
|
irq_exit();
|
|
|
|
prof_counter(cpu) = prof_multiplier(cpu);
|
|
}
|
|
set_irq_regs(old_regs);
|
|
}
|
|
|
|
extern unsigned int lvl14_resolution;
|
|
|
|
static void __init smp_setup_percpu_timer(void)
|
|
{
|
|
int cpu = smp_processor_id();
|
|
|
|
prof_counter(cpu) = prof_multiplier(cpu) = 1;
|
|
load_profile_irq(cpu, lvl14_resolution);
|
|
|
|
if(cpu == boot_cpu_id)
|
|
enable_pil_irq(14);
|
|
}
|
|
|
|
void __init smp4m_blackbox_id(unsigned *addr)
|
|
{
|
|
int rd = *addr & 0x3e000000;
|
|
int rs1 = rd >> 11;
|
|
|
|
addr[0] = 0x81580000 | rd; /* rd %tbr, reg */
|
|
addr[1] = 0x8130200c | rd | rs1; /* srl reg, 0xc, reg */
|
|
addr[2] = 0x80082003 | rd | rs1; /* and reg, 3, reg */
|
|
}
|
|
|
|
void __init smp4m_blackbox_current(unsigned *addr)
|
|
{
|
|
int rd = *addr & 0x3e000000;
|
|
int rs1 = rd >> 11;
|
|
|
|
addr[0] = 0x81580000 | rd; /* rd %tbr, reg */
|
|
addr[2] = 0x8130200a | rd | rs1; /* srl reg, 0xa, reg */
|
|
addr[4] = 0x8008200c | rd | rs1; /* and reg, 0xc, reg */
|
|
}
|
|
|
|
void __init sun4m_init_smp(void)
|
|
{
|
|
BTFIXUPSET_BLACKBOX(hard_smp_processor_id, smp4m_blackbox_id);
|
|
BTFIXUPSET_BLACKBOX(load_current, smp4m_blackbox_current);
|
|
BTFIXUPSET_CALL(smp_cross_call, smp4m_cross_call, BTFIXUPCALL_NORM);
|
|
BTFIXUPSET_CALL(__hard_smp_processor_id, __smp4m_processor_id, BTFIXUPCALL_NORM);
|
|
}
|