linux/include/asm-generic/pgtable.h
Mel Gorman c46a7c817e x86: define _PAGE_NUMA by reusing software bits on the PMD and PTE levels
_PAGE_NUMA is currently an alias of _PROT_PROTNONE to trap NUMA hinting
faults on x86.  Care is taken such that _PAGE_NUMA is used only in
situations where the VMA flags distinguish between NUMA hinting faults
and prot_none faults.  This decision was x86-specific and conceptually
it is difficult requiring special casing to distinguish between PROTNONE
and NUMA ptes based on context.

Fundamentally, we only need the _PAGE_NUMA bit to tell the difference
between an entry that is really unmapped and a page that is protected
for NUMA hinting faults as if the PTE is not present then a fault will
be trapped.

Swap PTEs on x86-64 use the bits after _PAGE_GLOBAL for the offset.
This patch shrinks the maximum possible swap size and uses the bit to
uniquely distinguish between NUMA hinting ptes and swap ptes.

Signed-off-by: Mel Gorman <mgorman@suse.de>
Cc: David Vrabel <david.vrabel@citrix.com>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Peter Anvin <hpa@zytor.com>
Cc: Fengguang Wu <fengguang.wu@intel.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Steven Noonan <steven@uplinklabs.net>
Cc: Rik van Riel <riel@redhat.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Srikar Dronamraju <srikar@linux.vnet.ibm.com>
Cc: Cyrill Gorcunov <gorcunov@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-06-04 16:53:55 -07:00

831 lines
22 KiB
C

#ifndef _ASM_GENERIC_PGTABLE_H
#define _ASM_GENERIC_PGTABLE_H
#ifndef __ASSEMBLY__
#ifdef CONFIG_MMU
#include <linux/mm_types.h>
#include <linux/bug.h>
/*
* On almost all architectures and configurations, 0 can be used as the
* upper ceiling to free_pgtables(): on many architectures it has the same
* effect as using TASK_SIZE. However, there is one configuration which
* must impose a more careful limit, to avoid freeing kernel pgtables.
*/
#ifndef USER_PGTABLES_CEILING
#define USER_PGTABLES_CEILING 0UL
#endif
#ifndef __HAVE_ARCH_PTEP_SET_ACCESS_FLAGS
extern int ptep_set_access_flags(struct vm_area_struct *vma,
unsigned long address, pte_t *ptep,
pte_t entry, int dirty);
#endif
#ifndef __HAVE_ARCH_PMDP_SET_ACCESS_FLAGS
extern int pmdp_set_access_flags(struct vm_area_struct *vma,
unsigned long address, pmd_t *pmdp,
pmd_t entry, int dirty);
#endif
#ifndef __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG
static inline int ptep_test_and_clear_young(struct vm_area_struct *vma,
unsigned long address,
pte_t *ptep)
{
pte_t pte = *ptep;
int r = 1;
if (!pte_young(pte))
r = 0;
else
set_pte_at(vma->vm_mm, address, ptep, pte_mkold(pte));
return r;
}
#endif
#ifndef __HAVE_ARCH_PMDP_TEST_AND_CLEAR_YOUNG
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
static inline int pmdp_test_and_clear_young(struct vm_area_struct *vma,
unsigned long address,
pmd_t *pmdp)
{
pmd_t pmd = *pmdp;
int r = 1;
if (!pmd_young(pmd))
r = 0;
else
set_pmd_at(vma->vm_mm, address, pmdp, pmd_mkold(pmd));
return r;
}
#else /* CONFIG_TRANSPARENT_HUGEPAGE */
static inline int pmdp_test_and_clear_young(struct vm_area_struct *vma,
unsigned long address,
pmd_t *pmdp)
{
BUG();
return 0;
}
#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
#endif
#ifndef __HAVE_ARCH_PTEP_CLEAR_YOUNG_FLUSH
int ptep_clear_flush_young(struct vm_area_struct *vma,
unsigned long address, pte_t *ptep);
#endif
#ifndef __HAVE_ARCH_PMDP_CLEAR_YOUNG_FLUSH
int pmdp_clear_flush_young(struct vm_area_struct *vma,
unsigned long address, pmd_t *pmdp);
#endif
#ifndef __HAVE_ARCH_PTEP_GET_AND_CLEAR
static inline pte_t ptep_get_and_clear(struct mm_struct *mm,
unsigned long address,
pte_t *ptep)
{
pte_t pte = *ptep;
pte_clear(mm, address, ptep);
return pte;
}
#endif
#ifndef __HAVE_ARCH_PMDP_GET_AND_CLEAR
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
static inline pmd_t pmdp_get_and_clear(struct mm_struct *mm,
unsigned long address,
pmd_t *pmdp)
{
pmd_t pmd = *pmdp;
pmd_clear(pmdp);
return pmd;
}
#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
#endif
#ifndef __HAVE_ARCH_PTEP_GET_AND_CLEAR_FULL
static inline pte_t ptep_get_and_clear_full(struct mm_struct *mm,
unsigned long address, pte_t *ptep,
int full)
{
pte_t pte;
pte = ptep_get_and_clear(mm, address, ptep);
return pte;
}
#endif
/*
* Some architectures may be able to avoid expensive synchronization
* primitives when modifications are made to PTE's which are already
* not present, or in the process of an address space destruction.
*/
#ifndef __HAVE_ARCH_PTE_CLEAR_NOT_PRESENT_FULL
static inline void pte_clear_not_present_full(struct mm_struct *mm,
unsigned long address,
pte_t *ptep,
int full)
{
pte_clear(mm, address, ptep);
}
#endif
#ifndef __HAVE_ARCH_PTEP_CLEAR_FLUSH
extern pte_t ptep_clear_flush(struct vm_area_struct *vma,
unsigned long address,
pte_t *ptep);
#endif
#ifndef __HAVE_ARCH_PMDP_CLEAR_FLUSH
extern pmd_t pmdp_clear_flush(struct vm_area_struct *vma,
unsigned long address,
pmd_t *pmdp);
#endif
#ifndef __HAVE_ARCH_PTEP_SET_WRPROTECT
struct mm_struct;
static inline void ptep_set_wrprotect(struct mm_struct *mm, unsigned long address, pte_t *ptep)
{
pte_t old_pte = *ptep;
set_pte_at(mm, address, ptep, pte_wrprotect(old_pte));
}
#endif
#ifndef __HAVE_ARCH_PMDP_SET_WRPROTECT
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
static inline void pmdp_set_wrprotect(struct mm_struct *mm,
unsigned long address, pmd_t *pmdp)
{
pmd_t old_pmd = *pmdp;
set_pmd_at(mm, address, pmdp, pmd_wrprotect(old_pmd));
}
#else /* CONFIG_TRANSPARENT_HUGEPAGE */
static inline void pmdp_set_wrprotect(struct mm_struct *mm,
unsigned long address, pmd_t *pmdp)
{
BUG();
}
#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
#endif
#ifndef __HAVE_ARCH_PMDP_SPLITTING_FLUSH
extern void pmdp_splitting_flush(struct vm_area_struct *vma,
unsigned long address, pmd_t *pmdp);
#endif
#ifndef __HAVE_ARCH_PGTABLE_DEPOSIT
extern void pgtable_trans_huge_deposit(struct mm_struct *mm, pmd_t *pmdp,
pgtable_t pgtable);
#endif
#ifndef __HAVE_ARCH_PGTABLE_WITHDRAW
extern pgtable_t pgtable_trans_huge_withdraw(struct mm_struct *mm, pmd_t *pmdp);
#endif
#ifndef __HAVE_ARCH_PMDP_INVALIDATE
extern void pmdp_invalidate(struct vm_area_struct *vma, unsigned long address,
pmd_t *pmdp);
#endif
#ifndef __HAVE_ARCH_PTE_SAME
static inline int pte_same(pte_t pte_a, pte_t pte_b)
{
return pte_val(pte_a) == pte_val(pte_b);
}
#endif
#ifndef __HAVE_ARCH_PTE_UNUSED
/*
* Some architectures provide facilities to virtualization guests
* so that they can flag allocated pages as unused. This allows the
* host to transparently reclaim unused pages. This function returns
* whether the pte's page is unused.
*/
static inline int pte_unused(pte_t pte)
{
return 0;
}
#endif
#ifndef __HAVE_ARCH_PMD_SAME
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
static inline int pmd_same(pmd_t pmd_a, pmd_t pmd_b)
{
return pmd_val(pmd_a) == pmd_val(pmd_b);
}
#else /* CONFIG_TRANSPARENT_HUGEPAGE */
static inline int pmd_same(pmd_t pmd_a, pmd_t pmd_b)
{
BUG();
return 0;
}
#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
#endif
#ifndef __HAVE_ARCH_PGD_OFFSET_GATE
#define pgd_offset_gate(mm, addr) pgd_offset(mm, addr)
#endif
#ifndef __HAVE_ARCH_MOVE_PTE
#define move_pte(pte, prot, old_addr, new_addr) (pte)
#endif
#ifndef pte_accessible
# define pte_accessible(mm, pte) ((void)(pte), 1)
#endif
#ifndef pte_present_nonuma
#define pte_present_nonuma(pte) pte_present(pte)
#endif
#ifndef flush_tlb_fix_spurious_fault
#define flush_tlb_fix_spurious_fault(vma, address) flush_tlb_page(vma, address)
#endif
#ifndef pgprot_noncached
#define pgprot_noncached(prot) (prot)
#endif
#ifndef pgprot_writecombine
#define pgprot_writecombine pgprot_noncached
#endif
/*
* When walking page tables, get the address of the next boundary,
* or the end address of the range if that comes earlier. Although no
* vma end wraps to 0, rounded up __boundary may wrap to 0 throughout.
*/
#define pgd_addr_end(addr, end) \
({ unsigned long __boundary = ((addr) + PGDIR_SIZE) & PGDIR_MASK; \
(__boundary - 1 < (end) - 1)? __boundary: (end); \
})
#ifndef pud_addr_end
#define pud_addr_end(addr, end) \
({ unsigned long __boundary = ((addr) + PUD_SIZE) & PUD_MASK; \
(__boundary - 1 < (end) - 1)? __boundary: (end); \
})
#endif
#ifndef pmd_addr_end
#define pmd_addr_end(addr, end) \
({ unsigned long __boundary = ((addr) + PMD_SIZE) & PMD_MASK; \
(__boundary - 1 < (end) - 1)? __boundary: (end); \
})
#endif
/*
* When walking page tables, we usually want to skip any p?d_none entries;
* and any p?d_bad entries - reporting the error before resetting to none.
* Do the tests inline, but report and clear the bad entry in mm/memory.c.
*/
void pgd_clear_bad(pgd_t *);
void pud_clear_bad(pud_t *);
void pmd_clear_bad(pmd_t *);
static inline int pgd_none_or_clear_bad(pgd_t *pgd)
{
if (pgd_none(*pgd))
return 1;
if (unlikely(pgd_bad(*pgd))) {
pgd_clear_bad(pgd);
return 1;
}
return 0;
}
static inline int pud_none_or_clear_bad(pud_t *pud)
{
if (pud_none(*pud))
return 1;
if (unlikely(pud_bad(*pud))) {
pud_clear_bad(pud);
return 1;
}
return 0;
}
static inline int pmd_none_or_clear_bad(pmd_t *pmd)
{
if (pmd_none(*pmd))
return 1;
if (unlikely(pmd_bad(*pmd))) {
pmd_clear_bad(pmd);
return 1;
}
return 0;
}
static inline pte_t __ptep_modify_prot_start(struct mm_struct *mm,
unsigned long addr,
pte_t *ptep)
{
/*
* Get the current pte state, but zero it out to make it
* non-present, preventing the hardware from asynchronously
* updating it.
*/
return ptep_get_and_clear(mm, addr, ptep);
}
static inline void __ptep_modify_prot_commit(struct mm_struct *mm,
unsigned long addr,
pte_t *ptep, pte_t pte)
{
/*
* The pte is non-present, so there's no hardware state to
* preserve.
*/
set_pte_at(mm, addr, ptep, pte);
}
#ifndef __HAVE_ARCH_PTEP_MODIFY_PROT_TRANSACTION
/*
* Start a pte protection read-modify-write transaction, which
* protects against asynchronous hardware modifications to the pte.
* The intention is not to prevent the hardware from making pte
* updates, but to prevent any updates it may make from being lost.
*
* This does not protect against other software modifications of the
* pte; the appropriate pte lock must be held over the transation.
*
* Note that this interface is intended to be batchable, meaning that
* ptep_modify_prot_commit may not actually update the pte, but merely
* queue the update to be done at some later time. The update must be
* actually committed before the pte lock is released, however.
*/
static inline pte_t ptep_modify_prot_start(struct mm_struct *mm,
unsigned long addr,
pte_t *ptep)
{
return __ptep_modify_prot_start(mm, addr, ptep);
}
/*
* Commit an update to a pte, leaving any hardware-controlled bits in
* the PTE unmodified.
*/
static inline void ptep_modify_prot_commit(struct mm_struct *mm,
unsigned long addr,
pte_t *ptep, pte_t pte)
{
__ptep_modify_prot_commit(mm, addr, ptep, pte);
}
#endif /* __HAVE_ARCH_PTEP_MODIFY_PROT_TRANSACTION */
#endif /* CONFIG_MMU */
/*
* A facility to provide lazy MMU batching. This allows PTE updates and
* page invalidations to be delayed until a call to leave lazy MMU mode
* is issued. Some architectures may benefit from doing this, and it is
* beneficial for both shadow and direct mode hypervisors, which may batch
* the PTE updates which happen during this window. Note that using this
* interface requires that read hazards be removed from the code. A read
* hazard could result in the direct mode hypervisor case, since the actual
* write to the page tables may not yet have taken place, so reads though
* a raw PTE pointer after it has been modified are not guaranteed to be
* up to date. This mode can only be entered and left under the protection of
* the page table locks for all page tables which may be modified. In the UP
* case, this is required so that preemption is disabled, and in the SMP case,
* it must synchronize the delayed page table writes properly on other CPUs.
*/
#ifndef __HAVE_ARCH_ENTER_LAZY_MMU_MODE
#define arch_enter_lazy_mmu_mode() do {} while (0)
#define arch_leave_lazy_mmu_mode() do {} while (0)
#define arch_flush_lazy_mmu_mode() do {} while (0)
#endif
/*
* A facility to provide batching of the reload of page tables and
* other process state with the actual context switch code for
* paravirtualized guests. By convention, only one of the batched
* update (lazy) modes (CPU, MMU) should be active at any given time,
* entry should never be nested, and entry and exits should always be
* paired. This is for sanity of maintaining and reasoning about the
* kernel code. In this case, the exit (end of the context switch) is
* in architecture-specific code, and so doesn't need a generic
* definition.
*/
#ifndef __HAVE_ARCH_START_CONTEXT_SWITCH
#define arch_start_context_switch(prev) do {} while (0)
#endif
#ifndef CONFIG_HAVE_ARCH_SOFT_DIRTY
static inline int pte_soft_dirty(pte_t pte)
{
return 0;
}
static inline int pmd_soft_dirty(pmd_t pmd)
{
return 0;
}
static inline pte_t pte_mksoft_dirty(pte_t pte)
{
return pte;
}
static inline pmd_t pmd_mksoft_dirty(pmd_t pmd)
{
return pmd;
}
static inline pte_t pte_swp_mksoft_dirty(pte_t pte)
{
return pte;
}
static inline int pte_swp_soft_dirty(pte_t pte)
{
return 0;
}
static inline pte_t pte_swp_clear_soft_dirty(pte_t pte)
{
return pte;
}
static inline pte_t pte_file_clear_soft_dirty(pte_t pte)
{
return pte;
}
static inline pte_t pte_file_mksoft_dirty(pte_t pte)
{
return pte;
}
static inline int pte_file_soft_dirty(pte_t pte)
{
return 0;
}
#endif
#ifndef __HAVE_PFNMAP_TRACKING
/*
* Interfaces that can be used by architecture code to keep track of
* memory type of pfn mappings specified by the remap_pfn_range,
* vm_insert_pfn.
*/
/*
* track_pfn_remap is called when a _new_ pfn mapping is being established
* by remap_pfn_range() for physical range indicated by pfn and size.
*/
static inline int track_pfn_remap(struct vm_area_struct *vma, pgprot_t *prot,
unsigned long pfn, unsigned long addr,
unsigned long size)
{
return 0;
}
/*
* track_pfn_insert is called when a _new_ single pfn is established
* by vm_insert_pfn().
*/
static inline int track_pfn_insert(struct vm_area_struct *vma, pgprot_t *prot,
unsigned long pfn)
{
return 0;
}
/*
* track_pfn_copy is called when vma that is covering the pfnmap gets
* copied through copy_page_range().
*/
static inline int track_pfn_copy(struct vm_area_struct *vma)
{
return 0;
}
/*
* untrack_pfn_vma is called while unmapping a pfnmap for a region.
* untrack can be called for a specific region indicated by pfn and size or
* can be for the entire vma (in which case pfn, size are zero).
*/
static inline void untrack_pfn(struct vm_area_struct *vma,
unsigned long pfn, unsigned long size)
{
}
#else
extern int track_pfn_remap(struct vm_area_struct *vma, pgprot_t *prot,
unsigned long pfn, unsigned long addr,
unsigned long size);
extern int track_pfn_insert(struct vm_area_struct *vma, pgprot_t *prot,
unsigned long pfn);
extern int track_pfn_copy(struct vm_area_struct *vma);
extern void untrack_pfn(struct vm_area_struct *vma, unsigned long pfn,
unsigned long size);
#endif
#ifdef __HAVE_COLOR_ZERO_PAGE
static inline int is_zero_pfn(unsigned long pfn)
{
extern unsigned long zero_pfn;
unsigned long offset_from_zero_pfn = pfn - zero_pfn;
return offset_from_zero_pfn <= (zero_page_mask >> PAGE_SHIFT);
}
#define my_zero_pfn(addr) page_to_pfn(ZERO_PAGE(addr))
#else
static inline int is_zero_pfn(unsigned long pfn)
{
extern unsigned long zero_pfn;
return pfn == zero_pfn;
}
static inline unsigned long my_zero_pfn(unsigned long addr)
{
extern unsigned long zero_pfn;
return zero_pfn;
}
#endif
#ifdef CONFIG_MMU
#ifndef CONFIG_TRANSPARENT_HUGEPAGE
static inline int pmd_trans_huge(pmd_t pmd)
{
return 0;
}
static inline int pmd_trans_splitting(pmd_t pmd)
{
return 0;
}
#ifndef __HAVE_ARCH_PMD_WRITE
static inline int pmd_write(pmd_t pmd)
{
BUG();
return 0;
}
#endif /* __HAVE_ARCH_PMD_WRITE */
#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
#ifndef pmd_read_atomic
static inline pmd_t pmd_read_atomic(pmd_t *pmdp)
{
/*
* Depend on compiler for an atomic pmd read. NOTE: this is
* only going to work, if the pmdval_t isn't larger than
* an unsigned long.
*/
return *pmdp;
}
#endif
#ifndef pmd_move_must_withdraw
static inline int pmd_move_must_withdraw(spinlock_t *new_pmd_ptl,
spinlock_t *old_pmd_ptl)
{
/*
* With split pmd lock we also need to move preallocated
* PTE page table if new_pmd is on different PMD page table.
*/
return new_pmd_ptl != old_pmd_ptl;
}
#endif
/*
* This function is meant to be used by sites walking pagetables with
* the mmap_sem hold in read mode to protect against MADV_DONTNEED and
* transhuge page faults. MADV_DONTNEED can convert a transhuge pmd
* into a null pmd and the transhuge page fault can convert a null pmd
* into an hugepmd or into a regular pmd (if the hugepage allocation
* fails). While holding the mmap_sem in read mode the pmd becomes
* stable and stops changing under us only if it's not null and not a
* transhuge pmd. When those races occurs and this function makes a
* difference vs the standard pmd_none_or_clear_bad, the result is
* undefined so behaving like if the pmd was none is safe (because it
* can return none anyway). The compiler level barrier() is critically
* important to compute the two checks atomically on the same pmdval.
*
* For 32bit kernels with a 64bit large pmd_t this automatically takes
* care of reading the pmd atomically to avoid SMP race conditions
* against pmd_populate() when the mmap_sem is hold for reading by the
* caller (a special atomic read not done by "gcc" as in the generic
* version above, is also needed when THP is disabled because the page
* fault can populate the pmd from under us).
*/
static inline int pmd_none_or_trans_huge_or_clear_bad(pmd_t *pmd)
{
pmd_t pmdval = pmd_read_atomic(pmd);
/*
* The barrier will stabilize the pmdval in a register or on
* the stack so that it will stop changing under the code.
*
* When CONFIG_TRANSPARENT_HUGEPAGE=y on x86 32bit PAE,
* pmd_read_atomic is allowed to return a not atomic pmdval
* (for example pointing to an hugepage that has never been
* mapped in the pmd). The below checks will only care about
* the low part of the pmd with 32bit PAE x86 anyway, with the
* exception of pmd_none(). So the important thing is that if
* the low part of the pmd is found null, the high part will
* be also null or the pmd_none() check below would be
* confused.
*/
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
barrier();
#endif
if (pmd_none(pmdval) || pmd_trans_huge(pmdval))
return 1;
if (unlikely(pmd_bad(pmdval))) {
pmd_clear_bad(pmd);
return 1;
}
return 0;
}
/*
* This is a noop if Transparent Hugepage Support is not built into
* the kernel. Otherwise it is equivalent to
* pmd_none_or_trans_huge_or_clear_bad(), and shall only be called in
* places that already verified the pmd is not none and they want to
* walk ptes while holding the mmap sem in read mode (write mode don't
* need this). If THP is not enabled, the pmd can't go away under the
* code even if MADV_DONTNEED runs, but if THP is enabled we need to
* run a pmd_trans_unstable before walking the ptes after
* split_huge_page_pmd returns (because it may have run when the pmd
* become null, but then a page fault can map in a THP and not a
* regular page).
*/
static inline int pmd_trans_unstable(pmd_t *pmd)
{
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
return pmd_none_or_trans_huge_or_clear_bad(pmd);
#else
return 0;
#endif
}
#ifdef CONFIG_NUMA_BALANCING
#ifdef CONFIG_ARCH_USES_NUMA_PROT_NONE
/*
* _PAGE_NUMA works identical to _PAGE_PROTNONE (it's actually the
* same bit too). It's set only when _PAGE_PRESET is not set and it's
* never set if _PAGE_PRESENT is set.
*
* pte/pmd_present() returns true if pte/pmd_numa returns true. Page
* fault triggers on those regions if pte/pmd_numa returns true
* (because _PAGE_PRESENT is not set).
*/
#ifndef pte_numa
static inline int pte_numa(pte_t pte)
{
return (pte_flags(pte) &
(_PAGE_NUMA|_PAGE_PROTNONE|_PAGE_PRESENT)) == _PAGE_NUMA;
}
#endif
#ifndef pmd_numa
static inline int pmd_numa(pmd_t pmd)
{
return (pmd_flags(pmd) &
(_PAGE_NUMA|_PAGE_PROTNONE|_PAGE_PRESENT)) == _PAGE_NUMA;
}
#endif
/*
* pte/pmd_mknuma sets the _PAGE_ACCESSED bitflag automatically
* because they're called by the NUMA hinting minor page fault. If we
* wouldn't set the _PAGE_ACCESSED bitflag here, the TLB miss handler
* would be forced to set it later while filling the TLB after we
* return to userland. That would trigger a second write to memory
* that we optimize away by setting _PAGE_ACCESSED here.
*/
#ifndef pte_mknonnuma
static inline pte_t pte_mknonnuma(pte_t pte)
{
pteval_t val = pte_val(pte);
val &= ~_PAGE_NUMA;
val |= (_PAGE_PRESENT|_PAGE_ACCESSED);
return __pte(val);
}
#endif
#ifndef pmd_mknonnuma
static inline pmd_t pmd_mknonnuma(pmd_t pmd)
{
pmdval_t val = pmd_val(pmd);
val &= ~_PAGE_NUMA;
val |= (_PAGE_PRESENT|_PAGE_ACCESSED);
return __pmd(val);
}
#endif
#ifndef pte_mknuma
static inline pte_t pte_mknuma(pte_t pte)
{
pteval_t val = pte_val(pte);
val &= ~_PAGE_PRESENT;
val |= _PAGE_NUMA;
return __pte(val);
}
#endif
#ifndef ptep_set_numa
static inline void ptep_set_numa(struct mm_struct *mm, unsigned long addr,
pte_t *ptep)
{
pte_t ptent = *ptep;
ptent = pte_mknuma(ptent);
set_pte_at(mm, addr, ptep, ptent);
return;
}
#endif
#ifndef pmd_mknuma
static inline pmd_t pmd_mknuma(pmd_t pmd)
{
pmdval_t val = pmd_val(pmd);
val &= ~_PAGE_PRESENT;
val |= _PAGE_NUMA;
return __pmd(val);
}
#endif
#ifndef pmdp_set_numa
static inline void pmdp_set_numa(struct mm_struct *mm, unsigned long addr,
pmd_t *pmdp)
{
pmd_t pmd = *pmdp;
pmd = pmd_mknuma(pmd);
set_pmd_at(mm, addr, pmdp, pmd);
return;
}
#endif
#else
extern int pte_numa(pte_t pte);
extern int pmd_numa(pmd_t pmd);
extern pte_t pte_mknonnuma(pte_t pte);
extern pmd_t pmd_mknonnuma(pmd_t pmd);
extern pte_t pte_mknuma(pte_t pte);
extern pmd_t pmd_mknuma(pmd_t pmd);
extern void ptep_set_numa(struct mm_struct *mm, unsigned long addr, pte_t *ptep);
extern void pmdp_set_numa(struct mm_struct *mm, unsigned long addr, pmd_t *pmdp);
#endif /* CONFIG_ARCH_USES_NUMA_PROT_NONE */
#else
static inline int pmd_numa(pmd_t pmd)
{
return 0;
}
static inline int pte_numa(pte_t pte)
{
return 0;
}
static inline pte_t pte_mknonnuma(pte_t pte)
{
return pte;
}
static inline pmd_t pmd_mknonnuma(pmd_t pmd)
{
return pmd;
}
static inline pte_t pte_mknuma(pte_t pte)
{
return pte;
}
static inline void ptep_set_numa(struct mm_struct *mm, unsigned long addr,
pte_t *ptep)
{
return;
}
static inline pmd_t pmd_mknuma(pmd_t pmd)
{
return pmd;
}
static inline void pmdp_set_numa(struct mm_struct *mm, unsigned long addr,
pmd_t *pmdp)
{
return ;
}
#endif /* CONFIG_NUMA_BALANCING */
#endif /* CONFIG_MMU */
#endif /* !__ASSEMBLY__ */
#ifndef io_remap_pfn_range
#define io_remap_pfn_range remap_pfn_range
#endif
#endif /* _ASM_GENERIC_PGTABLE_H */