b24413180f
Many source files in the tree are missing licensing information, which makes it harder for compliance tools to determine the correct license. By default all files without license information are under the default license of the kernel, which is GPL version 2. Update the files which contain no license information with the 'GPL-2.0' SPDX license identifier. The SPDX identifier is a legally binding shorthand, which can be used instead of the full boiler plate text. This patch is based on work done by Thomas Gleixner and Kate Stewart and Philippe Ombredanne. How this work was done: Patches were generated and checked against linux-4.14-rc6 for a subset of the use cases: - file had no licensing information it it. - file was a */uapi/* one with no licensing information in it, - file was a */uapi/* one with existing licensing information, Further patches will be generated in subsequent months to fix up cases where non-standard license headers were used, and references to license had to be inferred by heuristics based on keywords. The analysis to determine which SPDX License Identifier to be applied to a file was done in a spreadsheet of side by side results from of the output of two independent scanners (ScanCode & Windriver) producing SPDX tag:value files created by Philippe Ombredanne. Philippe prepared the base worksheet, and did an initial spot review of a few 1000 files. The 4.13 kernel was the starting point of the analysis with 60,537 files assessed. Kate Stewart did a file by file comparison of the scanner results in the spreadsheet to determine which SPDX license identifier(s) to be applied to the file. She confirmed any determination that was not immediately clear with lawyers working with the Linux Foundation. Criteria used to select files for SPDX license identifier tagging was: - Files considered eligible had to be source code files. - Make and config files were included as candidates if they contained >5 lines of source - File already had some variant of a license header in it (even if <5 lines). All documentation files were explicitly excluded. The following heuristics were used to determine which SPDX license identifiers to apply. - when both scanners couldn't find any license traces, file was considered to have no license information in it, and the top level COPYING file license applied. For non */uapi/* files that summary was: SPDX license identifier # files ---------------------------------------------------|------- GPL-2.0 11139 and resulted in the first patch in this series. If that file was a */uapi/* path one, it was "GPL-2.0 WITH Linux-syscall-note" otherwise it was "GPL-2.0". Results of that was: SPDX license identifier # files ---------------------------------------------------|------- GPL-2.0 WITH Linux-syscall-note 930 and resulted in the second patch in this series. - if a file had some form of licensing information in it, and was one of the */uapi/* ones, it was denoted with the Linux-syscall-note if any GPL family license was found in the file or had no licensing in it (per prior point). Results summary: SPDX license identifier # files ---------------------------------------------------|------ GPL-2.0 WITH Linux-syscall-note 270 GPL-2.0+ WITH Linux-syscall-note 169 ((GPL-2.0 WITH Linux-syscall-note) OR BSD-2-Clause) 21 ((GPL-2.0 WITH Linux-syscall-note) OR BSD-3-Clause) 17 LGPL-2.1+ WITH Linux-syscall-note 15 GPL-1.0+ WITH Linux-syscall-note 14 ((GPL-2.0+ WITH Linux-syscall-note) OR BSD-3-Clause) 5 LGPL-2.0+ WITH Linux-syscall-note 4 LGPL-2.1 WITH Linux-syscall-note 3 ((GPL-2.0 WITH Linux-syscall-note) OR MIT) 3 ((GPL-2.0 WITH Linux-syscall-note) AND MIT) 1 and that resulted in the third patch in this series. - when the two scanners agreed on the detected license(s), that became the concluded license(s). - when there was disagreement between the two scanners (one detected a license but the other didn't, or they both detected different licenses) a manual inspection of the file occurred. - In most cases a manual inspection of the information in the file resulted in a clear resolution of the license that should apply (and which scanner probably needed to revisit its heuristics). - When it was not immediately clear, the license identifier was confirmed with lawyers working with the Linux Foundation. - If there was any question as to the appropriate license identifier, the file was flagged for further research and to be revisited later in time. In total, over 70 hours of logged manual review was done on the spreadsheet to determine the SPDX license identifiers to apply to the source files by Kate, Philippe, Thomas and, in some cases, confirmation by lawyers working with the Linux Foundation. Kate also obtained a third independent scan of the 4.13 code base from FOSSology, and compared selected files where the other two scanners disagreed against that SPDX file, to see if there was new insights. The Windriver scanner is based on an older version of FOSSology in part, so they are related. Thomas did random spot checks in about 500 files from the spreadsheets for the uapi headers and agreed with SPDX license identifier in the files he inspected. For the non-uapi files Thomas did random spot checks in about 15000 files. In initial set of patches against 4.14-rc6, 3 files were found to have copy/paste license identifier errors, and have been fixed to reflect the correct identifier. Additionally Philippe spent 10 hours this week doing a detailed manual inspection and review of the 12,461 patched files from the initial patch version early this week with: - a full scancode scan run, collecting the matched texts, detected license ids and scores - reviewing anything where there was a license detected (about 500+ files) to ensure that the applied SPDX license was correct - reviewing anything where there was no detection but the patch license was not GPL-2.0 WITH Linux-syscall-note to ensure that the applied SPDX license was correct This produced a worksheet with 20 files needing minor correction. This worksheet was then exported into 3 different .csv files for the different types of files to be modified. These .csv files were then reviewed by Greg. Thomas wrote a script to parse the csv files and add the proper SPDX tag to the file, in the format that the file expected. This script was further refined by Greg based on the output to detect more types of files automatically and to distinguish between header and source .c files (which need different comment types.) Finally Greg ran the script using the .csv files to generate the patches. Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org> Reviewed-by: Philippe Ombredanne <pombredanne@nexb.com> Reviewed-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
471 lines
9.2 KiB
C
471 lines
9.2 KiB
C
// SPDX-License-Identifier: GPL-2.0
|
|
/*
|
|
* linux/fs/hfsplus/unicode.c
|
|
*
|
|
* Copyright (C) 2001
|
|
* Brad Boyer (flar@allandria.com)
|
|
* (C) 2003 Ardis Technologies <roman@ardistech.com>
|
|
*
|
|
* Handler routines for unicode strings
|
|
*/
|
|
|
|
#include <linux/types.h>
|
|
#include <linux/nls.h>
|
|
#include "hfsplus_fs.h"
|
|
#include "hfsplus_raw.h"
|
|
|
|
/* Fold the case of a unicode char, given the 16 bit value */
|
|
/* Returns folded char, or 0 if ignorable */
|
|
static inline u16 case_fold(u16 c)
|
|
{
|
|
u16 tmp;
|
|
|
|
tmp = hfsplus_case_fold_table[c >> 8];
|
|
if (tmp)
|
|
tmp = hfsplus_case_fold_table[tmp + (c & 0xff)];
|
|
else
|
|
tmp = c;
|
|
return tmp;
|
|
}
|
|
|
|
/* Compare unicode strings, return values like normal strcmp */
|
|
int hfsplus_strcasecmp(const struct hfsplus_unistr *s1,
|
|
const struct hfsplus_unistr *s2)
|
|
{
|
|
u16 len1, len2, c1, c2;
|
|
const hfsplus_unichr *p1, *p2;
|
|
|
|
len1 = be16_to_cpu(s1->length);
|
|
len2 = be16_to_cpu(s2->length);
|
|
p1 = s1->unicode;
|
|
p2 = s2->unicode;
|
|
|
|
while (1) {
|
|
c1 = c2 = 0;
|
|
|
|
while (len1 && !c1) {
|
|
c1 = case_fold(be16_to_cpu(*p1));
|
|
p1++;
|
|
len1--;
|
|
}
|
|
while (len2 && !c2) {
|
|
c2 = case_fold(be16_to_cpu(*p2));
|
|
p2++;
|
|
len2--;
|
|
}
|
|
|
|
if (c1 != c2)
|
|
return (c1 < c2) ? -1 : 1;
|
|
if (!c1 && !c2)
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
/* Compare names as a sequence of 16-bit unsigned integers */
|
|
int hfsplus_strcmp(const struct hfsplus_unistr *s1,
|
|
const struct hfsplus_unistr *s2)
|
|
{
|
|
u16 len1, len2, c1, c2;
|
|
const hfsplus_unichr *p1, *p2;
|
|
int len;
|
|
|
|
len1 = be16_to_cpu(s1->length);
|
|
len2 = be16_to_cpu(s2->length);
|
|
p1 = s1->unicode;
|
|
p2 = s2->unicode;
|
|
|
|
for (len = min(len1, len2); len > 0; len--) {
|
|
c1 = be16_to_cpu(*p1);
|
|
c2 = be16_to_cpu(*p2);
|
|
if (c1 != c2)
|
|
return c1 < c2 ? -1 : 1;
|
|
p1++;
|
|
p2++;
|
|
}
|
|
|
|
return len1 < len2 ? -1 :
|
|
len1 > len2 ? 1 : 0;
|
|
}
|
|
|
|
|
|
#define Hangul_SBase 0xac00
|
|
#define Hangul_LBase 0x1100
|
|
#define Hangul_VBase 0x1161
|
|
#define Hangul_TBase 0x11a7
|
|
#define Hangul_SCount 11172
|
|
#define Hangul_LCount 19
|
|
#define Hangul_VCount 21
|
|
#define Hangul_TCount 28
|
|
#define Hangul_NCount (Hangul_VCount * Hangul_TCount)
|
|
|
|
|
|
static u16 *hfsplus_compose_lookup(u16 *p, u16 cc)
|
|
{
|
|
int i, s, e;
|
|
|
|
s = 1;
|
|
e = p[1];
|
|
if (!e || cc < p[s * 2] || cc > p[e * 2])
|
|
return NULL;
|
|
do {
|
|
i = (s + e) / 2;
|
|
if (cc > p[i * 2])
|
|
s = i + 1;
|
|
else if (cc < p[i * 2])
|
|
e = i - 1;
|
|
else
|
|
return hfsplus_compose_table + p[i * 2 + 1];
|
|
} while (s <= e);
|
|
return NULL;
|
|
}
|
|
|
|
int hfsplus_uni2asc(struct super_block *sb,
|
|
const struct hfsplus_unistr *ustr,
|
|
char *astr, int *len_p)
|
|
{
|
|
const hfsplus_unichr *ip;
|
|
struct nls_table *nls = HFSPLUS_SB(sb)->nls;
|
|
u8 *op;
|
|
u16 cc, c0, c1;
|
|
u16 *ce1, *ce2;
|
|
int i, len, ustrlen, res, compose;
|
|
|
|
op = astr;
|
|
ip = ustr->unicode;
|
|
ustrlen = be16_to_cpu(ustr->length);
|
|
len = *len_p;
|
|
ce1 = NULL;
|
|
compose = !test_bit(HFSPLUS_SB_NODECOMPOSE, &HFSPLUS_SB(sb)->flags);
|
|
|
|
while (ustrlen > 0) {
|
|
c0 = be16_to_cpu(*ip++);
|
|
ustrlen--;
|
|
/* search for single decomposed char */
|
|
if (likely(compose))
|
|
ce1 = hfsplus_compose_lookup(hfsplus_compose_table, c0);
|
|
if (ce1)
|
|
cc = ce1[0];
|
|
else
|
|
cc = 0;
|
|
if (cc) {
|
|
/* start of a possibly decomposed Hangul char */
|
|
if (cc != 0xffff)
|
|
goto done;
|
|
if (!ustrlen)
|
|
goto same;
|
|
c1 = be16_to_cpu(*ip) - Hangul_VBase;
|
|
if (c1 < Hangul_VCount) {
|
|
/* compose the Hangul char */
|
|
cc = (c0 - Hangul_LBase) * Hangul_VCount;
|
|
cc = (cc + c1) * Hangul_TCount;
|
|
cc += Hangul_SBase;
|
|
ip++;
|
|
ustrlen--;
|
|
if (!ustrlen)
|
|
goto done;
|
|
c1 = be16_to_cpu(*ip) - Hangul_TBase;
|
|
if (c1 > 0 && c1 < Hangul_TCount) {
|
|
cc += c1;
|
|
ip++;
|
|
ustrlen--;
|
|
}
|
|
goto done;
|
|
}
|
|
}
|
|
while (1) {
|
|
/* main loop for common case of not composed chars */
|
|
if (!ustrlen)
|
|
goto same;
|
|
c1 = be16_to_cpu(*ip);
|
|
if (likely(compose))
|
|
ce1 = hfsplus_compose_lookup(
|
|
hfsplus_compose_table, c1);
|
|
if (ce1)
|
|
break;
|
|
switch (c0) {
|
|
case 0:
|
|
c0 = 0x2400;
|
|
break;
|
|
case '/':
|
|
c0 = ':';
|
|
break;
|
|
}
|
|
res = nls->uni2char(c0, op, len);
|
|
if (res < 0) {
|
|
if (res == -ENAMETOOLONG)
|
|
goto out;
|
|
*op = '?';
|
|
res = 1;
|
|
}
|
|
op += res;
|
|
len -= res;
|
|
c0 = c1;
|
|
ip++;
|
|
ustrlen--;
|
|
}
|
|
ce2 = hfsplus_compose_lookup(ce1, c0);
|
|
if (ce2) {
|
|
i = 1;
|
|
while (i < ustrlen) {
|
|
ce1 = hfsplus_compose_lookup(ce2,
|
|
be16_to_cpu(ip[i]));
|
|
if (!ce1)
|
|
break;
|
|
i++;
|
|
ce2 = ce1;
|
|
}
|
|
cc = ce2[0];
|
|
if (cc) {
|
|
ip += i;
|
|
ustrlen -= i;
|
|
goto done;
|
|
}
|
|
}
|
|
same:
|
|
switch (c0) {
|
|
case 0:
|
|
cc = 0x2400;
|
|
break;
|
|
case '/':
|
|
cc = ':';
|
|
break;
|
|
default:
|
|
cc = c0;
|
|
}
|
|
done:
|
|
res = nls->uni2char(cc, op, len);
|
|
if (res < 0) {
|
|
if (res == -ENAMETOOLONG)
|
|
goto out;
|
|
*op = '?';
|
|
res = 1;
|
|
}
|
|
op += res;
|
|
len -= res;
|
|
}
|
|
res = 0;
|
|
out:
|
|
*len_p = (char *)op - astr;
|
|
return res;
|
|
}
|
|
|
|
/*
|
|
* Convert one or more ASCII characters into a single unicode character.
|
|
* Returns the number of ASCII characters corresponding to the unicode char.
|
|
*/
|
|
static inline int asc2unichar(struct super_block *sb, const char *astr, int len,
|
|
wchar_t *uc)
|
|
{
|
|
int size = HFSPLUS_SB(sb)->nls->char2uni(astr, len, uc);
|
|
if (size <= 0) {
|
|
*uc = '?';
|
|
size = 1;
|
|
}
|
|
switch (*uc) {
|
|
case 0x2400:
|
|
*uc = 0;
|
|
break;
|
|
case ':':
|
|
*uc = '/';
|
|
break;
|
|
}
|
|
return size;
|
|
}
|
|
|
|
/* Decomposes a single unicode character. */
|
|
static inline u16 *decompose_unichar(wchar_t uc, int *size)
|
|
{
|
|
int off;
|
|
|
|
off = hfsplus_decompose_table[(uc >> 12) & 0xf];
|
|
if (off == 0 || off == 0xffff)
|
|
return NULL;
|
|
|
|
off = hfsplus_decompose_table[off + ((uc >> 8) & 0xf)];
|
|
if (!off)
|
|
return NULL;
|
|
|
|
off = hfsplus_decompose_table[off + ((uc >> 4) & 0xf)];
|
|
if (!off)
|
|
return NULL;
|
|
|
|
off = hfsplus_decompose_table[off + (uc & 0xf)];
|
|
*size = off & 3;
|
|
if (*size == 0)
|
|
return NULL;
|
|
return hfsplus_decompose_table + (off / 4);
|
|
}
|
|
|
|
int hfsplus_asc2uni(struct super_block *sb,
|
|
struct hfsplus_unistr *ustr, int max_unistr_len,
|
|
const char *astr, int len)
|
|
{
|
|
int size, dsize, decompose;
|
|
u16 *dstr, outlen = 0;
|
|
wchar_t c;
|
|
|
|
decompose = !test_bit(HFSPLUS_SB_NODECOMPOSE, &HFSPLUS_SB(sb)->flags);
|
|
while (outlen < max_unistr_len && len > 0) {
|
|
size = asc2unichar(sb, astr, len, &c);
|
|
|
|
if (decompose)
|
|
dstr = decompose_unichar(c, &dsize);
|
|
else
|
|
dstr = NULL;
|
|
if (dstr) {
|
|
if (outlen + dsize > max_unistr_len)
|
|
break;
|
|
do {
|
|
ustr->unicode[outlen++] = cpu_to_be16(*dstr++);
|
|
} while (--dsize > 0);
|
|
} else
|
|
ustr->unicode[outlen++] = cpu_to_be16(c);
|
|
|
|
astr += size;
|
|
len -= size;
|
|
}
|
|
ustr->length = cpu_to_be16(outlen);
|
|
if (len > 0)
|
|
return -ENAMETOOLONG;
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Hash a string to an integer as appropriate for the HFS+ filesystem.
|
|
* Composed unicode characters are decomposed and case-folding is performed
|
|
* if the appropriate bits are (un)set on the superblock.
|
|
*/
|
|
int hfsplus_hash_dentry(const struct dentry *dentry, struct qstr *str)
|
|
{
|
|
struct super_block *sb = dentry->d_sb;
|
|
const char *astr;
|
|
const u16 *dstr;
|
|
int casefold, decompose, size, len;
|
|
unsigned long hash;
|
|
wchar_t c;
|
|
u16 c2;
|
|
|
|
casefold = test_bit(HFSPLUS_SB_CASEFOLD, &HFSPLUS_SB(sb)->flags);
|
|
decompose = !test_bit(HFSPLUS_SB_NODECOMPOSE, &HFSPLUS_SB(sb)->flags);
|
|
hash = init_name_hash(dentry);
|
|
astr = str->name;
|
|
len = str->len;
|
|
while (len > 0) {
|
|
int uninitialized_var(dsize);
|
|
size = asc2unichar(sb, astr, len, &c);
|
|
astr += size;
|
|
len -= size;
|
|
|
|
if (decompose)
|
|
dstr = decompose_unichar(c, &dsize);
|
|
else
|
|
dstr = NULL;
|
|
if (dstr) {
|
|
do {
|
|
c2 = *dstr++;
|
|
if (casefold)
|
|
c2 = case_fold(c2);
|
|
if (!casefold || c2)
|
|
hash = partial_name_hash(c2, hash);
|
|
} while (--dsize > 0);
|
|
} else {
|
|
c2 = c;
|
|
if (casefold)
|
|
c2 = case_fold(c2);
|
|
if (!casefold || c2)
|
|
hash = partial_name_hash(c2, hash);
|
|
}
|
|
}
|
|
str->hash = end_name_hash(hash);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Compare strings with HFS+ filename ordering.
|
|
* Composed unicode characters are decomposed and case-folding is performed
|
|
* if the appropriate bits are (un)set on the superblock.
|
|
*/
|
|
int hfsplus_compare_dentry(const struct dentry *dentry,
|
|
unsigned int len, const char *str, const struct qstr *name)
|
|
{
|
|
struct super_block *sb = dentry->d_sb;
|
|
int casefold, decompose, size;
|
|
int dsize1, dsize2, len1, len2;
|
|
const u16 *dstr1, *dstr2;
|
|
const char *astr1, *astr2;
|
|
u16 c1, c2;
|
|
wchar_t c;
|
|
|
|
casefold = test_bit(HFSPLUS_SB_CASEFOLD, &HFSPLUS_SB(sb)->flags);
|
|
decompose = !test_bit(HFSPLUS_SB_NODECOMPOSE, &HFSPLUS_SB(sb)->flags);
|
|
astr1 = str;
|
|
len1 = len;
|
|
astr2 = name->name;
|
|
len2 = name->len;
|
|
dsize1 = dsize2 = 0;
|
|
dstr1 = dstr2 = NULL;
|
|
|
|
while (len1 > 0 && len2 > 0) {
|
|
if (!dsize1) {
|
|
size = asc2unichar(sb, astr1, len1, &c);
|
|
astr1 += size;
|
|
len1 -= size;
|
|
|
|
if (decompose)
|
|
dstr1 = decompose_unichar(c, &dsize1);
|
|
if (!decompose || !dstr1) {
|
|
c1 = c;
|
|
dstr1 = &c1;
|
|
dsize1 = 1;
|
|
}
|
|
}
|
|
|
|
if (!dsize2) {
|
|
size = asc2unichar(sb, astr2, len2, &c);
|
|
astr2 += size;
|
|
len2 -= size;
|
|
|
|
if (decompose)
|
|
dstr2 = decompose_unichar(c, &dsize2);
|
|
if (!decompose || !dstr2) {
|
|
c2 = c;
|
|
dstr2 = &c2;
|
|
dsize2 = 1;
|
|
}
|
|
}
|
|
|
|
c1 = *dstr1;
|
|
c2 = *dstr2;
|
|
if (casefold) {
|
|
c1 = case_fold(c1);
|
|
if (!c1) {
|
|
dstr1++;
|
|
dsize1--;
|
|
continue;
|
|
}
|
|
c2 = case_fold(c2);
|
|
if (!c2) {
|
|
dstr2++;
|
|
dsize2--;
|
|
continue;
|
|
}
|
|
}
|
|
if (c1 < c2)
|
|
return -1;
|
|
else if (c1 > c2)
|
|
return 1;
|
|
|
|
dstr1++;
|
|
dsize1--;
|
|
dstr2++;
|
|
dsize2--;
|
|
}
|
|
|
|
if (len1 < len2)
|
|
return -1;
|
|
if (len1 > len2)
|
|
return 1;
|
|
return 0;
|
|
}
|