linux/arch/sh/mm/consistent.c
Magnus Damm f93e97eaea sh: declared coherent memory support V2
This patch adds declared coherent memory support to the sh architecture. All
functions are based on the x86 implementation. Header files are adjusted to
use the new functions instead of the former consistent_alloc() code.

This version includes the few changes what were included in the fix patch
together with modifications based on feedback from Paul.

Signed-off-by: Magnus Damm <damm@igel.co.jp>
Signed-off-by: Paul Mundt <lethal@linux-sh.org>
2008-01-28 13:19:04 +09:00

180 lines
4.4 KiB
C

/*
* arch/sh/mm/consistent.c
*
* Copyright (C) 2004 - 2007 Paul Mundt
*
* Declared coherent memory functions based on arch/x86/kernel/pci-dma_32.c
*
* This file is subject to the terms and conditions of the GNU General Public
* License. See the file "COPYING" in the main directory of this archive
* for more details.
*/
#include <linux/mm.h>
#include <linux/dma-mapping.h>
#include <asm/cacheflush.h>
#include <asm/addrspace.h>
#include <asm/io.h>
struct dma_coherent_mem {
void *virt_base;
u32 device_base;
int size;
int flags;
unsigned long *bitmap;
};
void *dma_alloc_coherent(struct device *dev, size_t size,
dma_addr_t *dma_handle, gfp_t gfp)
{
void *ret;
struct dma_coherent_mem *mem = dev ? dev->dma_mem : NULL;
int order = get_order(size);
if (mem) {
int page = bitmap_find_free_region(mem->bitmap, mem->size,
order);
if (page >= 0) {
*dma_handle = mem->device_base + (page << PAGE_SHIFT);
ret = mem->virt_base + (page << PAGE_SHIFT);
memset(ret, 0, size);
return ret;
}
if (mem->flags & DMA_MEMORY_EXCLUSIVE)
return NULL;
}
ret = (void *)__get_free_pages(gfp, order);
if (ret != NULL) {
memset(ret, 0, size);
/*
* Pages from the page allocator may have data present in
* cache. So flush the cache before using uncached memory.
*/
dma_cache_sync(NULL, ret, size, DMA_BIDIRECTIONAL);
*dma_handle = virt_to_phys(ret);
}
return ret;
}
EXPORT_SYMBOL(dma_alloc_coherent);
void dma_free_coherent(struct device *dev, size_t size,
void *vaddr, dma_addr_t dma_handle)
{
struct dma_coherent_mem *mem = dev ? dev->dma_mem : NULL;
int order = get_order(size);
if (mem && vaddr >= mem->virt_base && vaddr < (mem->virt_base + (mem->size << PAGE_SHIFT))) {
int page = (vaddr - mem->virt_base) >> PAGE_SHIFT;
bitmap_release_region(mem->bitmap, page, order);
} else {
WARN_ON(irqs_disabled()); /* for portability */
BUG_ON(mem && mem->flags & DMA_MEMORY_EXCLUSIVE);
free_pages((unsigned long)vaddr, order);
}
}
EXPORT_SYMBOL(dma_free_coherent);
int dma_declare_coherent_memory(struct device *dev, dma_addr_t bus_addr,
dma_addr_t device_addr, size_t size, int flags)
{
void __iomem *mem_base = NULL;
int pages = size >> PAGE_SHIFT;
int bitmap_size = BITS_TO_LONGS(pages) * sizeof(long);
if ((flags & (DMA_MEMORY_MAP | DMA_MEMORY_IO)) == 0)
goto out;
if (!size)
goto out;
if (dev->dma_mem)
goto out;
/* FIXME: this routine just ignores DMA_MEMORY_INCLUDES_CHILDREN */
mem_base = ioremap_nocache(bus_addr, size);
if (!mem_base)
goto out;
dev->dma_mem = kmalloc(sizeof(struct dma_coherent_mem), GFP_KERNEL);
if (!dev->dma_mem)
goto out;
dev->dma_mem->bitmap = kzalloc(bitmap_size, GFP_KERNEL);
if (!dev->dma_mem->bitmap)
goto free1_out;
dev->dma_mem->virt_base = mem_base;
dev->dma_mem->device_base = device_addr;
dev->dma_mem->size = pages;
dev->dma_mem->flags = flags;
if (flags & DMA_MEMORY_MAP)
return DMA_MEMORY_MAP;
return DMA_MEMORY_IO;
free1_out:
kfree(dev->dma_mem);
out:
if (mem_base)
iounmap(mem_base);
return 0;
}
EXPORT_SYMBOL(dma_declare_coherent_memory);
void dma_release_declared_memory(struct device *dev)
{
struct dma_coherent_mem *mem = dev->dma_mem;
if (!mem)
return;
dev->dma_mem = NULL;
iounmap(mem->virt_base);
kfree(mem->bitmap);
kfree(mem);
}
EXPORT_SYMBOL(dma_release_declared_memory);
void *dma_mark_declared_memory_occupied(struct device *dev,
dma_addr_t device_addr, size_t size)
{
struct dma_coherent_mem *mem = dev->dma_mem;
int pages = (size + (device_addr & ~PAGE_MASK) + PAGE_SIZE - 1) >> PAGE_SHIFT;
int pos, err;
if (!mem)
return ERR_PTR(-EINVAL);
pos = (device_addr - mem->device_base) >> PAGE_SHIFT;
err = bitmap_allocate_region(mem->bitmap, pos, get_order(pages));
if (err != 0)
return ERR_PTR(err);
return mem->virt_base + (pos << PAGE_SHIFT);
}
EXPORT_SYMBOL(dma_mark_declared_memory_occupied);
void dma_cache_sync(struct device *dev, void *vaddr, size_t size,
enum dma_data_direction direction)
{
#ifdef CONFIG_CPU_SH5
void *p1addr = vaddr;
#else
void *p1addr = (void*) P1SEGADDR((unsigned long)vaddr);
#endif
switch (direction) {
case DMA_FROM_DEVICE: /* invalidate only */
__flush_invalidate_region(p1addr, size);
break;
case DMA_TO_DEVICE: /* writeback only */
__flush_wback_region(p1addr, size);
break;
case DMA_BIDIRECTIONAL: /* writeback and invalidate */
__flush_purge_region(p1addr, size);
break;
default:
BUG();
}
}
EXPORT_SYMBOL(dma_cache_sync);