fa62aafea9
Now we pass around use_gbpages and use_pse for calculating page table size, Later we will need to call init_memory_mapping for every ram range one by one, that mean those calculation will be done several times. Those information are the same for all ram range and could be stored in page_size_mask and could be probed it one time only. Move that probing code out of init_memory_mapping into separated function probe_page_size_mask(), and call it before all init_memory_mapping. Suggested-by: Ingo Molnar <mingo@elte.hu> Signed-off-by: Yinghai Lu <yinghai@kernel.org> Link: http://lkml.kernel.org/r/1353123563-3103-2-git-send-email-yinghai@kernel.org Reviewed-by: Pekka Enberg <penberg@kernel.org> Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
422 lines
12 KiB
C
422 lines
12 KiB
C
#include <linux/gfp.h>
|
|
#include <linux/initrd.h>
|
|
#include <linux/ioport.h>
|
|
#include <linux/swap.h>
|
|
#include <linux/memblock.h>
|
|
#include <linux/bootmem.h> /* for max_low_pfn */
|
|
|
|
#include <asm/cacheflush.h>
|
|
#include <asm/e820.h>
|
|
#include <asm/init.h>
|
|
#include <asm/page.h>
|
|
#include <asm/page_types.h>
|
|
#include <asm/sections.h>
|
|
#include <asm/setup.h>
|
|
#include <asm/tlbflush.h>
|
|
#include <asm/tlb.h>
|
|
#include <asm/proto.h>
|
|
#include <asm/dma.h> /* for MAX_DMA_PFN */
|
|
|
|
unsigned long __initdata pgt_buf_start;
|
|
unsigned long __meminitdata pgt_buf_end;
|
|
unsigned long __meminitdata pgt_buf_top;
|
|
|
|
int after_bootmem;
|
|
|
|
int direct_gbpages
|
|
#ifdef CONFIG_DIRECT_GBPAGES
|
|
= 1
|
|
#endif
|
|
;
|
|
|
|
struct map_range {
|
|
unsigned long start;
|
|
unsigned long end;
|
|
unsigned page_size_mask;
|
|
};
|
|
|
|
static int page_size_mask;
|
|
/*
|
|
* First calculate space needed for kernel direct mapping page tables to cover
|
|
* mr[0].start to mr[nr_range - 1].end, while accounting for possible 2M and 1GB
|
|
* pages. Then find enough contiguous space for those page tables.
|
|
*/
|
|
static void __init find_early_table_space(struct map_range *mr, int nr_range)
|
|
{
|
|
int i;
|
|
unsigned long puds = 0, pmds = 0, ptes = 0, tables;
|
|
unsigned long start = 0, good_end;
|
|
phys_addr_t base;
|
|
|
|
for (i = 0; i < nr_range; i++) {
|
|
unsigned long range, extra;
|
|
|
|
range = mr[i].end - mr[i].start;
|
|
puds += (range + PUD_SIZE - 1) >> PUD_SHIFT;
|
|
|
|
if (mr[i].page_size_mask & (1 << PG_LEVEL_1G)) {
|
|
extra = range - ((range >> PUD_SHIFT) << PUD_SHIFT);
|
|
pmds += (extra + PMD_SIZE - 1) >> PMD_SHIFT;
|
|
} else {
|
|
pmds += (range + PMD_SIZE - 1) >> PMD_SHIFT;
|
|
}
|
|
|
|
if (mr[i].page_size_mask & (1 << PG_LEVEL_2M)) {
|
|
extra = range - ((range >> PMD_SHIFT) << PMD_SHIFT);
|
|
#ifdef CONFIG_X86_32
|
|
extra += PMD_SIZE;
|
|
#endif
|
|
ptes += (extra + PAGE_SIZE - 1) >> PAGE_SHIFT;
|
|
} else {
|
|
ptes += (range + PAGE_SIZE - 1) >> PAGE_SHIFT;
|
|
}
|
|
}
|
|
|
|
tables = roundup(puds * sizeof(pud_t), PAGE_SIZE);
|
|
tables += roundup(pmds * sizeof(pmd_t), PAGE_SIZE);
|
|
tables += roundup(ptes * sizeof(pte_t), PAGE_SIZE);
|
|
|
|
#ifdef CONFIG_X86_32
|
|
/* for fixmap */
|
|
tables += roundup(__end_of_fixed_addresses * sizeof(pte_t), PAGE_SIZE);
|
|
#endif
|
|
good_end = max_pfn_mapped << PAGE_SHIFT;
|
|
|
|
base = memblock_find_in_range(start, good_end, tables, PAGE_SIZE);
|
|
if (!base)
|
|
panic("Cannot find space for the kernel page tables");
|
|
|
|
pgt_buf_start = base >> PAGE_SHIFT;
|
|
pgt_buf_end = pgt_buf_start;
|
|
pgt_buf_top = pgt_buf_start + (tables >> PAGE_SHIFT);
|
|
|
|
printk(KERN_DEBUG "kernel direct mapping tables up to %#lx @ [mem %#010lx-%#010lx]\n",
|
|
mr[nr_range - 1].end - 1, pgt_buf_start << PAGE_SHIFT,
|
|
(pgt_buf_top << PAGE_SHIFT) - 1);
|
|
}
|
|
|
|
void probe_page_size_mask(void)
|
|
{
|
|
#if !defined(CONFIG_DEBUG_PAGEALLOC) && !defined(CONFIG_KMEMCHECK)
|
|
/*
|
|
* For CONFIG_DEBUG_PAGEALLOC, identity mapping will use small pages.
|
|
* This will simplify cpa(), which otherwise needs to support splitting
|
|
* large pages into small in interrupt context, etc.
|
|
*/
|
|
if (direct_gbpages)
|
|
page_size_mask |= 1 << PG_LEVEL_1G;
|
|
if (cpu_has_pse)
|
|
page_size_mask |= 1 << PG_LEVEL_2M;
|
|
#endif
|
|
|
|
/* Enable PSE if available */
|
|
if (cpu_has_pse)
|
|
set_in_cr4(X86_CR4_PSE);
|
|
|
|
/* Enable PGE if available */
|
|
if (cpu_has_pge) {
|
|
set_in_cr4(X86_CR4_PGE);
|
|
__supported_pte_mask |= _PAGE_GLOBAL;
|
|
}
|
|
}
|
|
void __init native_pagetable_reserve(u64 start, u64 end)
|
|
{
|
|
memblock_reserve(start, end - start);
|
|
}
|
|
|
|
#ifdef CONFIG_X86_32
|
|
#define NR_RANGE_MR 3
|
|
#else /* CONFIG_X86_64 */
|
|
#define NR_RANGE_MR 5
|
|
#endif
|
|
|
|
static int __meminit save_mr(struct map_range *mr, int nr_range,
|
|
unsigned long start_pfn, unsigned long end_pfn,
|
|
unsigned long page_size_mask)
|
|
{
|
|
if (start_pfn < end_pfn) {
|
|
if (nr_range >= NR_RANGE_MR)
|
|
panic("run out of range for init_memory_mapping\n");
|
|
mr[nr_range].start = start_pfn<<PAGE_SHIFT;
|
|
mr[nr_range].end = end_pfn<<PAGE_SHIFT;
|
|
mr[nr_range].page_size_mask = page_size_mask;
|
|
nr_range++;
|
|
}
|
|
|
|
return nr_range;
|
|
}
|
|
|
|
/*
|
|
* Setup the direct mapping of the physical memory at PAGE_OFFSET.
|
|
* This runs before bootmem is initialized and gets pages directly from
|
|
* the physical memory. To access them they are temporarily mapped.
|
|
*/
|
|
unsigned long __init_refok init_memory_mapping(unsigned long start,
|
|
unsigned long end)
|
|
{
|
|
unsigned long start_pfn, end_pfn;
|
|
unsigned long ret = 0;
|
|
unsigned long pos;
|
|
struct map_range mr[NR_RANGE_MR];
|
|
int nr_range, i;
|
|
|
|
printk(KERN_INFO "init_memory_mapping: [mem %#010lx-%#010lx]\n",
|
|
start, end - 1);
|
|
|
|
memset(mr, 0, sizeof(mr));
|
|
nr_range = 0;
|
|
|
|
/* head if not big page alignment ? */
|
|
start_pfn = start >> PAGE_SHIFT;
|
|
pos = start_pfn << PAGE_SHIFT;
|
|
#ifdef CONFIG_X86_32
|
|
/*
|
|
* Don't use a large page for the first 2/4MB of memory
|
|
* because there are often fixed size MTRRs in there
|
|
* and overlapping MTRRs into large pages can cause
|
|
* slowdowns.
|
|
*/
|
|
if (pos == 0)
|
|
end_pfn = 1<<(PMD_SHIFT - PAGE_SHIFT);
|
|
else
|
|
end_pfn = ((pos + (PMD_SIZE - 1))>>PMD_SHIFT)
|
|
<< (PMD_SHIFT - PAGE_SHIFT);
|
|
#else /* CONFIG_X86_64 */
|
|
end_pfn = ((pos + (PMD_SIZE - 1)) >> PMD_SHIFT)
|
|
<< (PMD_SHIFT - PAGE_SHIFT);
|
|
#endif
|
|
if (end_pfn > (end >> PAGE_SHIFT))
|
|
end_pfn = end >> PAGE_SHIFT;
|
|
if (start_pfn < end_pfn) {
|
|
nr_range = save_mr(mr, nr_range, start_pfn, end_pfn, 0);
|
|
pos = end_pfn << PAGE_SHIFT;
|
|
}
|
|
|
|
/* big page (2M) range */
|
|
start_pfn = ((pos + (PMD_SIZE - 1))>>PMD_SHIFT)
|
|
<< (PMD_SHIFT - PAGE_SHIFT);
|
|
#ifdef CONFIG_X86_32
|
|
end_pfn = (end>>PMD_SHIFT) << (PMD_SHIFT - PAGE_SHIFT);
|
|
#else /* CONFIG_X86_64 */
|
|
end_pfn = ((pos + (PUD_SIZE - 1))>>PUD_SHIFT)
|
|
<< (PUD_SHIFT - PAGE_SHIFT);
|
|
if (end_pfn > ((end>>PMD_SHIFT)<<(PMD_SHIFT - PAGE_SHIFT)))
|
|
end_pfn = ((end>>PMD_SHIFT)<<(PMD_SHIFT - PAGE_SHIFT));
|
|
#endif
|
|
|
|
if (start_pfn < end_pfn) {
|
|
nr_range = save_mr(mr, nr_range, start_pfn, end_pfn,
|
|
page_size_mask & (1<<PG_LEVEL_2M));
|
|
pos = end_pfn << PAGE_SHIFT;
|
|
}
|
|
|
|
#ifdef CONFIG_X86_64
|
|
/* big page (1G) range */
|
|
start_pfn = ((pos + (PUD_SIZE - 1))>>PUD_SHIFT)
|
|
<< (PUD_SHIFT - PAGE_SHIFT);
|
|
end_pfn = (end >> PUD_SHIFT) << (PUD_SHIFT - PAGE_SHIFT);
|
|
if (start_pfn < end_pfn) {
|
|
nr_range = save_mr(mr, nr_range, start_pfn, end_pfn,
|
|
page_size_mask &
|
|
((1<<PG_LEVEL_2M)|(1<<PG_LEVEL_1G)));
|
|
pos = end_pfn << PAGE_SHIFT;
|
|
}
|
|
|
|
/* tail is not big page (1G) alignment */
|
|
start_pfn = ((pos + (PMD_SIZE - 1))>>PMD_SHIFT)
|
|
<< (PMD_SHIFT - PAGE_SHIFT);
|
|
end_pfn = (end >> PMD_SHIFT) << (PMD_SHIFT - PAGE_SHIFT);
|
|
if (start_pfn < end_pfn) {
|
|
nr_range = save_mr(mr, nr_range, start_pfn, end_pfn,
|
|
page_size_mask & (1<<PG_LEVEL_2M));
|
|
pos = end_pfn << PAGE_SHIFT;
|
|
}
|
|
#endif
|
|
|
|
/* tail is not big page (2M) alignment */
|
|
start_pfn = pos>>PAGE_SHIFT;
|
|
end_pfn = end>>PAGE_SHIFT;
|
|
nr_range = save_mr(mr, nr_range, start_pfn, end_pfn, 0);
|
|
|
|
/* try to merge same page size and continuous */
|
|
for (i = 0; nr_range > 1 && i < nr_range - 1; i++) {
|
|
unsigned long old_start;
|
|
if (mr[i].end != mr[i+1].start ||
|
|
mr[i].page_size_mask != mr[i+1].page_size_mask)
|
|
continue;
|
|
/* move it */
|
|
old_start = mr[i].start;
|
|
memmove(&mr[i], &mr[i+1],
|
|
(nr_range - 1 - i) * sizeof(struct map_range));
|
|
mr[i--].start = old_start;
|
|
nr_range--;
|
|
}
|
|
|
|
for (i = 0; i < nr_range; i++)
|
|
printk(KERN_DEBUG " [mem %#010lx-%#010lx] page %s\n",
|
|
mr[i].start, mr[i].end - 1,
|
|
(mr[i].page_size_mask & (1<<PG_LEVEL_1G))?"1G":(
|
|
(mr[i].page_size_mask & (1<<PG_LEVEL_2M))?"2M":"4k"));
|
|
|
|
/*
|
|
* Find space for the kernel direct mapping tables.
|
|
*
|
|
* Later we should allocate these tables in the local node of the
|
|
* memory mapped. Unfortunately this is done currently before the
|
|
* nodes are discovered.
|
|
*/
|
|
if (!after_bootmem)
|
|
find_early_table_space(mr, nr_range);
|
|
|
|
for (i = 0; i < nr_range; i++)
|
|
ret = kernel_physical_mapping_init(mr[i].start, mr[i].end,
|
|
mr[i].page_size_mask);
|
|
|
|
#ifdef CONFIG_X86_32
|
|
early_ioremap_page_table_range_init();
|
|
|
|
load_cr3(swapper_pg_dir);
|
|
#endif
|
|
|
|
__flush_tlb_all();
|
|
|
|
/*
|
|
* Reserve the kernel pagetable pages we used (pgt_buf_start -
|
|
* pgt_buf_end) and free the other ones (pgt_buf_end - pgt_buf_top)
|
|
* so that they can be reused for other purposes.
|
|
*
|
|
* On native it just means calling memblock_reserve, on Xen it also
|
|
* means marking RW the pagetable pages that we allocated before
|
|
* but that haven't been used.
|
|
*
|
|
* In fact on xen we mark RO the whole range pgt_buf_start -
|
|
* pgt_buf_top, because we have to make sure that when
|
|
* init_memory_mapping reaches the pagetable pages area, it maps
|
|
* RO all the pagetable pages, including the ones that are beyond
|
|
* pgt_buf_end at that time.
|
|
*/
|
|
if (!after_bootmem && pgt_buf_end > pgt_buf_start)
|
|
x86_init.mapping.pagetable_reserve(PFN_PHYS(pgt_buf_start),
|
|
PFN_PHYS(pgt_buf_end));
|
|
|
|
if (!after_bootmem)
|
|
early_memtest(start, end);
|
|
|
|
return ret >> PAGE_SHIFT;
|
|
}
|
|
|
|
|
|
/*
|
|
* devmem_is_allowed() checks to see if /dev/mem access to a certain address
|
|
* is valid. The argument is a physical page number.
|
|
*
|
|
*
|
|
* On x86, access has to be given to the first megabyte of ram because that area
|
|
* contains bios code and data regions used by X and dosemu and similar apps.
|
|
* Access has to be given to non-kernel-ram areas as well, these contain the PCI
|
|
* mmio resources as well as potential bios/acpi data regions.
|
|
*/
|
|
int devmem_is_allowed(unsigned long pagenr)
|
|
{
|
|
if (pagenr < 256)
|
|
return 1;
|
|
if (iomem_is_exclusive(pagenr << PAGE_SHIFT))
|
|
return 0;
|
|
if (!page_is_ram(pagenr))
|
|
return 1;
|
|
return 0;
|
|
}
|
|
|
|
void free_init_pages(char *what, unsigned long begin, unsigned long end)
|
|
{
|
|
unsigned long addr;
|
|
unsigned long begin_aligned, end_aligned;
|
|
|
|
/* Make sure boundaries are page aligned */
|
|
begin_aligned = PAGE_ALIGN(begin);
|
|
end_aligned = end & PAGE_MASK;
|
|
|
|
if (WARN_ON(begin_aligned != begin || end_aligned != end)) {
|
|
begin = begin_aligned;
|
|
end = end_aligned;
|
|
}
|
|
|
|
if (begin >= end)
|
|
return;
|
|
|
|
addr = begin;
|
|
|
|
/*
|
|
* If debugging page accesses then do not free this memory but
|
|
* mark them not present - any buggy init-section access will
|
|
* create a kernel page fault:
|
|
*/
|
|
#ifdef CONFIG_DEBUG_PAGEALLOC
|
|
printk(KERN_INFO "debug: unmapping init [mem %#010lx-%#010lx]\n",
|
|
begin, end - 1);
|
|
set_memory_np(begin, (end - begin) >> PAGE_SHIFT);
|
|
#else
|
|
/*
|
|
* We just marked the kernel text read only above, now that
|
|
* we are going to free part of that, we need to make that
|
|
* writeable and non-executable first.
|
|
*/
|
|
set_memory_nx(begin, (end - begin) >> PAGE_SHIFT);
|
|
set_memory_rw(begin, (end - begin) >> PAGE_SHIFT);
|
|
|
|
printk(KERN_INFO "Freeing %s: %luk freed\n", what, (end - begin) >> 10);
|
|
|
|
for (; addr < end; addr += PAGE_SIZE) {
|
|
ClearPageReserved(virt_to_page(addr));
|
|
init_page_count(virt_to_page(addr));
|
|
memset((void *)addr, POISON_FREE_INITMEM, PAGE_SIZE);
|
|
free_page(addr);
|
|
totalram_pages++;
|
|
}
|
|
#endif
|
|
}
|
|
|
|
void free_initmem(void)
|
|
{
|
|
free_init_pages("unused kernel memory",
|
|
(unsigned long)(&__init_begin),
|
|
(unsigned long)(&__init_end));
|
|
}
|
|
|
|
#ifdef CONFIG_BLK_DEV_INITRD
|
|
void __init free_initrd_mem(unsigned long start, unsigned long end)
|
|
{
|
|
/*
|
|
* end could be not aligned, and We can not align that,
|
|
* decompresser could be confused by aligned initrd_end
|
|
* We already reserve the end partial page before in
|
|
* - i386_start_kernel()
|
|
* - x86_64_start_kernel()
|
|
* - relocate_initrd()
|
|
* So here We can do PAGE_ALIGN() safely to get partial page to be freed
|
|
*/
|
|
free_init_pages("initrd memory", start, PAGE_ALIGN(end));
|
|
}
|
|
#endif
|
|
|
|
void __init zone_sizes_init(void)
|
|
{
|
|
unsigned long max_zone_pfns[MAX_NR_ZONES];
|
|
|
|
memset(max_zone_pfns, 0, sizeof(max_zone_pfns));
|
|
|
|
#ifdef CONFIG_ZONE_DMA
|
|
max_zone_pfns[ZONE_DMA] = MAX_DMA_PFN;
|
|
#endif
|
|
#ifdef CONFIG_ZONE_DMA32
|
|
max_zone_pfns[ZONE_DMA32] = MAX_DMA32_PFN;
|
|
#endif
|
|
max_zone_pfns[ZONE_NORMAL] = max_low_pfn;
|
|
#ifdef CONFIG_HIGHMEM
|
|
max_zone_pfns[ZONE_HIGHMEM] = max_pfn;
|
|
#endif
|
|
|
|
free_area_init_nodes(max_zone_pfns);
|
|
}
|
|
|