spapr_ovec: initial implementation of option vector helpers
PAPR guests advertise their capabilities to the platform by passing
an ibm,architecture-vec structure via an
ibm,client-architecture-support hcall as described by LoPAPR v11,
B.6.2.3. during early boot.
Using this information, the platform enables the capabilities it
supports, then encodes a subset of those enabled capabilities (the
5th option vector of the ibm,architecture-vec structure passed to
ibm,client-architecture-support) into the guest device tree via
"/chosen/ibm,architecture-vec-5".
The logical format of these these option vectors is a bit-vector,
where individual bits are addressed/documented based on the byte-wise
offset from the beginning of the bit-vector, followed by the bit-wise
index starting from the byte-wise offset. Thus the bits of each of
these bytes are stored in reverse order. Additionally, the first
byte of each option vector is encodes the length of the option vector,
so byte offsets begin at 1, and bit offset at 0.
This is not very intuitive for the purposes of mapping these bits to
a particular documented capability, so this patch introduces a set
of abstractions that encapsulate the work of parsing/encoding these
options vectors and testing for individual capabilities.
Cc: Bharata B Rao <bharata@linux.vnet.ibm.com>
Signed-off-by: Michael Roth <mdroth@linux.vnet.ibm.com>
[dwg: Tweaked double-include protection to not trigger a checkpatch
false positive]
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
2016-10-25 06:47:27 +02:00
|
|
|
/*
|
|
|
|
* QEMU SPAPR Option/Architecture Vector Definitions
|
|
|
|
*
|
|
|
|
* Each architecture option is organized/documented by the following
|
|
|
|
* in LoPAPR 1.1, Table 244:
|
|
|
|
*
|
|
|
|
* <vector number>: the bit-vector in which the option is located
|
|
|
|
* <vector byte>: the byte offset of the vector entry
|
|
|
|
* <vector bit>: the bit offset within the vector entry
|
|
|
|
*
|
|
|
|
* where each vector entry can be one or more bytes.
|
|
|
|
*
|
|
|
|
* Firmware expects a somewhat literal encoding of this bit-vector
|
|
|
|
* structure, where each entry is stored in little-endian so that the
|
|
|
|
* byte ordering reflects that of the documentation, but where each bit
|
|
|
|
* offset is from "left-to-right" in the traditional representation of
|
|
|
|
* a byte value where the MSB is the left-most bit. Thus, each
|
|
|
|
* individual byte encodes the option bits in reverse order of the
|
|
|
|
* documented bit.
|
|
|
|
*
|
|
|
|
* These definitions/helpers attempt to abstract away this internal
|
|
|
|
* representation so that we can define/set/test for individual option
|
|
|
|
* bits using only the documented values. This is done mainly by relying
|
|
|
|
* on a bitmap to approximate the documented "bit-vector" structure and
|
|
|
|
* handling conversations to-from the internal representation under the
|
|
|
|
* covers.
|
|
|
|
*
|
|
|
|
* Copyright IBM Corp. 2016
|
|
|
|
*
|
|
|
|
* Authors:
|
|
|
|
* Michael Roth <mdroth@linux.vnet.ibm.com>
|
|
|
|
*
|
|
|
|
* This work is licensed under the terms of the GNU GPL, version 2 or later.
|
|
|
|
* See the COPYING file in the top-level directory.
|
|
|
|
*/
|
2019-03-15 15:51:21 +01:00
|
|
|
|
|
|
|
#ifndef SPAPR_OVEC_H
|
|
|
|
#define SPAPR_OVEC_H
|
spapr_ovec: initial implementation of option vector helpers
PAPR guests advertise their capabilities to the platform by passing
an ibm,architecture-vec structure via an
ibm,client-architecture-support hcall as described by LoPAPR v11,
B.6.2.3. during early boot.
Using this information, the platform enables the capabilities it
supports, then encodes a subset of those enabled capabilities (the
5th option vector of the ibm,architecture-vec structure passed to
ibm,client-architecture-support) into the guest device tree via
"/chosen/ibm,architecture-vec-5".
The logical format of these these option vectors is a bit-vector,
where individual bits are addressed/documented based on the byte-wise
offset from the beginning of the bit-vector, followed by the bit-wise
index starting from the byte-wise offset. Thus the bits of each of
these bytes are stored in reverse order. Additionally, the first
byte of each option vector is encodes the length of the option vector,
so byte offsets begin at 1, and bit offset at 0.
This is not very intuitive for the purposes of mapping these bits to
a particular documented capability, so this patch introduces a set
of abstractions that encapsulate the work of parsing/encoding these
options vectors and testing for individual capabilities.
Cc: Bharata B Rao <bharata@linux.vnet.ibm.com>
Signed-off-by: Michael Roth <mdroth@linux.vnet.ibm.com>
[dwg: Tweaked double-include protection to not trigger a checkpatch
false positive]
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
2016-10-25 06:47:27 +02:00
|
|
|
|
|
|
|
#include "cpu.h"
|
|
|
|
|
spapr: Use CamelCase properly
The qemu coding standard is to use CamelCase for type and structure names,
and the pseries code follows that... sort of. There are quite a lot of
places where we bend the rules in order to preserve the capitalization of
internal acronyms like "PHB", "TCE", "DIMM" and most commonly "sPAPR".
That was a bad idea - it frequently leads to names ending up with hard to
read clusters of capital letters, and means they don't catch the eye as
type identifiers, which is kind of the point of the CamelCase convention in
the first place.
In short, keeping type identifiers look like CamelCase is more important
than preserving standard capitalization of internal "words". So, this
patch renames a heap of spapr internal type names to a more standard
CamelCase.
In addition to case changes, we also make some other identifier renames:
VIOsPAPR* -> SpaprVio*
The reverse word ordering was only ever used to mitigate the capital
cluster, so revert to the natural ordering.
VIOsPAPRVTYDevice -> SpaprVioVty
VIOsPAPRVLANDevice -> SpaprVioVlan
Brevity, since the "Device" didn't add useful information
sPAPRDRConnector -> SpaprDrc
sPAPRDRConnectorClass -> SpaprDrcClass
Brevity, and makes it clearer this is the same thing as a "DRC"
mentioned in many other places in the code
This is 100% a mechanical search-and-replace patch. It will, however,
conflict with essentially any and all outstanding patches touching the
spapr code.
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
2019-03-06 05:35:37 +01:00
|
|
|
typedef struct SpaprOptionVector SpaprOptionVector;
|
spapr_ovec: initial implementation of option vector helpers
PAPR guests advertise their capabilities to the platform by passing
an ibm,architecture-vec structure via an
ibm,client-architecture-support hcall as described by LoPAPR v11,
B.6.2.3. during early boot.
Using this information, the platform enables the capabilities it
supports, then encodes a subset of those enabled capabilities (the
5th option vector of the ibm,architecture-vec structure passed to
ibm,client-architecture-support) into the guest device tree via
"/chosen/ibm,architecture-vec-5".
The logical format of these these option vectors is a bit-vector,
where individual bits are addressed/documented based on the byte-wise
offset from the beginning of the bit-vector, followed by the bit-wise
index starting from the byte-wise offset. Thus the bits of each of
these bytes are stored in reverse order. Additionally, the first
byte of each option vector is encodes the length of the option vector,
so byte offsets begin at 1, and bit offset at 0.
This is not very intuitive for the purposes of mapping these bits to
a particular documented capability, so this patch introduces a set
of abstractions that encapsulate the work of parsing/encoding these
options vectors and testing for individual capabilities.
Cc: Bharata B Rao <bharata@linux.vnet.ibm.com>
Signed-off-by: Michael Roth <mdroth@linux.vnet.ibm.com>
[dwg: Tweaked double-include protection to not trigger a checkpatch
false positive]
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
2016-10-25 06:47:27 +02:00
|
|
|
|
|
|
|
#define OV_BIT(byte, bit) ((byte - 1) * BITS_PER_BYTE + bit)
|
|
|
|
|
2017-03-20 00:46:49 +01:00
|
|
|
/* option vector 1 */
|
|
|
|
#define OV1_PPC_3_00 OV_BIT(3, 0) /* guest supports PowerPC 3.00? */
|
|
|
|
|
2016-10-25 06:47:28 +02:00
|
|
|
/* option vector 5 */
|
|
|
|
#define OV5_DRCONF_MEMORY OV_BIT(2, 2)
|
2016-10-25 06:47:30 +02:00
|
|
|
#define OV5_FORM1_AFFINITY OV_BIT(5, 0)
|
spapr_numa.c: FORM2 NUMA affinity support
The main feature of FORM2 affinity support is the separation of NUMA
distances from ibm,associativity information. This allows for a more
flexible and straightforward NUMA distance assignment without relying on
complex associations between several levels of NUMA via
ibm,associativity matches. Another feature is its extensibility. This base
support contains the facilities for NUMA distance assignment, but in the
future more facilities will be added for latency, performance, bandwidth
and so on.
This patch implements the base FORM2 affinity support as follows:
- the use of FORM2 associativity is indicated by using bit 2 of byte 5
of ibm,architecture-vec-5. A FORM2 aware guest can choose to use FORM1
or FORM2 affinity. Setting both forms will default to FORM2. We're not
advertising FORM2 for pseries-6.1 and older machine versions to prevent
guest visible changes in those;
- ibm,associativity-reference-points has a new semantic. Instead of
being used to calculate distances via NUMA levels, it's now used to
indicate the primary domain index in the ibm,associativity domain of
each resource. In our case it's set to {0x4}, matching the position
where we already place logical_domain_id;
- two new RTAS DT artifacts are introduced: ibm,numa-lookup-index-table
and ibm,numa-distance-table. The index table is used to list all the
NUMA logical domains of the platform, in ascending order, and allows for
spartial NUMA configurations (although QEMU ATM doesn't support that).
ibm,numa-distance-table is an array that contains all the distances from
the first NUMA node to all other nodes, then the second NUMA node
distances to all other nodes and so on;
- get_max_dist_ref_points(), get_numa_assoc_size() and get_associativity()
now checks for OV5_FORM2_AFFINITY and returns FORM2 values if the guest
selected FORM2 affinity during CAS.
Reviewed-by: Greg Kurz <groug@kaod.org>
Signed-off-by: Daniel Henrique Barboza <danielhb413@gmail.com>
Message-Id: <20210920174947.556324-7-danielhb413@gmail.com>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
2021-09-20 19:49:46 +02:00
|
|
|
#define OV5_FORM2_AFFINITY OV_BIT(5, 2)
|
2016-10-27 04:20:26 +02:00
|
|
|
#define OV5_HP_EVT OV_BIT(6, 5)
|
2017-07-12 09:56:06 +02:00
|
|
|
#define OV5_HPT_RESIZE OV_BIT(6, 7)
|
2018-04-19 08:47:35 +02:00
|
|
|
#define OV5_DRMEM_V2 OV_BIT(22, 0)
|
2017-09-08 16:33:42 +02:00
|
|
|
#define OV5_XIVE_BOTH OV_BIT(23, 0)
|
|
|
|
#define OV5_XIVE_EXPLOIT OV_BIT(23, 1) /* 1=exploitation 0=legacy */
|
2016-10-25 06:47:28 +02:00
|
|
|
|
2017-03-23 04:46:00 +01:00
|
|
|
/* ISA 3.00 MMU features: */
|
|
|
|
#define OV5_MMU_BOTH OV_BIT(24, 0) /* Radix and hash */
|
|
|
|
#define OV5_MMU_RADIX_300 OV_BIT(24, 1) /* 1=Radix only, 0=Hash only */
|
|
|
|
#define OV5_MMU_RADIX_GTSE OV_BIT(26, 1) /* Radix GTSE */
|
|
|
|
|
spapr_ovec: initial implementation of option vector helpers
PAPR guests advertise their capabilities to the platform by passing
an ibm,architecture-vec structure via an
ibm,client-architecture-support hcall as described by LoPAPR v11,
B.6.2.3. during early boot.
Using this information, the platform enables the capabilities it
supports, then encodes a subset of those enabled capabilities (the
5th option vector of the ibm,architecture-vec structure passed to
ibm,client-architecture-support) into the guest device tree via
"/chosen/ibm,architecture-vec-5".
The logical format of these these option vectors is a bit-vector,
where individual bits are addressed/documented based on the byte-wise
offset from the beginning of the bit-vector, followed by the bit-wise
index starting from the byte-wise offset. Thus the bits of each of
these bytes are stored in reverse order. Additionally, the first
byte of each option vector is encodes the length of the option vector,
so byte offsets begin at 1, and bit offset at 0.
This is not very intuitive for the purposes of mapping these bits to
a particular documented capability, so this patch introduces a set
of abstractions that encapsulate the work of parsing/encoding these
options vectors and testing for individual capabilities.
Cc: Bharata B Rao <bharata@linux.vnet.ibm.com>
Signed-off-by: Michael Roth <mdroth@linux.vnet.ibm.com>
[dwg: Tweaked double-include protection to not trigger a checkpatch
false positive]
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
2016-10-25 06:47:27 +02:00
|
|
|
/* interfaces */
|
spapr: Use CamelCase properly
The qemu coding standard is to use CamelCase for type and structure names,
and the pseries code follows that... sort of. There are quite a lot of
places where we bend the rules in order to preserve the capitalization of
internal acronyms like "PHB", "TCE", "DIMM" and most commonly "sPAPR".
That was a bad idea - it frequently leads to names ending up with hard to
read clusters of capital letters, and means they don't catch the eye as
type identifiers, which is kind of the point of the CamelCase convention in
the first place.
In short, keeping type identifiers look like CamelCase is more important
than preserving standard capitalization of internal "words". So, this
patch renames a heap of spapr internal type names to a more standard
CamelCase.
In addition to case changes, we also make some other identifier renames:
VIOsPAPR* -> SpaprVio*
The reverse word ordering was only ever used to mitigate the capital
cluster, so revert to the natural ordering.
VIOsPAPRVTYDevice -> SpaprVioVty
VIOsPAPRVLANDevice -> SpaprVioVlan
Brevity, since the "Device" didn't add useful information
sPAPRDRConnector -> SpaprDrc
sPAPRDRConnectorClass -> SpaprDrcClass
Brevity, and makes it clearer this is the same thing as a "DRC"
mentioned in many other places in the code
This is 100% a mechanical search-and-replace patch. It will, however,
conflict with essentially any and all outstanding patches touching the
spapr code.
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
2019-03-06 05:35:37 +01:00
|
|
|
SpaprOptionVector *spapr_ovec_new(void);
|
|
|
|
SpaprOptionVector *spapr_ovec_clone(SpaprOptionVector *ov_orig);
|
|
|
|
void spapr_ovec_intersect(SpaprOptionVector *ov,
|
|
|
|
SpaprOptionVector *ov1,
|
|
|
|
SpaprOptionVector *ov2);
|
2019-11-29 06:23:21 +01:00
|
|
|
bool spapr_ovec_subset(SpaprOptionVector *ov1, SpaprOptionVector *ov2);
|
spapr: Use CamelCase properly
The qemu coding standard is to use CamelCase for type and structure names,
and the pseries code follows that... sort of. There are quite a lot of
places where we bend the rules in order to preserve the capitalization of
internal acronyms like "PHB", "TCE", "DIMM" and most commonly "sPAPR".
That was a bad idea - it frequently leads to names ending up with hard to
read clusters of capital letters, and means they don't catch the eye as
type identifiers, which is kind of the point of the CamelCase convention in
the first place.
In short, keeping type identifiers look like CamelCase is more important
than preserving standard capitalization of internal "words". So, this
patch renames a heap of spapr internal type names to a more standard
CamelCase.
In addition to case changes, we also make some other identifier renames:
VIOsPAPR* -> SpaprVio*
The reverse word ordering was only ever used to mitigate the capital
cluster, so revert to the natural ordering.
VIOsPAPRVTYDevice -> SpaprVioVty
VIOsPAPRVLANDevice -> SpaprVioVlan
Brevity, since the "Device" didn't add useful information
sPAPRDRConnector -> SpaprDrc
sPAPRDRConnectorClass -> SpaprDrcClass
Brevity, and makes it clearer this is the same thing as a "DRC"
mentioned in many other places in the code
This is 100% a mechanical search-and-replace patch. It will, however,
conflict with essentially any and all outstanding patches touching the
spapr code.
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
2019-03-06 05:35:37 +01:00
|
|
|
void spapr_ovec_cleanup(SpaprOptionVector *ov);
|
|
|
|
void spapr_ovec_set(SpaprOptionVector *ov, long bitnr);
|
|
|
|
void spapr_ovec_clear(SpaprOptionVector *ov, long bitnr);
|
|
|
|
bool spapr_ovec_test(SpaprOptionVector *ov, long bitnr);
|
2021-01-08 18:31:27 +01:00
|
|
|
bool spapr_ovec_empty(SpaprOptionVector *ov);
|
spapr: Use CamelCase properly
The qemu coding standard is to use CamelCase for type and structure names,
and the pseries code follows that... sort of. There are quite a lot of
places where we bend the rules in order to preserve the capitalization of
internal acronyms like "PHB", "TCE", "DIMM" and most commonly "sPAPR".
That was a bad idea - it frequently leads to names ending up with hard to
read clusters of capital letters, and means they don't catch the eye as
type identifiers, which is kind of the point of the CamelCase convention in
the first place.
In short, keeping type identifiers look like CamelCase is more important
than preserving standard capitalization of internal "words". So, this
patch renames a heap of spapr internal type names to a more standard
CamelCase.
In addition to case changes, we also make some other identifier renames:
VIOsPAPR* -> SpaprVio*
The reverse word ordering was only ever used to mitigate the capital
cluster, so revert to the natural ordering.
VIOsPAPRVTYDevice -> SpaprVioVty
VIOsPAPRVLANDevice -> SpaprVioVlan
Brevity, since the "Device" didn't add useful information
sPAPRDRConnector -> SpaprDrc
sPAPRDRConnectorClass -> SpaprDrcClass
Brevity, and makes it clearer this is the same thing as a "DRC"
mentioned in many other places in the code
This is 100% a mechanical search-and-replace patch. It will, however,
conflict with essentially any and all outstanding patches touching the
spapr code.
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
2019-03-06 05:35:37 +01:00
|
|
|
SpaprOptionVector *spapr_ovec_parse_vector(target_ulong table_addr, int vector);
|
2020-01-22 06:15:43 +01:00
|
|
|
int spapr_dt_ovec(void *fdt, int fdt_offset,
|
|
|
|
SpaprOptionVector *ov, const char *name);
|
spapr_ovec: initial implementation of option vector helpers
PAPR guests advertise their capabilities to the platform by passing
an ibm,architecture-vec structure via an
ibm,client-architecture-support hcall as described by LoPAPR v11,
B.6.2.3. during early boot.
Using this information, the platform enables the capabilities it
supports, then encodes a subset of those enabled capabilities (the
5th option vector of the ibm,architecture-vec structure passed to
ibm,client-architecture-support) into the guest device tree via
"/chosen/ibm,architecture-vec-5".
The logical format of these these option vectors is a bit-vector,
where individual bits are addressed/documented based on the byte-wise
offset from the beginning of the bit-vector, followed by the bit-wise
index starting from the byte-wise offset. Thus the bits of each of
these bytes are stored in reverse order. Additionally, the first
byte of each option vector is encodes the length of the option vector,
so byte offsets begin at 1, and bit offset at 0.
This is not very intuitive for the purposes of mapping these bits to
a particular documented capability, so this patch introduces a set
of abstractions that encapsulate the work of parsing/encoding these
options vectors and testing for individual capabilities.
Cc: Bharata B Rao <bharata@linux.vnet.ibm.com>
Signed-off-by: Michael Roth <mdroth@linux.vnet.ibm.com>
[dwg: Tweaked double-include protection to not trigger a checkpatch
false positive]
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
2016-10-25 06:47:27 +02:00
|
|
|
|
2016-11-18 02:40:27 +01:00
|
|
|
/* migration */
|
|
|
|
extern const VMStateDescription vmstate_spapr_ovec;
|
|
|
|
|
2019-03-15 15:51:21 +01:00
|
|
|
#endif /* SPAPR_OVEC_H */
|