qemu-e2k/hw/arm/iotkit.c

690 lines
26 KiB
C
Raw Normal View History

/*
* Arm IoT Kit
*
* Copyright (c) 2018 Linaro Limited
* Written by Peter Maydell
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 or
* (at your option) any later version.
*/
#include "qemu/osdep.h"
#include "qemu/log.h"
#include "qapi/error.h"
#include "trace.h"
#include "hw/sysbus.h"
#include "hw/registerfields.h"
#include "hw/arm/iotkit.h"
#include "hw/misc/unimp.h"
#include "hw/arm/arm.h"
/* Create an alias region of @size bytes starting at @base
* which mirrors the memory starting at @orig.
*/
static void make_alias(IoTKit *s, MemoryRegion *mr, const char *name,
hwaddr base, hwaddr size, hwaddr orig)
{
memory_region_init_alias(mr, NULL, name, &s->container, orig, size);
/* The alias is even lower priority than unimplemented_device regions */
memory_region_add_subregion_overlap(&s->container, base, mr, -1500);
}
static void init_sysbus_child(Object *parent, const char *childname,
void *child, size_t childsize,
const char *childtype)
{
object_initialize(child, childsize, childtype);
object_property_add_child(parent, childname, OBJECT(child), &error_abort);
qdev_set_parent_bus(DEVICE(child), sysbus_get_default());
}
static void irq_status_forwarder(void *opaque, int n, int level)
{
qemu_irq destirq = opaque;
qemu_set_irq(destirq, level);
}
static void nsccfg_handler(void *opaque, int n, int level)
{
IoTKit *s = IOTKIT(opaque);
s->nsccfg = level;
}
static void iotkit_forward_ppc(IoTKit *s, const char *ppcname, int ppcnum)
{
/* Each of the 4 AHB and 4 APB PPCs that might be present in a
* system using the IoTKit has a collection of control lines which
* are provided by the security controller and which we want to
* expose as control lines on the IoTKit device itself, so the
* code using the IoTKit can wire them up to the PPCs.
*/
SplitIRQ *splitter = &s->ppc_irq_splitter[ppcnum];
DeviceState *iotkitdev = DEVICE(s);
DeviceState *dev_secctl = DEVICE(&s->secctl);
DeviceState *dev_splitter = DEVICE(splitter);
char *name;
name = g_strdup_printf("%s_nonsec", ppcname);
qdev_pass_gpios(dev_secctl, iotkitdev, name);
g_free(name);
name = g_strdup_printf("%s_ap", ppcname);
qdev_pass_gpios(dev_secctl, iotkitdev, name);
g_free(name);
name = g_strdup_printf("%s_irq_enable", ppcname);
qdev_pass_gpios(dev_secctl, iotkitdev, name);
g_free(name);
name = g_strdup_printf("%s_irq_clear", ppcname);
qdev_pass_gpios(dev_secctl, iotkitdev, name);
g_free(name);
/* irq_status is a little more tricky, because we need to
* split it so we can send it both to the security controller
* and to our OR gate for the NVIC interrupt line.
* Connect up the splitter's outputs, and create a GPIO input
* which will pass the line state to the input splitter.
*/
name = g_strdup_printf("%s_irq_status", ppcname);
qdev_connect_gpio_out(dev_splitter, 0,
qdev_get_gpio_in_named(dev_secctl,
name, 0));
qdev_connect_gpio_out(dev_splitter, 1,
qdev_get_gpio_in(DEVICE(&s->ppc_irq_orgate), ppcnum));
s->irq_status_in[ppcnum] = qdev_get_gpio_in(dev_splitter, 0);
qdev_init_gpio_in_named_with_opaque(iotkitdev, irq_status_forwarder,
s->irq_status_in[ppcnum], name, 1);
g_free(name);
}
static void iotkit_forward_sec_resp_cfg(IoTKit *s)
{
/* Forward the 3rd output from the splitter device as a
* named GPIO output of the iotkit object.
*/
DeviceState *dev = DEVICE(s);
DeviceState *dev_splitter = DEVICE(&s->sec_resp_splitter);
qdev_init_gpio_out_named(dev, &s->sec_resp_cfg, "sec_resp_cfg", 1);
s->sec_resp_cfg_in = qemu_allocate_irq(irq_status_forwarder,
s->sec_resp_cfg, 1);
qdev_connect_gpio_out(dev_splitter, 2, s->sec_resp_cfg_in);
}
static void iotkit_init(Object *obj)
{
IoTKit *s = IOTKIT(obj);
int i;
memory_region_init(&s->container, obj, "iotkit-container", UINT64_MAX);
init_sysbus_child(obj, "armv7m", &s->armv7m, sizeof(s->armv7m),
TYPE_ARMV7M);
qdev_prop_set_string(DEVICE(&s->armv7m), "cpu-type",
ARM_CPU_TYPE_NAME("cortex-m33"));
init_sysbus_child(obj, "secctl", &s->secctl, sizeof(s->secctl),
TYPE_IOTKIT_SECCTL);
init_sysbus_child(obj, "apb-ppc0", &s->apb_ppc0, sizeof(s->apb_ppc0),
TYPE_TZ_PPC);
init_sysbus_child(obj, "apb-ppc1", &s->apb_ppc1, sizeof(s->apb_ppc1),
TYPE_TZ_PPC);
init_sysbus_child(obj, "mpc", &s->mpc, sizeof(s->mpc), TYPE_TZ_MPC);
object_initialize(&s->mpc_irq_orgate, sizeof(s->mpc_irq_orgate),
TYPE_OR_IRQ);
object_property_add_child(obj, "mpc-irq-orgate",
OBJECT(&s->mpc_irq_orgate), &error_abort);
for (i = 0; i < ARRAY_SIZE(s->mpc_irq_splitter); i++) {
char *name = g_strdup_printf("mpc-irq-splitter-%d", i);
SplitIRQ *splitter = &s->mpc_irq_splitter[i];
object_initialize(splitter, sizeof(*splitter), TYPE_SPLIT_IRQ);
object_property_add_child(obj, name, OBJECT(splitter), &error_abort);
g_free(name);
}
init_sysbus_child(obj, "timer0", &s->timer0, sizeof(s->timer0),
TYPE_CMSDK_APB_TIMER);
init_sysbus_child(obj, "timer1", &s->timer1, sizeof(s->timer1),
TYPE_CMSDK_APB_TIMER);
init_sysbus_child(obj, "dualtimer", &s->dualtimer, sizeof(s->dualtimer),
TYPE_UNIMPLEMENTED_DEVICE);
object_initialize(&s->ppc_irq_orgate, sizeof(s->ppc_irq_orgate),
TYPE_OR_IRQ);
object_property_add_child(obj, "ppc-irq-orgate",
OBJECT(&s->ppc_irq_orgate), &error_abort);
object_initialize(&s->sec_resp_splitter, sizeof(s->sec_resp_splitter),
TYPE_SPLIT_IRQ);
object_property_add_child(obj, "sec-resp-splitter",
OBJECT(&s->sec_resp_splitter), &error_abort);
for (i = 0; i < ARRAY_SIZE(s->ppc_irq_splitter); i++) {
char *name = g_strdup_printf("ppc-irq-splitter-%d", i);
SplitIRQ *splitter = &s->ppc_irq_splitter[i];
object_initialize(splitter, sizeof(*splitter), TYPE_SPLIT_IRQ);
object_property_add_child(obj, name, OBJECT(splitter), &error_abort);
}
init_sysbus_child(obj, "s32ktimer", &s->s32ktimer, sizeof(s->s32ktimer),
TYPE_UNIMPLEMENTED_DEVICE);
}
static void iotkit_exp_irq(void *opaque, int n, int level)
{
IoTKit *s = IOTKIT(opaque);
qemu_set_irq(s->exp_irqs[n], level);
}
static void iotkit_mpcexp_status(void *opaque, int n, int level)
{
IoTKit *s = IOTKIT(opaque);
qemu_set_irq(s->mpcexp_status_in[n], level);
}
static void iotkit_realize(DeviceState *dev, Error **errp)
{
IoTKit *s = IOTKIT(dev);
int i;
MemoryRegion *mr;
Error *err = NULL;
SysBusDevice *sbd_apb_ppc0;
SysBusDevice *sbd_secctl;
DeviceState *dev_apb_ppc0;
DeviceState *dev_apb_ppc1;
DeviceState *dev_secctl;
DeviceState *dev_splitter;
if (!s->board_memory) {
error_setg(errp, "memory property was not set");
return;
}
if (!s->mainclk_frq) {
error_setg(errp, "MAINCLK property was not set");
return;
}
/* Handling of which devices should be available only to secure
* code is usually done differently for M profile than for A profile.
* Instead of putting some devices only into the secure address space,
* devices exist in both address spaces but with hard-wired security
* permissions that will cause the CPU to fault for non-secure accesses.
*
* The IoTKit has an IDAU (Implementation Defined Access Unit),
* which specifies hard-wired security permissions for different
* areas of the physical address space. For the IoTKit IDAU, the
* top 4 bits of the physical address are the IDAU region ID, and
* if bit 28 (ie the lowest bit of the ID) is 0 then this is an NS
* region, otherwise it is an S region.
*
* The various devices and RAMs are generally all mapped twice,
* once into a region that the IDAU defines as secure and once
* into a non-secure region. They sit behind either a Memory
* Protection Controller (for RAM) or a Peripheral Protection
* Controller (for devices), which allow a more fine grained
* configuration of whether non-secure accesses are permitted.
*
* (The other place that guest software can configure security
* permissions is in the architected SAU (Security Attribution
* Unit), which is entirely inside the CPU. The IDAU can upgrade
* the security attributes for a region to more restrictive than
* the SAU specifies, but cannot downgrade them.)
*
* 0x10000000..0x1fffffff alias of 0x00000000..0x0fffffff
* 0x20000000..0x2007ffff 32KB FPGA block RAM
* 0x30000000..0x3fffffff alias of 0x20000000..0x2fffffff
* 0x40000000..0x4000ffff base peripheral region 1
* 0x40010000..0x4001ffff CPU peripherals (none for IoTKit)
* 0x40020000..0x4002ffff system control element peripherals
* 0x40080000..0x400fffff base peripheral region 2
* 0x50000000..0x5fffffff alias of 0x40000000..0x4fffffff
*/
memory_region_add_subregion_overlap(&s->container, 0, s->board_memory, -1);
qdev_prop_set_uint32(DEVICE(&s->armv7m), "num-irq", s->exp_numirq + 32);
/* In real hardware the initial Secure VTOR is set from the INITSVTOR0
* register in the IoT Kit System Control Register block, and the
* initial value of that is in turn specifiable by the FPGA that
* instantiates the IoT Kit. In QEMU we don't implement this wrinkle,
* and simply set the CPU's init-svtor to the IoT Kit default value.
*/
qdev_prop_set_uint32(DEVICE(&s->armv7m), "init-svtor", 0x10000000);
object_property_set_link(OBJECT(&s->armv7m), OBJECT(&s->container),
"memory", &err);
if (err) {
error_propagate(errp, err);
return;
}
object_property_set_link(OBJECT(&s->armv7m), OBJECT(s), "idau", &err);
if (err) {
error_propagate(errp, err);
return;
}
object_property_set_bool(OBJECT(&s->armv7m), true, "realized", &err);
if (err) {
error_propagate(errp, err);
return;
}
/* Connect our EXP_IRQ GPIOs to the NVIC's lines 32 and up. */
s->exp_irqs = g_new(qemu_irq, s->exp_numirq);
for (i = 0; i < s->exp_numirq; i++) {
s->exp_irqs[i] = qdev_get_gpio_in(DEVICE(&s->armv7m), i + 32);
}
qdev_init_gpio_in_named(dev, iotkit_exp_irq, "EXP_IRQ", s->exp_numirq);
/* Set up the big aliases first */
make_alias(s, &s->alias1, "alias 1", 0x10000000, 0x10000000, 0x00000000);
make_alias(s, &s->alias2, "alias 2", 0x30000000, 0x10000000, 0x20000000);
/* The 0x50000000..0x5fffffff region is not a pure alias: it has
* a few extra devices that only appear there (generally the
* control interfaces for the protection controllers).
* We implement this by mapping those devices over the top of this
* alias MR at a higher priority.
*/
make_alias(s, &s->alias3, "alias 3", 0x50000000, 0x10000000, 0x40000000);
/* Security controller */
object_property_set_bool(OBJECT(&s->secctl), true, "realized", &err);
if (err) {
error_propagate(errp, err);
return;
}
sbd_secctl = SYS_BUS_DEVICE(&s->secctl);
dev_secctl = DEVICE(&s->secctl);
sysbus_mmio_map(sbd_secctl, 0, 0x50080000);
sysbus_mmio_map(sbd_secctl, 1, 0x40080000);
s->nsc_cfg_in = qemu_allocate_irq(nsccfg_handler, s, 1);
qdev_connect_gpio_out_named(dev_secctl, "nsc_cfg", 0, s->nsc_cfg_in);
/* The sec_resp_cfg output from the security controller must be split into
* multiple lines, one for each of the PPCs within the IoTKit and one
* that will be an output from the IoTKit to the system.
*/
object_property_set_int(OBJECT(&s->sec_resp_splitter), 3,
"num-lines", &err);
if (err) {
error_propagate(errp, err);
return;
}
object_property_set_bool(OBJECT(&s->sec_resp_splitter), true,
"realized", &err);
if (err) {
error_propagate(errp, err);
return;
}
dev_splitter = DEVICE(&s->sec_resp_splitter);
qdev_connect_gpio_out_named(dev_secctl, "sec_resp_cfg", 0,
qdev_get_gpio_in(dev_splitter, 0));
/* This RAM lives behind the Memory Protection Controller */
memory_region_init_ram(&s->sram0, NULL, "iotkit.sram0", 0x00008000, &err);
if (err) {
error_propagate(errp, err);
return;
}
object_property_set_link(OBJECT(&s->mpc), OBJECT(&s->sram0),
"downstream", &err);
if (err) {
error_propagate(errp, err);
return;
}
object_property_set_bool(OBJECT(&s->mpc), true, "realized", &err);
if (err) {
error_propagate(errp, err);
return;
}
/* Map the upstream end of the MPC into the right place... */
memory_region_add_subregion(&s->container, 0x20000000,
sysbus_mmio_get_region(SYS_BUS_DEVICE(&s->mpc),
1));
/* ...and its register interface */
memory_region_add_subregion(&s->container, 0x50083000,
sysbus_mmio_get_region(SYS_BUS_DEVICE(&s->mpc),
0));
/* We must OR together lines from the MPC splitters to go to the NVIC */
object_property_set_int(OBJECT(&s->mpc_irq_orgate),
IOTS_NUM_EXP_MPC + IOTS_NUM_MPC, "num-lines", &err);
if (err) {
error_propagate(errp, err);
return;
}
object_property_set_bool(OBJECT(&s->mpc_irq_orgate), true,
"realized", &err);
if (err) {
error_propagate(errp, err);
return;
}
qdev_connect_gpio_out(DEVICE(&s->mpc_irq_orgate), 0,
qdev_get_gpio_in(DEVICE(&s->armv7m), 9));
/* Devices behind APB PPC0:
* 0x40000000: timer0
* 0x40001000: timer1
* 0x40002000: dual timer
* We must configure and realize each downstream device and connect
* it to the appropriate PPC port; then we can realize the PPC and
* map its upstream ends to the right place in the container.
*/
qdev_prop_set_uint32(DEVICE(&s->timer0), "pclk-frq", s->mainclk_frq);
object_property_set_bool(OBJECT(&s->timer0), true, "realized", &err);
if (err) {
error_propagate(errp, err);
return;
}
sysbus_connect_irq(SYS_BUS_DEVICE(&s->timer0), 0,
qdev_get_gpio_in(DEVICE(&s->armv7m), 3));
mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(&s->timer0), 0);
object_property_set_link(OBJECT(&s->apb_ppc0), OBJECT(mr), "port[0]", &err);
if (err) {
error_propagate(errp, err);
return;
}
qdev_prop_set_uint32(DEVICE(&s->timer1), "pclk-frq", s->mainclk_frq);
object_property_set_bool(OBJECT(&s->timer1), true, "realized", &err);
if (err) {
error_propagate(errp, err);
return;
}
sysbus_connect_irq(SYS_BUS_DEVICE(&s->timer1), 0,
qdev_get_gpio_in(DEVICE(&s->armv7m), 3));
mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(&s->timer1), 0);
object_property_set_link(OBJECT(&s->apb_ppc0), OBJECT(mr), "port[1]", &err);
if (err) {
error_propagate(errp, err);
return;
}
qdev_prop_set_string(DEVICE(&s->dualtimer), "name", "Dual timer");
qdev_prop_set_uint64(DEVICE(&s->dualtimer), "size", 0x1000);
object_property_set_bool(OBJECT(&s->dualtimer), true, "realized", &err);
if (err) {
error_propagate(errp, err);
return;
}
mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(&s->dualtimer), 0);
object_property_set_link(OBJECT(&s->apb_ppc0), OBJECT(mr), "port[2]", &err);
if (err) {
error_propagate(errp, err);
return;
}
object_property_set_bool(OBJECT(&s->apb_ppc0), true, "realized", &err);
if (err) {
error_propagate(errp, err);
return;
}
sbd_apb_ppc0 = SYS_BUS_DEVICE(&s->apb_ppc0);
dev_apb_ppc0 = DEVICE(&s->apb_ppc0);
mr = sysbus_mmio_get_region(sbd_apb_ppc0, 0);
memory_region_add_subregion(&s->container, 0x40000000, mr);
mr = sysbus_mmio_get_region(sbd_apb_ppc0, 1);
memory_region_add_subregion(&s->container, 0x40001000, mr);
mr = sysbus_mmio_get_region(sbd_apb_ppc0, 2);
memory_region_add_subregion(&s->container, 0x40002000, mr);
for (i = 0; i < IOTS_APB_PPC0_NUM_PORTS; i++) {
qdev_connect_gpio_out_named(dev_secctl, "apb_ppc0_nonsec", i,
qdev_get_gpio_in_named(dev_apb_ppc0,
"cfg_nonsec", i));
qdev_connect_gpio_out_named(dev_secctl, "apb_ppc0_ap", i,
qdev_get_gpio_in_named(dev_apb_ppc0,
"cfg_ap", i));
}
qdev_connect_gpio_out_named(dev_secctl, "apb_ppc0_irq_enable", 0,
qdev_get_gpio_in_named(dev_apb_ppc0,
"irq_enable", 0));
qdev_connect_gpio_out_named(dev_secctl, "apb_ppc0_irq_clear", 0,
qdev_get_gpio_in_named(dev_apb_ppc0,
"irq_clear", 0));
qdev_connect_gpio_out(dev_splitter, 0,
qdev_get_gpio_in_named(dev_apb_ppc0,
"cfg_sec_resp", 0));
/* All the PPC irq lines (from the 2 internal PPCs and the 8 external
* ones) are sent individually to the security controller, and also
* ORed together to give a single combined PPC interrupt to the NVIC.
*/
object_property_set_int(OBJECT(&s->ppc_irq_orgate),
NUM_PPCS, "num-lines", &err);
if (err) {
error_propagate(errp, err);
return;
}
object_property_set_bool(OBJECT(&s->ppc_irq_orgate), true,
"realized", &err);
if (err) {
error_propagate(errp, err);
return;
}
qdev_connect_gpio_out(DEVICE(&s->ppc_irq_orgate), 0,
qdev_get_gpio_in(DEVICE(&s->armv7m), 10));
/* 0x40010000 .. 0x4001ffff: private CPU region: unused in IoTKit */
/* 0x40020000 .. 0x4002ffff : IoTKit system control peripheral region */
/* Devices behind APB PPC1:
* 0x4002f000: S32K timer
*/
qdev_prop_set_string(DEVICE(&s->s32ktimer), "name", "S32KTIMER");
qdev_prop_set_uint64(DEVICE(&s->s32ktimer), "size", 0x1000);
object_property_set_bool(OBJECT(&s->s32ktimer), true, "realized", &err);
if (err) {
error_propagate(errp, err);
return;
}
mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(&s->s32ktimer), 0);
object_property_set_link(OBJECT(&s->apb_ppc1), OBJECT(mr), "port[0]", &err);
if (err) {
error_propagate(errp, err);
return;
}
object_property_set_bool(OBJECT(&s->apb_ppc1), true, "realized", &err);
if (err) {
error_propagate(errp, err);
return;
}
mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(&s->apb_ppc1), 0);
memory_region_add_subregion(&s->container, 0x4002f000, mr);
dev_apb_ppc1 = DEVICE(&s->apb_ppc1);
qdev_connect_gpio_out_named(dev_secctl, "apb_ppc1_nonsec", 0,
qdev_get_gpio_in_named(dev_apb_ppc1,
"cfg_nonsec", 0));
qdev_connect_gpio_out_named(dev_secctl, "apb_ppc1_ap", 0,
qdev_get_gpio_in_named(dev_apb_ppc1,
"cfg_ap", 0));
qdev_connect_gpio_out_named(dev_secctl, "apb_ppc1_irq_enable", 0,
qdev_get_gpio_in_named(dev_apb_ppc1,
"irq_enable", 0));
qdev_connect_gpio_out_named(dev_secctl, "apb_ppc1_irq_clear", 0,
qdev_get_gpio_in_named(dev_apb_ppc1,
"irq_clear", 0));
qdev_connect_gpio_out(dev_splitter, 1,
qdev_get_gpio_in_named(dev_apb_ppc1,
"cfg_sec_resp", 0));
/* Using create_unimplemented_device() maps the stub into the
* system address space rather than into our container, but the
* overall effect to the guest is the same.
*/
create_unimplemented_device("SYSINFO", 0x40020000, 0x1000);
create_unimplemented_device("SYSCONTROL", 0x50021000, 0x1000);
create_unimplemented_device("S32KWATCHDOG", 0x5002e000, 0x1000);
/* 0x40080000 .. 0x4008ffff : IoTKit second Base peripheral region */
create_unimplemented_device("NS watchdog", 0x40081000, 0x1000);
create_unimplemented_device("S watchdog", 0x50081000, 0x1000);
for (i = 0; i < ARRAY_SIZE(s->ppc_irq_splitter); i++) {
Object *splitter = OBJECT(&s->ppc_irq_splitter[i]);
object_property_set_int(splitter, 2, "num-lines", &err);
if (err) {
error_propagate(errp, err);
return;
}
object_property_set_bool(splitter, true, "realized", &err);
if (err) {
error_propagate(errp, err);
return;
}
}
for (i = 0; i < IOTS_NUM_AHB_EXP_PPC; i++) {
char *ppcname = g_strdup_printf("ahb_ppcexp%d", i);
iotkit_forward_ppc(s, ppcname, i);
g_free(ppcname);
}
for (i = 0; i < IOTS_NUM_APB_EXP_PPC; i++) {
char *ppcname = g_strdup_printf("apb_ppcexp%d", i);
iotkit_forward_ppc(s, ppcname, i + IOTS_NUM_AHB_EXP_PPC);
g_free(ppcname);
}
for (i = NUM_EXTERNAL_PPCS; i < NUM_PPCS; i++) {
/* Wire up IRQ splitter for internal PPCs */
DeviceState *devs = DEVICE(&s->ppc_irq_splitter[i]);
char *gpioname = g_strdup_printf("apb_ppc%d_irq_status",
i - NUM_EXTERNAL_PPCS);
TZPPC *ppc = (i == NUM_EXTERNAL_PPCS) ? &s->apb_ppc0 : &s->apb_ppc1;
qdev_connect_gpio_out(devs, 0,
qdev_get_gpio_in_named(dev_secctl, gpioname, 0));
qdev_connect_gpio_out(devs, 1,
qdev_get_gpio_in(DEVICE(&s->ppc_irq_orgate), i));
qdev_connect_gpio_out_named(DEVICE(ppc), "irq", 0,
qdev_get_gpio_in(devs, 0));
g_free(gpioname);
}
/* Wire up the splitters for the MPC IRQs */
for (i = 0; i < IOTS_NUM_EXP_MPC + IOTS_NUM_MPC; i++) {
SplitIRQ *splitter = &s->mpc_irq_splitter[i];
DeviceState *dev_splitter = DEVICE(splitter);
object_property_set_int(OBJECT(splitter), 2, "num-lines", &err);
if (err) {
error_propagate(errp, err);
return;
}
object_property_set_bool(OBJECT(splitter), true, "realized", &err);
if (err) {
error_propagate(errp, err);
return;
}
if (i < IOTS_NUM_EXP_MPC) {
/* Splitter input is from GPIO input line */
s->mpcexp_status_in[i] = qdev_get_gpio_in(dev_splitter, 0);
qdev_connect_gpio_out(dev_splitter, 0,
qdev_get_gpio_in_named(dev_secctl,
"mpcexp_status", i));
} else {
/* Splitter input is from our own MPC */
qdev_connect_gpio_out_named(DEVICE(&s->mpc), "irq", 0,
qdev_get_gpio_in(dev_splitter, 0));
qdev_connect_gpio_out(dev_splitter, 0,
qdev_get_gpio_in_named(dev_secctl,
"mpc_status", 0));
}
qdev_connect_gpio_out(dev_splitter, 1,
qdev_get_gpio_in(DEVICE(&s->mpc_irq_orgate), i));
}
/* Create GPIO inputs which will pass the line state for our
* mpcexp_irq inputs to the correct splitter devices.
*/
qdev_init_gpio_in_named(dev, iotkit_mpcexp_status, "mpcexp_status",
IOTS_NUM_EXP_MPC);
iotkit_forward_sec_resp_cfg(s);
system_clock_scale = NANOSECONDS_PER_SECOND / s->mainclk_frq;
}
static void iotkit_idau_check(IDAUInterface *ii, uint32_t address,
int *iregion, bool *exempt, bool *ns, bool *nsc)
{
/* For IoTKit systems the IDAU responses are simple logical functions
* of the address bits. The NSC attribute is guest-adjustable via the
* NSCCFG register in the security controller.
*/
IoTKit *s = IOTKIT(ii);
int region = extract32(address, 28, 4);
*ns = !(region & 1);
*nsc = (region == 1 && (s->nsccfg & 1)) || (region == 3 && (s->nsccfg & 2));
/* 0xe0000000..0xe00fffff and 0xf0000000..0xf00fffff are exempt */
*exempt = (address & 0xeff00000) == 0xe0000000;
*iregion = region;
}
static const VMStateDescription iotkit_vmstate = {
.name = "iotkit",
.version_id = 1,
.minimum_version_id = 1,
.fields = (VMStateField[]) {
VMSTATE_UINT32(nsccfg, IoTKit),
VMSTATE_END_OF_LIST()
}
};
static Property iotkit_properties[] = {
DEFINE_PROP_LINK("memory", IoTKit, board_memory, TYPE_MEMORY_REGION,
MemoryRegion *),
DEFINE_PROP_UINT32("EXP_NUMIRQ", IoTKit, exp_numirq, 64),
DEFINE_PROP_UINT32("MAINCLK", IoTKit, mainclk_frq, 0),
DEFINE_PROP_END_OF_LIST()
};
static void iotkit_reset(DeviceState *dev)
{
IoTKit *s = IOTKIT(dev);
s->nsccfg = 0;
}
static void iotkit_class_init(ObjectClass *klass, void *data)
{
DeviceClass *dc = DEVICE_CLASS(klass);
IDAUInterfaceClass *iic = IDAU_INTERFACE_CLASS(klass);
dc->realize = iotkit_realize;
dc->vmsd = &iotkit_vmstate;
dc->props = iotkit_properties;
dc->reset = iotkit_reset;
iic->check = iotkit_idau_check;
}
static const TypeInfo iotkit_info = {
.name = TYPE_IOTKIT,
.parent = TYPE_SYS_BUS_DEVICE,
.instance_size = sizeof(IoTKit),
.instance_init = iotkit_init,
.class_init = iotkit_class_init,
.interfaces = (InterfaceInfo[]) {
{ TYPE_IDAU_INTERFACE },
{ }
}
};
static void iotkit_register_types(void)
{
type_register_static(&iotkit_info);
}
type_init(iotkit_register_types);