qemu-e2k/ui/vnc-enc-tight.c

1718 lines
64 KiB
C
Raw Normal View History

/*
* QEMU VNC display driver: tight encoding
*
* From libvncserver/libvncserver/tight.c
* Copyright (C) 2000, 2001 Const Kaplinsky. All Rights Reserved.
* Copyright (C) 1999 AT&T Laboratories Cambridge. All Rights Reserved.
*
* Copyright (C) 2010 Corentin Chary <corentin.chary@gmail.com>
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include "config-host.h"
#ifdef CONFIG_VNC_PNG
#include <png.h>
#endif
#ifdef CONFIG_VNC_JPEG
#include <stdio.h>
#include <jpeglib.h>
#endif
#include "qemu-common.h"
#include "bswap.h"
#include "qint.h"
#include "vnc.h"
#include "vnc-enc-tight.h"
#include "vnc-palette.h"
/* Compression level stuff. The following array contains various
encoder parameters for each of 10 compression levels (0..9).
Last three parameters correspond to JPEG quality levels (0..9). */
static const struct {
int max_rect_size, max_rect_width;
int mono_min_rect_size, gradient_min_rect_size;
int idx_zlib_level, mono_zlib_level, raw_zlib_level, gradient_zlib_level;
int gradient_threshold, gradient_threshold24;
int idx_max_colors_divisor;
int jpeg_quality, jpeg_threshold, jpeg_threshold24;
} tight_conf[] = {
{ 512, 32, 6, 65536, 0, 0, 0, 0, 0, 0, 4, 5, 10000, 23000 },
{ 2048, 128, 6, 65536, 1, 1, 1, 0, 0, 0, 8, 10, 8000, 18000 },
{ 6144, 256, 8, 65536, 3, 3, 2, 0, 0, 0, 24, 15, 6500, 15000 },
{ 10240, 1024, 12, 65536, 5, 5, 3, 0, 0, 0, 32, 25, 5000, 12000 },
{ 16384, 2048, 12, 65536, 6, 6, 4, 0, 0, 0, 32, 37, 4000, 10000 },
{ 32768, 2048, 12, 4096, 7, 7, 5, 4, 150, 380, 32, 50, 3000, 8000 },
{ 65536, 2048, 16, 4096, 7, 7, 6, 4, 170, 420, 48, 60, 2000, 5000 },
{ 65536, 2048, 16, 4096, 8, 8, 7, 5, 180, 450, 64, 70, 1000, 2500 },
{ 65536, 2048, 32, 8192, 9, 9, 8, 6, 190, 475, 64, 75, 500, 1200 },
{ 65536, 2048, 32, 8192, 9, 9, 9, 6, 200, 500, 96, 80, 200, 500 }
};
static int tight_send_framebuffer_update(VncState *vs, int x, int y,
int w, int h);
#ifdef CONFIG_VNC_PNG
static const struct {
int png_zlib_level, png_filters;
} tight_png_conf[] = {
{ 0, PNG_NO_FILTERS },
{ 1, PNG_NO_FILTERS },
{ 2, PNG_NO_FILTERS },
{ 3, PNG_NO_FILTERS },
{ 4, PNG_NO_FILTERS },
{ 5, PNG_ALL_FILTERS },
{ 6, PNG_ALL_FILTERS },
{ 7, PNG_ALL_FILTERS },
{ 8, PNG_ALL_FILTERS },
{ 9, PNG_ALL_FILTERS },
};
static int send_png_rect(VncState *vs, int x, int y, int w, int h,
VncPalette *palette);
static bool tight_can_send_png_rect(VncState *vs, int w, int h)
{
if (vs->tight.type != VNC_ENCODING_TIGHT_PNG) {
return false;
}
if (ds_get_bytes_per_pixel(vs->ds) == 1 ||
vs->clientds.pf.bytes_per_pixel == 1) {
return false;
}
return true;
}
#endif
/*
* Code to guess if given rectangle is suitable for smooth image
* compression (by applying "gradient" filter or JPEG coder).
*/
static unsigned int
tight_detect_smooth_image24(VncState *vs, int w, int h)
{
int off;
int x, y, d, dx;
unsigned int c;
unsigned int stats[256];
int pixels = 0;
int pix, left[3];
unsigned int errors;
unsigned char *buf = vs->tight.tight.buffer;
/*
* If client is big-endian, color samples begin from the second
* byte (offset 1) of a 32-bit pixel value.
*/
off = !!(vs->clientds.flags & QEMU_BIG_ENDIAN_FLAG);
memset(stats, 0, sizeof (stats));
for (y = 0, x = 0; y < h && x < w;) {
for (d = 0; d < h - y && d < w - x - VNC_TIGHT_DETECT_SUBROW_WIDTH;
d++) {
for (c = 0; c < 3; c++) {
left[c] = buf[((y+d)*w+x+d)*4+off+c] & 0xFF;
}
for (dx = 1; dx <= VNC_TIGHT_DETECT_SUBROW_WIDTH; dx++) {
for (c = 0; c < 3; c++) {
pix = buf[((y+d)*w+x+d+dx)*4+off+c] & 0xFF;
stats[abs(pix - left[c])]++;
left[c] = pix;
}
pixels++;
}
}
if (w > h) {
x += h;
y = 0;
} else {
x = 0;
y += w;
}
}
/* 95% smooth or more ... */
if (stats[0] * 33 / pixels >= 95) {
return 0;
}
errors = 0;
for (c = 1; c < 8; c++) {
errors += stats[c] * (c * c);
if (stats[c] == 0 || stats[c] > stats[c-1] * 2) {
return 0;
}
}
for (; c < 256; c++) {
errors += stats[c] * (c * c);
}
errors /= (pixels * 3 - stats[0]);
return errors;
}
#define DEFINE_DETECT_FUNCTION(bpp) \
\
static unsigned int \
tight_detect_smooth_image##bpp(VncState *vs, int w, int h) { \
bool endian; \
uint##bpp##_t pix; \
int max[3], shift[3]; \
int x, y, d, dx; \
unsigned int c; \
unsigned int stats[256]; \
int pixels = 0; \
int sample, sum, left[3]; \
unsigned int errors; \
unsigned char *buf = vs->tight.tight.buffer; \
\
endian = ((vs->clientds.flags & QEMU_BIG_ENDIAN_FLAG) != \
(vs->ds->surface->flags & QEMU_BIG_ENDIAN_FLAG)); \
\
\
max[0] = vs->clientds.pf.rmax; \
max[1] = vs->clientds.pf.gmax; \
max[2] = vs->clientds.pf.bmax; \
shift[0] = vs->clientds.pf.rshift; \
shift[1] = vs->clientds.pf.gshift; \
shift[2] = vs->clientds.pf.bshift; \
\
memset(stats, 0, sizeof(stats)); \
\
y = 0, x = 0; \
while (y < h && x < w) { \
for (d = 0; d < h - y && \
d < w - x - VNC_TIGHT_DETECT_SUBROW_WIDTH; d++) { \
pix = ((uint##bpp##_t *)buf)[(y+d)*w+x+d]; \
if (endian) { \
pix = bswap##bpp(pix); \
} \
for (c = 0; c < 3; c++) { \
left[c] = (int)(pix >> shift[c] & max[c]); \
} \
for (dx = 1; dx <= VNC_TIGHT_DETECT_SUBROW_WIDTH; \
dx++) { \
pix = ((uint##bpp##_t *)buf)[(y+d)*w+x+d+dx]; \
if (endian) { \
pix = bswap##bpp(pix); \
} \
sum = 0; \
for (c = 0; c < 3; c++) { \
sample = (int)(pix >> shift[c] & max[c]); \
sum += abs(sample - left[c]); \
left[c] = sample; \
} \
if (sum > 255) { \
sum = 255; \
} \
stats[sum]++; \
pixels++; \
} \
} \
if (w > h) { \
x += h; \
y = 0; \
} else { \
x = 0; \
y += w; \
} \
} \
\
if ((stats[0] + stats[1]) * 100 / pixels >= 90) { \
return 0; \
} \
\
errors = 0; \
for (c = 1; c < 8; c++) { \
errors += stats[c] * (c * c); \
if (stats[c] == 0 || stats[c] > stats[c-1] * 2) { \
return 0; \
} \
} \
for (; c < 256; c++) { \
errors += stats[c] * (c * c); \
} \
errors /= (pixels - stats[0]); \
\
return errors; \
}
DEFINE_DETECT_FUNCTION(16)
DEFINE_DETECT_FUNCTION(32)
static int
tight_detect_smooth_image(VncState *vs, int w, int h)
{
unsigned int errors;
int compression = vs->tight.compression;
int quality = vs->tight.quality;
if (!vs->vd->lossy) {
return 0;
}
if (ds_get_bytes_per_pixel(vs->ds) == 1 ||
vs->clientds.pf.bytes_per_pixel == 1 ||
w < VNC_TIGHT_DETECT_MIN_WIDTH || h < VNC_TIGHT_DETECT_MIN_HEIGHT) {
return 0;
}
if (vs->tight.quality != (uint8_t)-1) {
if (w * h < VNC_TIGHT_JPEG_MIN_RECT_SIZE) {
return 0;
}
} else {
if (w * h < tight_conf[compression].gradient_min_rect_size) {
return 0;
}
}
if (vs->clientds.pf.bytes_per_pixel == 4) {
if (vs->tight.pixel24) {
errors = tight_detect_smooth_image24(vs, w, h);
if (vs->tight.quality != (uint8_t)-1) {
return (errors < tight_conf[quality].jpeg_threshold24);
}
return (errors < tight_conf[compression].gradient_threshold24);
} else {
errors = tight_detect_smooth_image32(vs, w, h);
}
} else {
errors = tight_detect_smooth_image16(vs, w, h);
}
if (quality != -1) {
return (errors < tight_conf[quality].jpeg_threshold);
}
return (errors < tight_conf[compression].gradient_threshold);
}
/*
* Code to determine how many different colors used in rectangle.
*/
#define DEFINE_FILL_PALETTE_FUNCTION(bpp) \
\
static int \
tight_fill_palette##bpp(VncState *vs, int x, int y, \
int max, size_t count, \
uint32_t *bg, uint32_t *fg, \
VncPalette **palette) { \
uint##bpp##_t *data; \
uint##bpp##_t c0, c1, ci; \
int i, n0, n1; \
\
data = (uint##bpp##_t *)vs->tight.tight.buffer; \
\
c0 = data[0]; \
i = 1; \
while (i < count && data[i] == c0) \
i++; \
if (i >= count) { \
*bg = *fg = c0; \
return 1; \
} \
\
if (max < 2) { \
return 0; \
} \
\
n0 = i; \
c1 = data[i]; \
n1 = 0; \
for (i++; i < count; i++) { \
ci = data[i]; \
if (ci == c0) { \
n0++; \
} else if (ci == c1) { \
n1++; \
} else \
break; \
} \
if (i >= count) { \
if (n0 > n1) { \
*bg = (uint32_t)c0; \
*fg = (uint32_t)c1; \
} else { \
*bg = (uint32_t)c1; \
*fg = (uint32_t)c0; \
} \
return 2; \
} \
\
if (max == 2) { \
return 0; \
} \
\
*palette = palette_new(max, bpp); \
palette_put(*palette, c0); \
palette_put(*palette, c1); \
palette_put(*palette, ci); \
\
for (i++; i < count; i++) { \
if (data[i] == ci) { \
continue; \
} else { \
ci = data[i]; \
if (!palette_put(*palette, (uint32_t)ci)) { \
return 0; \
} \
} \
} \
\
return palette_size(*palette); \
}
DEFINE_FILL_PALETTE_FUNCTION(8)
DEFINE_FILL_PALETTE_FUNCTION(16)
DEFINE_FILL_PALETTE_FUNCTION(32)
static int tight_fill_palette(VncState *vs, int x, int y,
size_t count, uint32_t *bg, uint32_t *fg,
VncPalette **palette)
{
int max;
max = count / tight_conf[vs->tight.compression].idx_max_colors_divisor;
if (max < 2 &&
count >= tight_conf[vs->tight.compression].mono_min_rect_size) {
max = 2;
}
if (max >= 256) {
max = 256;
}
switch(vs->clientds.pf.bytes_per_pixel) {
case 4:
return tight_fill_palette32(vs, x, y, max, count, bg, fg, palette);
case 2:
return tight_fill_palette16(vs, x, y, max, count, bg, fg, palette);
default:
max = 2;
return tight_fill_palette8(vs, x, y, max, count, bg, fg, palette);
}
return 0;
}
/*
* Converting truecolor samples into palette indices.
*/
#define DEFINE_IDX_ENCODE_FUNCTION(bpp) \
\
static void \
tight_encode_indexed_rect##bpp(uint8_t *buf, int count, \
VncPalette *palette) { \
uint##bpp##_t *src; \
uint##bpp##_t rgb; \
int i, rep; \
uint8_t idx; \
\
src = (uint##bpp##_t *) buf; \
\
for (i = 0; i < count; i++) { \
\
rgb = *src++; \
rep = 0; \
while (i < count && *src == rgb) { \
rep++, src++, i++; \
} \
idx = palette_idx(palette, rgb); \
/* \
* Should never happen, but don't break everything \
* if it does, use the first color instead \
*/ \
if (idx == (uint8_t)-1) { \
idx = 0; \
} \
while (rep >= 0) { \
*buf++ = idx; \
rep--; \
} \
} \
}
DEFINE_IDX_ENCODE_FUNCTION(16)
DEFINE_IDX_ENCODE_FUNCTION(32)
#define DEFINE_MONO_ENCODE_FUNCTION(bpp) \
\
static void \
tight_encode_mono_rect##bpp(uint8_t *buf, int w, int h, \
uint##bpp##_t bg, uint##bpp##_t fg) { \
uint##bpp##_t *ptr; \
unsigned int value, mask; \
int aligned_width; \
int x, y, bg_bits; \
\
ptr = (uint##bpp##_t *) buf; \
aligned_width = w - w % 8; \
\
for (y = 0; y < h; y++) { \
for (x = 0; x < aligned_width; x += 8) { \
for (bg_bits = 0; bg_bits < 8; bg_bits++) { \
if (*ptr++ != bg) { \
break; \
} \
} \
if (bg_bits == 8) { \
*buf++ = 0; \
continue; \
} \
mask = 0x80 >> bg_bits; \
value = mask; \
for (bg_bits++; bg_bits < 8; bg_bits++) { \
mask >>= 1; \
if (*ptr++ != bg) { \
value |= mask; \
} \
} \
*buf++ = (uint8_t)value; \
} \
\
mask = 0x80; \
value = 0; \
if (x >= w) { \
continue; \
} \
\
for (; x < w; x++) { \
if (*ptr++ != bg) { \
value |= mask; \
} \
mask >>= 1; \
} \
*buf++ = (uint8_t)value; \
} \
}
DEFINE_MONO_ENCODE_FUNCTION(8)
DEFINE_MONO_ENCODE_FUNCTION(16)
DEFINE_MONO_ENCODE_FUNCTION(32)
/*
* ``Gradient'' filter for 24-bit color samples.
* Should be called only when redMax, greenMax and blueMax are 255.
* Color components assumed to be byte-aligned.
*/
static void
tight_filter_gradient24(VncState *vs, uint8_t *buf, int w, int h)
{
uint32_t *buf32;
uint32_t pix32;
int shift[3];
int *prev;
int here[3], upper[3], left[3], upperleft[3];
int prediction;
int x, y, c;
buf32 = (uint32_t *)buf;
memset(vs->tight.gradient.buffer, 0, w * 3 * sizeof(int));
if ((vs->clientds.flags & QEMU_BIG_ENDIAN_FLAG) ==
(vs->ds->surface->flags & QEMU_BIG_ENDIAN_FLAG)) {
shift[0] = vs->clientds.pf.rshift;
shift[1] = vs->clientds.pf.gshift;
shift[2] = vs->clientds.pf.bshift;
} else {
shift[0] = 24 - vs->clientds.pf.rshift;
shift[1] = 24 - vs->clientds.pf.gshift;
shift[2] = 24 - vs->clientds.pf.bshift;
}
for (y = 0; y < h; y++) {
for (c = 0; c < 3; c++) {
upper[c] = 0;
here[c] = 0;
}
prev = (int *)vs->tight.gradient.buffer;
for (x = 0; x < w; x++) {
pix32 = *buf32++;
for (c = 0; c < 3; c++) {
upperleft[c] = upper[c];
left[c] = here[c];
upper[c] = *prev;
here[c] = (int)(pix32 >> shift[c] & 0xFF);
*prev++ = here[c];
prediction = left[c] + upper[c] - upperleft[c];
if (prediction < 0) {
prediction = 0;
} else if (prediction > 0xFF) {
prediction = 0xFF;
}
*buf++ = (char)(here[c] - prediction);
}
}
}
}
/*
* ``Gradient'' filter for other color depths.
*/
#define DEFINE_GRADIENT_FILTER_FUNCTION(bpp) \
\
static void \
tight_filter_gradient##bpp(VncState *vs, uint##bpp##_t *buf, \
int w, int h) { \
uint##bpp##_t pix, diff; \
bool endian; \
int *prev; \
int max[3], shift[3]; \
int here[3], upper[3], left[3], upperleft[3]; \
int prediction; \
int x, y, c; \
\
memset (vs->tight.gradient.buffer, 0, w * 3 * sizeof(int)); \
\
endian = ((vs->clientds.flags & QEMU_BIG_ENDIAN_FLAG) != \
(vs->ds->surface->flags & QEMU_BIG_ENDIAN_FLAG)); \
\
max[0] = vs->clientds.pf.rmax; \
max[1] = vs->clientds.pf.gmax; \
max[2] = vs->clientds.pf.bmax; \
shift[0] = vs->clientds.pf.rshift; \
shift[1] = vs->clientds.pf.gshift; \
shift[2] = vs->clientds.pf.bshift; \
\
for (y = 0; y < h; y++) { \
for (c = 0; c < 3; c++) { \
upper[c] = 0; \
here[c] = 0; \
} \
prev = (int *)vs->tight.gradient.buffer; \
for (x = 0; x < w; x++) { \
pix = *buf; \
if (endian) { \
pix = bswap##bpp(pix); \
} \
diff = 0; \
for (c = 0; c < 3; c++) { \
upperleft[c] = upper[c]; \
left[c] = here[c]; \
upper[c] = *prev; \
here[c] = (int)(pix >> shift[c] & max[c]); \
*prev++ = here[c]; \
\
prediction = left[c] + upper[c] - upperleft[c]; \
if (prediction < 0) { \
prediction = 0; \
} else if (prediction > max[c]) { \
prediction = max[c]; \
} \
diff |= ((here[c] - prediction) & max[c]) \
<< shift[c]; \
} \
if (endian) { \
diff = bswap##bpp(diff); \
} \
*buf++ = diff; \
} \
} \
}
DEFINE_GRADIENT_FILTER_FUNCTION(16)
DEFINE_GRADIENT_FILTER_FUNCTION(32)
/*
* Check if a rectangle is all of the same color. If needSameColor is
* set to non-zero, then also check that its color equals to the
* *colorPtr value. The result is 1 if the test is successful, and in
* that case new color will be stored in *colorPtr.
*/
#define DEFINE_CHECK_SOLID_FUNCTION(bpp) \
\
static bool \
check_solid_tile##bpp(VncState *vs, int x, int y, int w, int h, \
uint32_t* color, bool samecolor) \
{ \
VncDisplay *vd = vs->vd; \
uint##bpp##_t *fbptr; \
uint##bpp##_t c; \
int dx, dy; \
\
fbptr = (uint##bpp##_t *) \
(vd->server->data + y * ds_get_linesize(vs->ds) + \
x * ds_get_bytes_per_pixel(vs->ds)); \
\
c = *fbptr; \
if (samecolor && (uint32_t)c != *color) { \
return false; \
} \
\
for (dy = 0; dy < h; dy++) { \
for (dx = 0; dx < w; dx++) { \
if (c != fbptr[dx]) { \
return false; \
} \
} \
fbptr = (uint##bpp##_t *) \
((uint8_t *)fbptr + ds_get_linesize(vs->ds)); \
} \
\
*color = (uint32_t)c; \
return true; \
}
DEFINE_CHECK_SOLID_FUNCTION(32)
DEFINE_CHECK_SOLID_FUNCTION(16)
DEFINE_CHECK_SOLID_FUNCTION(8)
static bool check_solid_tile(VncState *vs, int x, int y, int w, int h,
uint32_t* color, bool samecolor)
{
VncDisplay *vd = vs->vd;
switch(vd->server->pf.bytes_per_pixel) {
case 4:
return check_solid_tile32(vs, x, y, w, h, color, samecolor);
case 2:
return check_solid_tile16(vs, x, y, w, h, color, samecolor);
default:
return check_solid_tile8(vs, x, y, w, h, color, samecolor);
}
}
static void find_best_solid_area(VncState *vs, int x, int y, int w, int h,
uint32_t color, int *w_ptr, int *h_ptr)
{
int dx, dy, dw, dh;
int w_prev;
int w_best = 0, h_best = 0;
w_prev = w;
for (dy = y; dy < y + h; dy += VNC_TIGHT_MAX_SPLIT_TILE_SIZE) {
dh = MIN(VNC_TIGHT_MAX_SPLIT_TILE_SIZE, y + h - dy);
dw = MIN(VNC_TIGHT_MAX_SPLIT_TILE_SIZE, w_prev);
if (!check_solid_tile(vs, x, dy, dw, dh, &color, true)) {
break;
}
for (dx = x + dw; dx < x + w_prev;) {
dw = MIN(VNC_TIGHT_MAX_SPLIT_TILE_SIZE, x + w_prev - dx);
if (!check_solid_tile(vs, dx, dy, dw, dh, &color, true)) {
break;
}
dx += dw;
}
w_prev = dx - x;
if (w_prev * (dy + dh - y) > w_best * h_best) {
w_best = w_prev;
h_best = dy + dh - y;
}
}
*w_ptr = w_best;
*h_ptr = h_best;
}
static void extend_solid_area(VncState *vs, int x, int y, int w, int h,
uint32_t color, int *x_ptr, int *y_ptr,
int *w_ptr, int *h_ptr)
{
int cx, cy;
/* Try to extend the area upwards. */
for ( cy = *y_ptr - 1;
cy >= y && check_solid_tile(vs, *x_ptr, cy, *w_ptr, 1, &color, true);
cy-- );
*h_ptr += *y_ptr - (cy + 1);
*y_ptr = cy + 1;
/* ... downwards. */
for ( cy = *y_ptr + *h_ptr;
cy < y + h &&
check_solid_tile(vs, *x_ptr, cy, *w_ptr, 1, &color, true);
cy++ );
*h_ptr += cy - (*y_ptr + *h_ptr);
/* ... to the left. */
for ( cx = *x_ptr - 1;
cx >= x && check_solid_tile(vs, cx, *y_ptr, 1, *h_ptr, &color, true);
cx-- );
*w_ptr += *x_ptr - (cx + 1);
*x_ptr = cx + 1;
/* ... to the right. */
for ( cx = *x_ptr + *w_ptr;
cx < x + w &&
check_solid_tile(vs, cx, *y_ptr, 1, *h_ptr, &color, true);
cx++ );
*w_ptr += cx - (*x_ptr + *w_ptr);
}
static int tight_init_stream(VncState *vs, int stream_id,
int level, int strategy)
{
z_streamp zstream = &vs->tight.stream[stream_id];
if (zstream->opaque == NULL) {
int err;
VNC_DEBUG("VNC: TIGHT: initializing zlib stream %d\n", stream_id);
VNC_DEBUG("VNC: TIGHT: opaque = %p | vs = %p\n", zstream->opaque, vs);
zstream->zalloc = vnc_zlib_zalloc;
zstream->zfree = vnc_zlib_zfree;
err = deflateInit2(zstream, level, Z_DEFLATED, MAX_WBITS,
MAX_MEM_LEVEL, strategy);
if (err != Z_OK) {
fprintf(stderr, "VNC: error initializing zlib\n");
return -1;
}
vs->tight.levels[stream_id] = level;
zstream->opaque = vs;
}
if (vs->tight.levels[stream_id] != level) {
if (deflateParams(zstream, level, strategy) != Z_OK) {
return -1;
}
vs->tight.levels[stream_id] = level;
}
return 0;
}
static void tight_send_compact_size(VncState *vs, size_t len)
{
int lpc = 0;
int bytes = 0;
char buf[3] = {0, 0, 0};
buf[bytes++] = len & 0x7F;
if (len > 0x7F) {
buf[bytes-1] |= 0x80;
buf[bytes++] = (len >> 7) & 0x7F;
if (len > 0x3FFF) {
buf[bytes-1] |= 0x80;
buf[bytes++] = (len >> 14) & 0xFF;
}
}
for (lpc = 0; lpc < bytes; lpc++) {
vnc_write_u8(vs, buf[lpc]);
}
}
static int tight_compress_data(VncState *vs, int stream_id, size_t bytes,
int level, int strategy)
{
z_streamp zstream = &vs->tight.stream[stream_id];
int previous_out;
if (bytes < VNC_TIGHT_MIN_TO_COMPRESS) {
vnc_write(vs, vs->tight.tight.buffer, vs->tight.tight.offset);
return bytes;
}
if (tight_init_stream(vs, stream_id, level, strategy)) {
return -1;
}
/* reserve memory in output buffer */
buffer_reserve(&vs->tight.zlib, bytes + 64);
/* set pointers */
zstream->next_in = vs->tight.tight.buffer;
zstream->avail_in = vs->tight.tight.offset;
zstream->next_out = vs->tight.zlib.buffer + vs->tight.zlib.offset;
zstream->avail_out = vs->tight.zlib.capacity - vs->tight.zlib.offset;
zstream->data_type = Z_BINARY;
previous_out = zstream->total_out;
/* start encoding */
if (deflate(zstream, Z_SYNC_FLUSH) != Z_OK) {
fprintf(stderr, "VNC: error during tight compression\n");
return -1;
}
vs->tight.zlib.offset = vs->tight.zlib.capacity - zstream->avail_out;
bytes = zstream->total_out - previous_out;
tight_send_compact_size(vs, bytes);
vnc_write(vs, vs->tight.zlib.buffer, bytes);
buffer_reset(&vs->tight.zlib);
return bytes;
}
/*
* Subencoding implementations.
*/
static void tight_pack24(VncState *vs, uint8_t *buf, size_t count, size_t *ret)
{
uint32_t *buf32;
uint32_t pix;
int rshift, gshift, bshift;
buf32 = (uint32_t *)buf;
if ((vs->clientds.flags & QEMU_BIG_ENDIAN_FLAG) ==
(vs->ds->surface->flags & QEMU_BIG_ENDIAN_FLAG)) {
rshift = vs->clientds.pf.rshift;
gshift = vs->clientds.pf.gshift;
bshift = vs->clientds.pf.bshift;
} else {
rshift = 24 - vs->clientds.pf.rshift;
gshift = 24 - vs->clientds.pf.gshift;
bshift = 24 - vs->clientds.pf.bshift;
}
if (ret) {
*ret = count * 3;
}
while (count--) {
pix = *buf32++;
*buf++ = (char)(pix >> rshift);
*buf++ = (char)(pix >> gshift);
*buf++ = (char)(pix >> bshift);
}
}
static int send_full_color_rect(VncState *vs, int x, int y, int w, int h)
{
int stream = 0;
ssize_t bytes;
#ifdef CONFIG_VNC_PNG
if (tight_can_send_png_rect(vs, w, h)) {
return send_png_rect(vs, x, y, w, h, NULL);
}
#endif
vnc_write_u8(vs, stream << 4); /* no flushing, no filter */
if (vs->tight.pixel24) {
tight_pack24(vs, vs->tight.tight.buffer, w * h, &vs->tight.tight.offset);
bytes = 3;
} else {
bytes = vs->clientds.pf.bytes_per_pixel;
}
bytes = tight_compress_data(vs, stream, w * h * bytes,
tight_conf[vs->tight.compression].raw_zlib_level,
Z_DEFAULT_STRATEGY);
return (bytes >= 0);
}
static int send_solid_rect(VncState *vs)
{
size_t bytes;
vnc_write_u8(vs, VNC_TIGHT_FILL << 4); /* no flushing, no filter */
if (vs->tight.pixel24) {
tight_pack24(vs, vs->tight.tight.buffer, 1, &vs->tight.tight.offset);
bytes = 3;
} else {
bytes = vs->clientds.pf.bytes_per_pixel;
}
vnc_write(vs, vs->tight.tight.buffer, bytes);
return 1;
}
static int send_mono_rect(VncState *vs, int x, int y,
int w, int h, uint32_t bg, uint32_t fg)
{
ssize_t bytes;
int stream = 1;
int level = tight_conf[vs->tight.compression].mono_zlib_level;
#ifdef CONFIG_VNC_PNG
if (tight_can_send_png_rect(vs, w, h)) {
int ret;
int bpp = vs->clientds.pf.bytes_per_pixel * 8;
VncPalette *palette = palette_new(2, bpp);
palette_put(palette, bg);
palette_put(palette, fg);
ret = send_png_rect(vs, x, y, w, h, palette);
palette_destroy(palette);
return ret;
}
#endif
bytes = ((w + 7) / 8) * h;
vnc_write_u8(vs, (stream | VNC_TIGHT_EXPLICIT_FILTER) << 4);
vnc_write_u8(vs, VNC_TIGHT_FILTER_PALETTE);
vnc_write_u8(vs, 1);
switch(vs->clientds.pf.bytes_per_pixel) {
case 4:
{
uint32_t buf[2] = {bg, fg};
size_t ret = sizeof (buf);
if (vs->tight.pixel24) {
tight_pack24(vs, (unsigned char*)buf, 2, &ret);
}
vnc_write(vs, buf, ret);
tight_encode_mono_rect32(vs->tight.tight.buffer, w, h, bg, fg);
break;
}
case 2:
vnc_write(vs, &bg, 2);
vnc_write(vs, &fg, 2);
tight_encode_mono_rect16(vs->tight.tight.buffer, w, h, bg, fg);
break;
default:
vnc_write_u8(vs, bg);
vnc_write_u8(vs, fg);
tight_encode_mono_rect8(vs->tight.tight.buffer, w, h, bg, fg);
break;
}
vs->tight.tight.offset = bytes;
bytes = tight_compress_data(vs, stream, bytes, level, Z_DEFAULT_STRATEGY);
return (bytes >= 0);
}
struct palette_cb_priv {
VncState *vs;
uint8_t *header;
#ifdef CONFIG_VNC_PNG
png_colorp png_palette;
#endif
};
static void write_palette(int idx, uint32_t color, void *opaque)
{
struct palette_cb_priv *priv = opaque;
VncState *vs = priv->vs;
uint32_t bytes = vs->clientds.pf.bytes_per_pixel;
if (bytes == 4) {
((uint32_t*)priv->header)[idx] = color;
} else {
((uint16_t*)priv->header)[idx] = color;
}
}
static bool send_gradient_rect(VncState *vs, int x, int y, int w, int h)
{
int stream = 3;
int level = tight_conf[vs->tight.compression].gradient_zlib_level;
ssize_t bytes;
if (vs->clientds.pf.bytes_per_pixel == 1)
return send_full_color_rect(vs, x, y, w, h);
vnc_write_u8(vs, (stream | VNC_TIGHT_EXPLICIT_FILTER) << 4);
vnc_write_u8(vs, VNC_TIGHT_FILTER_GRADIENT);
buffer_reserve(&vs->tight.gradient, w * 3 * sizeof (int));
if (vs->tight.pixel24) {
tight_filter_gradient24(vs, vs->tight.tight.buffer, w, h);
bytes = 3;
} else if (vs->clientds.pf.bytes_per_pixel == 4) {
tight_filter_gradient32(vs, (uint32_t *)vs->tight.tight.buffer, w, h);
bytes = 4;
} else {
tight_filter_gradient16(vs, (uint16_t *)vs->tight.tight.buffer, w, h);
bytes = 2;
}
buffer_reset(&vs->tight.gradient);
bytes = w * h * bytes;
vs->tight.tight.offset = bytes;
bytes = tight_compress_data(vs, stream, bytes,
level, Z_FILTERED);
return (bytes >= 0);
}
static int send_palette_rect(VncState *vs, int x, int y,
int w, int h, VncPalette *palette)
{
int stream = 2;
int level = tight_conf[vs->tight.compression].idx_zlib_level;
int colors;
ssize_t bytes;
#ifdef CONFIG_VNC_PNG
if (tight_can_send_png_rect(vs, w, h)) {
return send_png_rect(vs, x, y, w, h, palette);
}
#endif
colors = palette_size(palette);
vnc_write_u8(vs, (stream | VNC_TIGHT_EXPLICIT_FILTER) << 4);
vnc_write_u8(vs, VNC_TIGHT_FILTER_PALETTE);
vnc_write_u8(vs, colors - 1);
switch(vs->clientds.pf.bytes_per_pixel) {
case 4:
{
size_t old_offset, offset;
uint32_t header[palette_size(palette)];
struct palette_cb_priv priv = { vs, (uint8_t *)header };
old_offset = vs->output.offset;
palette_iter(palette, write_palette, &priv);
vnc_write(vs, header, sizeof(header));
if (vs->tight.pixel24) {
tight_pack24(vs, vs->output.buffer + old_offset, colors, &offset);
vs->output.offset = old_offset + offset;
}
tight_encode_indexed_rect32(vs->tight.tight.buffer, w * h, palette);
break;
}
case 2:
{
uint16_t header[palette_size(palette)];
struct palette_cb_priv priv = { vs, (uint8_t *)header };
palette_iter(palette, write_palette, &priv);
vnc_write(vs, header, sizeof(header));
tight_encode_indexed_rect16(vs->tight.tight.buffer, w * h, palette);
break;
}
default:
return -1; /* No palette for 8bits colors */
break;
}
bytes = w * h;
vs->tight.tight.offset = bytes;
bytes = tight_compress_data(vs, stream, bytes,
level, Z_DEFAULT_STRATEGY);
return (bytes >= 0);
}
#if defined(CONFIG_VNC_JPEG) || defined(CONFIG_VNC_PNG)
static void rgb_prepare_row24(VncState *vs, uint8_t *dst, int x, int y,
int count)
{
VncDisplay *vd = vs->vd;
uint32_t *fbptr;
uint32_t pix;
fbptr = (uint32_t *)(vd->server->data + y * ds_get_linesize(vs->ds) +
x * ds_get_bytes_per_pixel(vs->ds));
while (count--) {
pix = *fbptr++;
*dst++ = (uint8_t)(pix >> vs->ds->surface->pf.rshift);
*dst++ = (uint8_t)(pix >> vs->ds->surface->pf.gshift);
*dst++ = (uint8_t)(pix >> vs->ds->surface->pf.bshift);
}
}
#define DEFINE_RGB_GET_ROW_FUNCTION(bpp) \
\
static void \
rgb_prepare_row##bpp(VncState *vs, uint8_t *dst, \
int x, int y, int count) \
{ \
VncDisplay *vd = vs->vd; \
uint##bpp##_t *fbptr; \
uint##bpp##_t pix; \
int r, g, b; \
\
fbptr = (uint##bpp##_t *) \
(vd->server->data + y * ds_get_linesize(vs->ds) + \
x * ds_get_bytes_per_pixel(vs->ds)); \
\
while (count--) { \
pix = *fbptr++; \
\
r = (int)((pix >> vs->ds->surface->pf.rshift) \
& vs->ds->surface->pf.rmax); \
g = (int)((pix >> vs->ds->surface->pf.gshift) \
& vs->ds->surface->pf.gmax); \
b = (int)((pix >> vs->ds->surface->pf.bshift) \
& vs->ds->surface->pf.bmax); \
\
*dst++ = (uint8_t)((r * 255 + vs->ds->surface->pf.rmax / 2) \
/ vs->ds->surface->pf.rmax); \
*dst++ = (uint8_t)((g * 255 + vs->ds->surface->pf.gmax / 2) \
/ vs->ds->surface->pf.gmax); \
*dst++ = (uint8_t)((b * 255 + vs->ds->surface->pf.bmax / 2) \
/ vs->ds->surface->pf.bmax); \
} \
}
DEFINE_RGB_GET_ROW_FUNCTION(16)
DEFINE_RGB_GET_ROW_FUNCTION(32)
static void rgb_prepare_row(VncState *vs, uint8_t *dst, int x, int y,
int count)
{
if (ds_get_bytes_per_pixel(vs->ds) == 4) {
if (vs->ds->surface->pf.rmax == 0xFF &&
vs->ds->surface->pf.gmax == 0xFF &&
vs->ds->surface->pf.bmax == 0xFF) {
rgb_prepare_row24(vs, dst, x, y, count);
} else {
rgb_prepare_row32(vs, dst, x, y, count);
}
} else {
rgb_prepare_row16(vs, dst, x, y, count);
}
}
#endif /* CONFIG_VNC_JPEG or CONFIG_VNC_PNG */
/*
* JPEG compression stuff.
*/
#ifdef CONFIG_VNC_JPEG
/*
* Destination manager implementation for JPEG library.
*/
/* This is called once per encoding */
static void jpeg_init_destination(j_compress_ptr cinfo)
{
VncState *vs = cinfo->client_data;
Buffer *buffer = &vs->tight.jpeg;
cinfo->dest->next_output_byte = (JOCTET *)buffer->buffer + buffer->offset;
cinfo->dest->free_in_buffer = (size_t)(buffer->capacity - buffer->offset);
}
/* This is called when we ran out of buffer (shouldn't happen!) */
static boolean jpeg_empty_output_buffer(j_compress_ptr cinfo)
{
VncState *vs = cinfo->client_data;
Buffer *buffer = &vs->tight.jpeg;
buffer->offset = buffer->capacity;
buffer_reserve(buffer, 2048);
jpeg_init_destination(cinfo);
return TRUE;
}
/* This is called when we are done processing data */
static void jpeg_term_destination(j_compress_ptr cinfo)
{
VncState *vs = cinfo->client_data;
Buffer *buffer = &vs->tight.jpeg;
buffer->offset = buffer->capacity - cinfo->dest->free_in_buffer;
}
static int send_jpeg_rect(VncState *vs, int x, int y, int w, int h, int quality)
{
struct jpeg_compress_struct cinfo;
struct jpeg_error_mgr jerr;
struct jpeg_destination_mgr manager;
JSAMPROW row[1];
uint8_t *buf;
int dy;
if (ds_get_bytes_per_pixel(vs->ds) == 1)
return send_full_color_rect(vs, x, y, w, h);
buffer_reserve(&vs->tight.jpeg, 2048);
cinfo.err = jpeg_std_error(&jerr);
jpeg_create_compress(&cinfo);
cinfo.client_data = vs;
cinfo.image_width = w;
cinfo.image_height = h;
cinfo.input_components = 3;
cinfo.in_color_space = JCS_RGB;
jpeg_set_defaults(&cinfo);
jpeg_set_quality(&cinfo, quality, true);
manager.init_destination = jpeg_init_destination;
manager.empty_output_buffer = jpeg_empty_output_buffer;
manager.term_destination = jpeg_term_destination;
cinfo.dest = &manager;
jpeg_start_compress(&cinfo, true);
buf = qemu_malloc(w * 3);
row[0] = buf;
for (dy = 0; dy < h; dy++) {
rgb_prepare_row(vs, buf, x, y + dy, w);
jpeg_write_scanlines(&cinfo, row, 1);
}
qemu_free(buf);
jpeg_finish_compress(&cinfo);
jpeg_destroy_compress(&cinfo);
vnc_write_u8(vs, VNC_TIGHT_JPEG << 4);
tight_send_compact_size(vs, vs->tight.jpeg.offset);
vnc_write(vs, vs->tight.jpeg.buffer, vs->tight.jpeg.offset);
buffer_reset(&vs->tight.jpeg);
return 1;
}
#endif /* CONFIG_VNC_JPEG */
/*
* PNG compression stuff.
*/
#ifdef CONFIG_VNC_PNG
static void write_png_palette(int idx, uint32_t pix, void *opaque)
{
struct palette_cb_priv *priv = opaque;
VncState *vs = priv->vs;
png_colorp color = &priv->png_palette[idx];
if (vs->tight.pixel24)
{
color->red = (pix >> vs->clientds.pf.rshift) & vs->clientds.pf.rmax;
color->green = (pix >> vs->clientds.pf.gshift) & vs->clientds.pf.gmax;
color->blue = (pix >> vs->clientds.pf.bshift) & vs->clientds.pf.bmax;
}
else
{
int red, green, blue;
red = (pix >> vs->clientds.pf.rshift) & vs->clientds.pf.rmax;
green = (pix >> vs->clientds.pf.gshift) & vs->clientds.pf.gmax;
blue = (pix >> vs->clientds.pf.bshift) & vs->clientds.pf.bmax;
color->red = ((red * 255 + vs->clientds.pf.rmax / 2) /
vs->clientds.pf.rmax);
color->green = ((green * 255 + vs->clientds.pf.gmax / 2) /
vs->clientds.pf.gmax);
color->blue = ((blue * 255 + vs->clientds.pf.bmax / 2) /
vs->clientds.pf.bmax);
}
}
static void png_write_data(png_structp png_ptr, png_bytep data,
png_size_t length)
{
VncState *vs = png_get_io_ptr(png_ptr);
buffer_reserve(&vs->tight.png, vs->tight.png.offset + length);
memcpy(vs->tight.png.buffer + vs->tight.png.offset, data, length);
vs->tight.png.offset += length;
}
static void png_flush_data(png_structp png_ptr)
{
}
static void *vnc_png_malloc(png_structp png_ptr, png_size_t size)
{
return qemu_malloc(size);
}
static void vnc_png_free(png_structp png_ptr, png_voidp ptr)
{
qemu_free(ptr);
}
static int send_png_rect(VncState *vs, int x, int y, int w, int h,
VncPalette *palette)
{
png_byte color_type;
png_structp png_ptr;
png_infop info_ptr;
png_colorp png_palette = NULL;
int level = tight_png_conf[vs->tight.compression].png_zlib_level;
int filters = tight_png_conf[vs->tight.compression].png_filters;
uint8_t *buf;
int dy;
png_ptr = png_create_write_struct_2(PNG_LIBPNG_VER_STRING, NULL, NULL, NULL,
NULL, vnc_png_malloc, vnc_png_free);
if (png_ptr == NULL)
return -1;
info_ptr = png_create_info_struct(png_ptr);
if (info_ptr == NULL) {
png_destroy_write_struct(&png_ptr, NULL);
return -1;
}
png_set_write_fn(png_ptr, (void *) vs, png_write_data, png_flush_data);
png_set_compression_level(png_ptr, level);
png_set_filter(png_ptr, PNG_FILTER_TYPE_DEFAULT, filters);
if (palette) {
color_type = PNG_COLOR_TYPE_PALETTE;
} else {
color_type = PNG_COLOR_TYPE_RGB;
}
png_set_IHDR(png_ptr, info_ptr, w, h,
8, color_type, PNG_INTERLACE_NONE,
PNG_COMPRESSION_TYPE_DEFAULT, PNG_FILTER_TYPE_DEFAULT);
if (color_type == PNG_COLOR_TYPE_PALETTE) {
struct palette_cb_priv priv;
png_palette = png_malloc(png_ptr, sizeof(*png_palette) *
palette_size(palette));
priv.vs = vs;
priv.png_palette = png_palette;
palette_iter(palette, write_png_palette, &priv);
png_set_PLTE(png_ptr, info_ptr, png_palette, palette_size(palette));
if (vs->clientds.pf.bytes_per_pixel == 4) {
tight_encode_indexed_rect32(vs->tight.tight.buffer, w * h, palette);
} else {
tight_encode_indexed_rect16(vs->tight.tight.buffer, w * h, palette);
}
}
png_write_info(png_ptr, info_ptr);
buffer_reserve(&vs->tight.png, 2048);
buf = qemu_malloc(w * 3);
for (dy = 0; dy < h; dy++)
{
if (color_type == PNG_COLOR_TYPE_PALETTE) {
memcpy(buf, vs->tight.tight.buffer + (dy * w), w);
} else {
rgb_prepare_row(vs, buf, x, y + dy, w);
}
png_write_row(png_ptr, buf);
}
qemu_free(buf);
png_write_end(png_ptr, NULL);
if (color_type == PNG_COLOR_TYPE_PALETTE) {
png_free(png_ptr, png_palette);
}
png_destroy_write_struct(&png_ptr, &info_ptr);
vnc_write_u8(vs, VNC_TIGHT_PNG << 4);
tight_send_compact_size(vs, vs->tight.png.offset);
vnc_write(vs, vs->tight.png.buffer, vs->tight.png.offset);
buffer_reset(&vs->tight.png);
return 1;
}
#endif /* CONFIG_VNC_PNG */
static void vnc_tight_start(VncState *vs)
{
buffer_reset(&vs->tight.tight);
// make the output buffer be the zlib buffer, so we can compress it later
vs->tight.tmp = vs->output;
vs->output = vs->tight.tight;
}
static void vnc_tight_stop(VncState *vs)
{
// switch back to normal output/zlib buffers
vs->tight.tight = vs->output;
vs->output = vs->tight.tmp;
}
static int send_sub_rect_nojpeg(VncState *vs, int x, int y, int w, int h,
int bg, int fg, int colors, VncPalette *palette)
{
int ret;
if (colors == 0) {
if (tight_detect_smooth_image(vs, w, h)) {
ret = send_gradient_rect(vs, x, y, w, h);
} else {
ret = send_full_color_rect(vs, x, y, w, h);
}
} else if (colors == 1) {
ret = send_solid_rect(vs);
} else if (colors == 2) {
ret = send_mono_rect(vs, x, y, w, h, bg, fg);
} else if (colors <= 256) {
ret = send_palette_rect(vs, x, y, w, h, palette);
} else {
ret = 0;
}
return ret;
}
#ifdef CONFIG_VNC_JPEG
static int send_sub_rect_jpeg(VncState *vs, int x, int y, int w, int h,
int bg, int fg, int colors,
VncPalette *palette)
{
int ret;
if (colors == 0) {
if (tight_detect_smooth_image(vs, w, h)) {
int quality = tight_conf[vs->tight.quality].jpeg_quality;
ret = send_jpeg_rect(vs, x, y, w, h, quality);
} else {
ret = send_full_color_rect(vs, x, y, w, h);
}
} else if (colors == 1) {
ret = send_solid_rect(vs);
} else if (colors == 2) {
ret = send_mono_rect(vs, x, y, w, h, bg, fg);
} else if (colors <= 256) {
if (colors > 96 &&
tight_detect_smooth_image(vs, w, h)) {
int quality = tight_conf[vs->tight.quality].jpeg_quality;
ret = send_jpeg_rect(vs, x, y, w, h, quality);
} else {
ret = send_palette_rect(vs, x, y, w, h, palette);
}
} else {
ret = 0;
}
return ret;
}
#endif
static int send_sub_rect(VncState *vs, int x, int y, int w, int h)
{
VncPalette *palette = NULL;
uint32_t bg = 0, fg = 0;
int colors;
int ret = 0;
vnc_framebuffer_update(vs, x, y, w, h, vs->tight.type);
vnc_tight_start(vs);
vnc_raw_send_framebuffer_update(vs, x, y, w, h);
vnc_tight_stop(vs);
colors = tight_fill_palette(vs, x, y, w * h, &fg, &bg, &palette);
#ifdef CONFIG_VNC_JPEG
if (vs->tight.quality != (uint8_t)-1) {
ret = send_sub_rect_jpeg(vs, x, y, w, h, bg, fg, colors, palette);
} else {
ret = send_sub_rect_nojpeg(vs, x, y, w, h, bg, fg, colors, palette);
}
#else
ret = send_sub_rect_nojpeg(vs, x, y, w, h, bg, fg, colors, palette);
#endif
palette_destroy(palette);
return ret;
}
static int send_sub_rect_solid(VncState *vs, int x, int y, int w, int h)
{
vnc_framebuffer_update(vs, x, y, w, h, vs->tight.type);
vnc_tight_start(vs);
vnc_raw_send_framebuffer_update(vs, x, y, w, h);
vnc_tight_stop(vs);
return send_solid_rect(vs);
}
static int send_rect_simple(VncState *vs, int x, int y, int w, int h)
{
int max_size, max_width;
int max_sub_width, max_sub_height;
int dx, dy;
int rw, rh;
int n = 0;
max_size = tight_conf[vs->tight.compression].max_rect_size;
max_width = tight_conf[vs->tight.compression].max_rect_width;
if (w > max_width || w * h > max_size) {
max_sub_width = (w > max_width) ? max_width : w;
max_sub_height = max_size / max_sub_width;
for (dy = 0; dy < h; dy += max_sub_height) {
for (dx = 0; dx < w; dx += max_width) {
rw = MIN(max_sub_width, w - dx);
rh = MIN(max_sub_height, h - dy);
n += send_sub_rect(vs, x+dx, y+dy, rw, rh);
}
}
} else {
n += send_sub_rect(vs, x, y, w, h);
}
return n;
}
static int find_large_solid_color_rect(VncState *vs, int x, int y,
int w, int h, int max_rows)
{
int dx, dy, dw, dh;
int n = 0;
/* Try to find large solid-color areas and send them separately. */
for (dy = y; dy < y + h; dy += VNC_TIGHT_MAX_SPLIT_TILE_SIZE) {
/* If a rectangle becomes too large, send its upper part now. */
if (dy - y >= max_rows) {
n += send_rect_simple(vs, x, y, w, max_rows);
y += max_rows;
h -= max_rows;
}
dh = MIN(VNC_TIGHT_MAX_SPLIT_TILE_SIZE, (y + h - dy));
for (dx = x; dx < x + w; dx += VNC_TIGHT_MAX_SPLIT_TILE_SIZE) {
uint32_t color_value;
int x_best, y_best, w_best, h_best;
dw = MIN(VNC_TIGHT_MAX_SPLIT_TILE_SIZE, (x + w - dx));
if (!check_solid_tile(vs, dx, dy, dw, dh, &color_value, false)) {
continue ;
}
/* Get dimensions of solid-color area. */
find_best_solid_area(vs, dx, dy, w - (dx - x), h - (dy - y),
color_value, &w_best, &h_best);
/* Make sure a solid rectangle is large enough
(or the whole rectangle is of the same color). */
if (w_best * h_best != w * h &&
w_best * h_best < VNC_TIGHT_MIN_SOLID_SUBRECT_SIZE) {
continue;
}
/* Try to extend solid rectangle to maximum size. */
x_best = dx; y_best = dy;
extend_solid_area(vs, x, y, w, h, color_value,
&x_best, &y_best, &w_best, &h_best);
/* Send rectangles at top and left to solid-color area. */
if (y_best != y) {
n += send_rect_simple(vs, x, y, w, y_best-y);
}
if (x_best != x) {
n += tight_send_framebuffer_update(vs, x, y_best,
x_best-x, h_best);
}
/* Send solid-color rectangle. */
n += send_sub_rect_solid(vs, x_best, y_best, w_best, h_best);
/* Send remaining rectangles (at right and bottom). */
if (x_best + w_best != x + w) {
n += tight_send_framebuffer_update(vs, x_best+w_best,
y_best,
w-(x_best-x)-w_best,
h_best);
}
if (y_best + h_best != y + h) {
n += tight_send_framebuffer_update(vs, x, y_best+h_best,
w, h-(y_best-y)-h_best);
}
/* Return after all recursive calls are done. */
return n;
}
}
return n + send_rect_simple(vs, x, y, w, h);
}
static int tight_send_framebuffer_update(VncState *vs, int x, int y,
int w, int h)
{
int max_rows;
if (vs->clientds.pf.bytes_per_pixel == 4 && vs->clientds.pf.rmax == 0xFF &&
vs->clientds.pf.bmax == 0xFF && vs->clientds.pf.gmax == 0xFF) {
vs->tight.pixel24 = true;
} else {
vs->tight.pixel24 = false;
}
if (w * h < VNC_TIGHT_MIN_SPLIT_RECT_SIZE)
return send_rect_simple(vs, x, y, w, h);
/* Calculate maximum number of rows in one non-solid rectangle. */
max_rows = tight_conf[vs->tight.compression].max_rect_size;
max_rows /= MIN(tight_conf[vs->tight.compression].max_rect_width, w);
return find_large_solid_color_rect(vs, x, y, w, h, max_rows);
}
int vnc_tight_send_framebuffer_update(VncState *vs, int x, int y,
int w, int h)
{
vs->tight.type = VNC_ENCODING_TIGHT;
return tight_send_framebuffer_update(vs, x, y, w, h);
}
int vnc_tight_png_send_framebuffer_update(VncState *vs, int x, int y,
int w, int h)
{
vs->tight.type = VNC_ENCODING_TIGHT_PNG;
return tight_send_framebuffer_update(vs, x, y, w, h);
}
void vnc_tight_clear(VncState *vs)
{
int i;
for (i=0; i<ARRAY_SIZE(vs->tight.stream); i++) {
if (vs->tight.stream[i].opaque) {
deflateEnd(&vs->tight.stream[i]);
}
}
buffer_free(&vs->tight.tight);
buffer_free(&vs->tight.zlib);
buffer_free(&vs->tight.gradient);
#ifdef CONFIG_VNC_JPEG
buffer_free(&vs->tight.jpeg);
#endif
#ifdef CONFIG_VNC_PNG
buffer_free(&vs->tight.png);
#endif
}