qemu-e2k/target-m68k/op.c

682 lines
12 KiB
C
Raw Normal View History

/*
* m68k micro operations
*
* Copyright (c) 2006 CodeSourcery
* Written by Paul Brook
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*/
#include "exec.h"
#include "m68k-qreg.h"
#ifndef offsetof
#define offsetof(type, field) ((size_t) &((type *)0)->field)
#endif
static long qreg_offsets[] = {
#define DEFO32(name, offset) offsetof(CPUState, offset),
#define DEFR(name, reg, mode) -1,
#define DEFF64(name, offset) offsetof(CPUState, offset),
0,
#include "qregs.def"
};
#define CPU_FP_STATUS env->fp_status
#define RAISE_EXCEPTION(n) do { \
env->exception_index = n; \
cpu_loop_exit(); \
} while(0)
#define get_op helper_get_op
#define set_op helper_set_op
#define get_opf64 helper_get_opf64
#define set_opf64 helper_set_opf64
uint32_t
get_op(int qreg)
{
if (qreg == QREG_T0) {
return T0;
} else if (qreg < TARGET_NUM_QREGS) {
return *(uint32_t *)(((long)env) + qreg_offsets[qreg]);
} else {
return env->qregs[qreg - TARGET_NUM_QREGS];
}
}
void set_op(int qreg, uint32_t val)
{
if (qreg == QREG_T0) {
T0 = val;
} else if (qreg < TARGET_NUM_QREGS) {
*(uint32_t *)(((long)env) + qreg_offsets[qreg]) = val;
} else {
env->qregs[qreg - TARGET_NUM_QREGS] = val;
}
}
float64 get_opf64(int qreg)
{
if (qreg < TARGET_NUM_QREGS) {
return *(float64 *)(((long)env) + qreg_offsets[qreg]);
} else {
return *(float64 *)&env->qregs[qreg - TARGET_NUM_QREGS];
}
}
void set_opf64(int qreg, float64 val)
{
if (qreg < TARGET_NUM_QREGS) {
*(float64 *)(((long)env) + qreg_offsets[qreg]) = val;
} else {
*(float64 *)&env->qregs[qreg - TARGET_NUM_QREGS] = val;
}
}
#define OP(name) void OPPROTO op_##name (void)
OP(mov32)
{
set_op(PARAM1, get_op(PARAM2));
FORCE_RET();
}
OP(mov32_im)
{
set_op(PARAM1, PARAM2);
FORCE_RET();
}
OP(movf64)
{
set_opf64(PARAM1, get_opf64(PARAM2));
FORCE_RET();
}
OP(zerof64)
{
set_opf64(PARAM1, 0);
FORCE_RET();
}
OP(add32)
{
uint32_t op2 = get_op(PARAM2);
uint32_t op3 = get_op(PARAM3);
set_op(PARAM1, op2 + op3);
FORCE_RET();
}
OP(sub32)
{
uint32_t op2 = get_op(PARAM2);
uint32_t op3 = get_op(PARAM3);
set_op(PARAM1, op2 - op3);
FORCE_RET();
}
OP(mul32)
{
uint32_t op2 = get_op(PARAM2);
uint32_t op3 = get_op(PARAM3);
set_op(PARAM1, op2 * op3);
FORCE_RET();
}
OP(not32)
{
uint32_t arg = get_op(PARAM2);
set_op(PARAM1, ~arg);
FORCE_RET();
}
OP(neg32)
{
uint32_t arg = get_op(PARAM2);
set_op(PARAM1, -arg);
FORCE_RET();
}
OP(bswap32)
{
uint32_t arg = get_op(PARAM2);
arg = (arg >> 24) | (arg << 24)
| ((arg >> 16) & 0xff00) | ((arg << 16) & 0xff0000);
set_op(PARAM1, arg);
FORCE_RET();
}
OP(btest)
{
uint32_t op1 = get_op(PARAM1);
uint32_t op2 = get_op(PARAM2);
if (op1 & op2)
env->cc_dest &= ~CCF_Z;
else
env->cc_dest |= CCF_Z;
FORCE_RET();
}
OP(subx_cc)
{
uint32_t op1 = get_op(PARAM1);
uint32_t op2 = get_op(PARAM2);
uint32_t res;
if (env->cc_x) {
env->cc_x = (op1 <= op2);
env->cc_op = CC_OP_SUBX;
res = op1 - (op2 + 1);
} else {
env->cc_x = (op1 < op2);
env->cc_op = CC_OP_SUB;
res = op1 - op2;
}
set_op(PARAM1, res);
FORCE_RET();
}
OP(addx_cc)
{
uint32_t op1 = get_op(PARAM1);
uint32_t op2 = get_op(PARAM2);
uint32_t res;
if (env->cc_x) {
res = op1 + op2 + 1;
env->cc_x = (res <= op2);
env->cc_op = CC_OP_ADDX;
} else {
res = op1 + op2;
env->cc_x = (res < op2);
env->cc_op = CC_OP_ADD;
}
set_op(PARAM1, res);
FORCE_RET();
}
/* Logic ops. */
OP(and32)
{
uint32_t op2 = get_op(PARAM2);
uint32_t op3 = get_op(PARAM3);
set_op(PARAM1, op2 & op3);
FORCE_RET();
}
OP(or32)
{
uint32_t op2 = get_op(PARAM2);
uint32_t op3 = get_op(PARAM3);
set_op(PARAM1, op2 | op3);
FORCE_RET();
}
OP(xor32)
{
uint32_t op2 = get_op(PARAM2);
uint32_t op3 = get_op(PARAM3);
set_op(PARAM1, op2 ^ op3);
FORCE_RET();
}
/* Shifts. */
OP(shl32)
{
uint32_t op2 = get_op(PARAM2);
uint32_t op3 = get_op(PARAM3);
uint32_t result;
result = op2 << op3;
set_op(PARAM1, result);
FORCE_RET();
}
OP(shl_cc)
{
uint32_t op1 = get_op(PARAM1);
uint32_t op2 = get_op(PARAM2);
uint32_t result;
result = op1 << op2;
set_op(PARAM1, result);
env->cc_x = (op1 << (op2 - 1)) & 1;
FORCE_RET();
}
OP(shr32)
{
uint32_t op2 = get_op(PARAM2);
uint32_t op3 = get_op(PARAM3);
uint32_t result;
result = op2 >> op3;
set_op(PARAM1, result);
FORCE_RET();
}
OP(shr_cc)
{
uint32_t op1 = get_op(PARAM1);
uint32_t op2 = get_op(PARAM2);
uint32_t result;
result = op1 >> op2;
set_op(PARAM1, result);
env->cc_x = (op1 >> (op2 - 1)) & 1;
FORCE_RET();
}
OP(sar_cc)
{
int32_t op1 = get_op(PARAM1);
uint32_t op2 = get_op(PARAM2);
uint32_t result;
result = op1 >> op2;
set_op(PARAM1, result);
env->cc_x = (op1 >> (op2 - 1)) & 1;
FORCE_RET();
}
/* Value extend. */
OP(ext8u32)
{
uint32_t op2 = get_op(PARAM2);
set_op(PARAM1, (uint8_t)op2);
FORCE_RET();
}
OP(ext8s32)
{
uint32_t op2 = get_op(PARAM2);
set_op(PARAM1, (int8_t)op2);
FORCE_RET();
}
OP(ext16u32)
{
uint32_t op2 = get_op(PARAM2);
set_op(PARAM1, (uint16_t)op2);
FORCE_RET();
}
OP(ext16s32)
{
uint32_t op2 = get_op(PARAM2);
set_op(PARAM1, (int16_t)op2);
FORCE_RET();
}
/* Load/store ops. */
OP(ld8u32)
{
uint32_t addr = get_op(PARAM2);
set_op(PARAM1, ldub(addr));
FORCE_RET();
}
OP(ld8s32)
{
uint32_t addr = get_op(PARAM2);
set_op(PARAM1, ldsb(addr));
FORCE_RET();
}
OP(ld16u32)
{
uint32_t addr = get_op(PARAM2);
set_op(PARAM1, lduw(addr));
FORCE_RET();
}
OP(ld16s32)
{
uint32_t addr = get_op(PARAM2);
set_op(PARAM1, ldsw(addr));
FORCE_RET();
}
OP(ld32)
{
uint32_t addr = get_op(PARAM2);
set_op(PARAM1, ldl(addr));
FORCE_RET();
}
OP(st8)
{
uint32_t addr = get_op(PARAM1);
stb(addr, get_op(PARAM2));
FORCE_RET();
}
OP(st16)
{
uint32_t addr = get_op(PARAM1);
stw(addr, get_op(PARAM2));
FORCE_RET();
}
OP(st32)
{
uint32_t addr = get_op(PARAM1);
stl(addr, get_op(PARAM2));
FORCE_RET();
}
OP(ldf64)
{
uint32_t addr = get_op(PARAM2);
set_opf64(PARAM1, ldfq(addr));
FORCE_RET();
}
OP(stf64)
{
uint32_t addr = get_op(PARAM1);
stfq(addr, get_opf64(PARAM2));
FORCE_RET();
}
OP(flush_flags)
{
int cc_op = PARAM1;
if (cc_op == CC_OP_DYNAMIC)
cc_op = env->cc_op;
cpu_m68k_flush_flags(env, cc_op);
FORCE_RET();
}
OP(divu)
{
uint32_t num;
uint32_t den;
uint32_t quot;
uint32_t rem;
uint32_t flags;
num = env->div1;
den = env->div2;
/* ??? This needs to make sure the throwing location is accurate. */
if (den == 0)
RAISE_EXCEPTION(EXCP_DIV0);
quot = num / den;
rem = num % den;
flags = 0;
/* Avoid using a PARAM1 of zero. This breaks dyngen because it uses
the address of a symbol, and gcc knows symbols can't have address
zero. */
if (PARAM1 == 2 && quot > 0xffff)
flags |= CCF_V;
if (quot == 0)
flags |= CCF_Z;
else if ((int32_t)quot < 0)
flags |= CCF_N;
env->div1 = quot;
env->div2 = rem;
env->cc_dest = flags;
FORCE_RET();
}
OP(divs)
{
int32_t num;
int32_t den;
int32_t quot;
int32_t rem;
int32_t flags;
num = env->div1;
den = env->div2;
if (den == 0)
RAISE_EXCEPTION(EXCP_DIV0);
quot = num / den;
rem = num % den;
flags = 0;
if (PARAM1 == 2 && quot != (int16_t)quot)
flags |= CCF_V;
if (quot == 0)
flags |= CCF_Z;
else if (quot < 0)
flags |= CCF_N;
env->div1 = quot;
env->div2 = rem;
env->cc_dest = flags;
FORCE_RET();
}
OP(raise_exception)
{
RAISE_EXCEPTION(PARAM1);
FORCE_RET();
}
/* Floating point comparison sets flags differently to other instructions. */
OP(sub_cmpf64)
{
float64 src0;
float64 src1;
src0 = get_opf64(PARAM2);
src1 = get_opf64(PARAM3);
set_opf64(PARAM1, helper_sub_cmpf64(env, src0, src1));
FORCE_RET();
}
OP(update_xflag_tst)
{
uint32_t op1 = get_op(PARAM1);
env->cc_x = op1;
FORCE_RET();
}
OP(update_xflag_lt)
{
uint32_t op1 = get_op(PARAM1);
uint32_t op2 = get_op(PARAM2);
env->cc_x = (op1 < op2);
FORCE_RET();
}
OP(get_xflag)
{
set_op(PARAM1, env->cc_x);
FORCE_RET();
}
OP(logic_cc)
{
uint32_t op1 = get_op(PARAM1);
env->cc_dest = op1;
FORCE_RET();
}
OP(update_cc_add)
{
uint32_t op1 = get_op(PARAM1);
uint32_t op2 = get_op(PARAM2);
env->cc_dest = op1;
env->cc_src = op2;
FORCE_RET();
}
OP(fp_result)
{
env->fp_result = get_opf64(PARAM1);
FORCE_RET();
}
OP(jmp)
{
GOTO_LABEL_PARAM(1);
}
/* These ops involve a function call, which probably requires a stack frame
and breaks things on some hosts. */
OP(jmp_z32)
{
uint32_t arg = get_op(PARAM1);
if (arg == 0)
GOTO_LABEL_PARAM(2);
FORCE_RET();
}
OP(jmp_nz32)
{
uint32_t arg = get_op(PARAM1);
if (arg != 0)
GOTO_LABEL_PARAM(2);
FORCE_RET();
}
OP(jmp_s32)
{
int32_t arg = get_op(PARAM1);
if (arg < 0)
GOTO_LABEL_PARAM(2);
FORCE_RET();
}
OP(jmp_ns32)
{
int32_t arg = get_op(PARAM1);
if (arg >= 0)
GOTO_LABEL_PARAM(2);
FORCE_RET();
}
void OPPROTO op_goto_tb0(void)
{
GOTO_TB(op_goto_tb0, PARAM1, 0);
}
void OPPROTO op_goto_tb1(void)
{
GOTO_TB(op_goto_tb1, PARAM1, 1);
}
OP(exit_tb)
{
EXIT_TB();
}
/* Floating point. */
OP(f64_to_i32)
{
set_op(PARAM1, float64_to_int32(get_opf64(PARAM2), &CPU_FP_STATUS));
FORCE_RET();
}
OP(f64_to_f32)
{
union {
float32 f;
uint32_t i;
} u;
u.f = float64_to_float32(get_opf64(PARAM2), &CPU_FP_STATUS);
set_op(PARAM1, u.i);
FORCE_RET();
}
OP(i32_to_f64)
{
set_opf64(PARAM1, int32_to_float64(get_op(PARAM2), &CPU_FP_STATUS));
FORCE_RET();
}
OP(f32_to_f64)
{
union {
float32 f;
uint32_t i;
} u;
u.i = get_op(PARAM2);
set_opf64(PARAM1, float32_to_float64(u.f, &CPU_FP_STATUS));
FORCE_RET();
}
OP(absf64)
{
float64 op0 = get_opf64(PARAM2);
set_opf64(PARAM1, float64_abs(op0));
FORCE_RET();
}
OP(chsf64)
{
float64 op0 = get_opf64(PARAM2);
set_opf64(PARAM1, float64_chs(op0));
FORCE_RET();
}
OP(sqrtf64)
{
float64 op0 = get_opf64(PARAM2);
set_opf64(PARAM1, float64_sqrt(op0, &CPU_FP_STATUS));
FORCE_RET();
}
OP(addf64)
{
float64 op0 = get_opf64(PARAM2);
float64 op1 = get_opf64(PARAM3);
set_opf64(PARAM1, float64_add(op0, op1, &CPU_FP_STATUS));
FORCE_RET();
}
OP(subf64)
{
float64 op0 = get_opf64(PARAM2);
float64 op1 = get_opf64(PARAM3);
set_opf64(PARAM1, float64_sub(op0, op1, &CPU_FP_STATUS));
FORCE_RET();
}
OP(mulf64)
{
float64 op0 = get_opf64(PARAM2);
float64 op1 = get_opf64(PARAM3);
set_opf64(PARAM1, float64_mul(op0, op1, &CPU_FP_STATUS));
FORCE_RET();
}
OP(divf64)
{
float64 op0 = get_opf64(PARAM2);
float64 op1 = get_opf64(PARAM3);
set_opf64(PARAM1, float64_div(op0, op1, &CPU_FP_STATUS));
FORCE_RET();
}
OP(iround_f64)
{
float64 op0 = get_opf64(PARAM2);
set_opf64(PARAM1, float64_round_to_int(op0, &CPU_FP_STATUS));
FORCE_RET();
}
OP(itrunc_f64)
{
float64 op0 = get_opf64(PARAM2);
set_opf64(PARAM1, float64_trunc_to_int(op0, &CPU_FP_STATUS));
FORCE_RET();
}
OP(compare_quietf64)
{
float64 op0 = get_opf64(PARAM2);
float64 op1 = get_opf64(PARAM3);
set_op(PARAM1, float64_compare_quiet(op0, op1, &CPU_FP_STATUS));
FORCE_RET();
}