qemu-e2k/slirp/libslirp.h

45 lines
1.6 KiB
C
Raw Normal View History

#ifndef _LIBSLIRP_H
#define _LIBSLIRP_H
#include "qemu-common.h"
struct Slirp;
typedef struct Slirp Slirp;
int get_dns_addr(struct in_addr *pdns_addr);
Slirp *slirp_init(int restricted, struct in_addr vnetwork,
struct in_addr vnetmask, struct in_addr vhost,
const char *vhostname, const char *tftp_path,
const char *bootfile, struct in_addr vdhcp_start,
struct in_addr vnameserver, const char **vdnssearch,
void *opaque);
void slirp_cleanup(Slirp *slirp);
void slirp_update_timeout(uint32_t *timeout);
slirp: switch to GPollFD Slirp uses rfds/wfds/xfds more extensively than other QEMU components. The rarely-used out-of-band TCP data feature is used. That means we need the full table of select(2) to g_poll(3) events: rfds -> G_IO_IN | G_IO_HUP | G_IO_ERR wfds -> G_IO_OUT | G_IO_ERR xfds -> G_IO_PRI I came up with this table by looking at Linux fs/select.c which maps select(2) to poll(2) internally. Another detail to watch out for are the global variables that reference rfds/wfds/xfds during slirp_select_poll(). sofcantrcvmore() and sofcantsendmore() use these globals to clear fd_set bits. When sofcantrcvmore() is called, the wfds bit is cleared so that the write handler will no longer be run for this iteration of the event loop. This actually seems buggy to me since TCP connections can be half-closed and we'd still want to handle data in half-duplex fashion. I think the real intention is to avoid running the read/write handler when the socket has been fully closed. This is indicated with the SS_NOFDREF state bit so we now check for it before invoking the TCP write handler. Note that UDP/ICMP code paths don't care because they are connectionless. Note that slirp/ has a lot of tabs and sometimes mixed tabs with spaces. I followed the style of the surrounding code. Signed-off-by: Stefan Hajnoczi <stefanha@redhat.com> Reviewed-by: Laszlo Ersek <lersek@redhat.com> Message-id: 1361356113-11049-6-git-send-email-stefanha@redhat.com Signed-off-by: Anthony Liguori <aliguori@us.ibm.com>
2013-02-20 11:28:28 +01:00
void slirp_pollfds_fill(GArray *pollfds);
slirp: switch to GPollFD Slirp uses rfds/wfds/xfds more extensively than other QEMU components. The rarely-used out-of-band TCP data feature is used. That means we need the full table of select(2) to g_poll(3) events: rfds -> G_IO_IN | G_IO_HUP | G_IO_ERR wfds -> G_IO_OUT | G_IO_ERR xfds -> G_IO_PRI I came up with this table by looking at Linux fs/select.c which maps select(2) to poll(2) internally. Another detail to watch out for are the global variables that reference rfds/wfds/xfds during slirp_select_poll(). sofcantrcvmore() and sofcantsendmore() use these globals to clear fd_set bits. When sofcantrcvmore() is called, the wfds bit is cleared so that the write handler will no longer be run for this iteration of the event loop. This actually seems buggy to me since TCP connections can be half-closed and we'd still want to handle data in half-duplex fashion. I think the real intention is to avoid running the read/write handler when the socket has been fully closed. This is indicated with the SS_NOFDREF state bit so we now check for it before invoking the TCP write handler. Note that UDP/ICMP code paths don't care because they are connectionless. Note that slirp/ has a lot of tabs and sometimes mixed tabs with spaces. I followed the style of the surrounding code. Signed-off-by: Stefan Hajnoczi <stefanha@redhat.com> Reviewed-by: Laszlo Ersek <lersek@redhat.com> Message-id: 1361356113-11049-6-git-send-email-stefanha@redhat.com Signed-off-by: Anthony Liguori <aliguori@us.ibm.com>
2013-02-20 11:28:28 +01:00
void slirp_pollfds_poll(GArray *pollfds, int select_error);
void slirp_input(Slirp *slirp, const uint8_t *pkt, int pkt_len);
/* you must provide the following functions: */
void slirp_output(void *opaque, const uint8_t *pkt, int pkt_len);
int slirp_add_hostfwd(Slirp *slirp, int is_udp,
struct in_addr host_addr, int host_port,
struct in_addr guest_addr, int guest_port);
int slirp_remove_hostfwd(Slirp *slirp, int is_udp,
struct in_addr host_addr, int host_port);
int slirp_add_exec(Slirp *slirp, int do_pty, const void *args,
struct in_addr *guest_addr, int guest_port);
void slirp_connection_info(Slirp *slirp, Monitor *mon);
void slirp_socket_recv(Slirp *slirp, struct in_addr guest_addr,
int guest_port, const uint8_t *buf, int size);
size_t slirp_socket_can_recv(Slirp *slirp, struct in_addr guest_addr,
int guest_port);
#endif