2020-09-01 14:56:39 +02:00
|
|
|
/*
|
|
|
|
* QEMU PowerPC pSeries Logical Partition NUMA associativity handling
|
|
|
|
*
|
|
|
|
* Copyright IBM Corp. 2020
|
|
|
|
*
|
|
|
|
* Authors:
|
|
|
|
* Daniel Henrique Barboza <danielhb413@gmail.com>
|
|
|
|
*
|
|
|
|
* This work is licensed under the terms of the GNU GPL, version 2 or later.
|
|
|
|
* See the COPYING file in the top-level directory.
|
|
|
|
*/
|
|
|
|
|
|
|
|
#include "qemu/osdep.h"
|
|
|
|
#include "qemu-common.h"
|
|
|
|
#include "hw/ppc/spapr_numa.h"
|
2020-09-04 00:06:36 +02:00
|
|
|
#include "hw/pci-host/spapr.h"
|
2020-09-01 14:56:39 +02:00
|
|
|
#include "hw/ppc/fdt.h"
|
|
|
|
|
2020-09-04 00:06:36 +02:00
|
|
|
/* Moved from hw/ppc/spapr_pci_nvlink2.c */
|
|
|
|
#define SPAPR_GPU_NUMA_ID (cpu_to_be32(1))
|
spapr: introduce SpaprMachineState::numa_assoc_array
The next step to centralize all NUMA/associativity handling in
the spapr machine is to create a 'one stop place' for all
things ibm,associativity.
This patch introduces numa_assoc_array, a 2 dimensional array
that will store all ibm,associativity arrays of all NUMA nodes.
This array is initialized in a new spapr_numa_associativity_init()
function, called in spapr_machine_init(). It is being initialized
with the same values used in other ibm,associativity properties
around spapr files (i.e. all zeros, last value is node_id).
The idea is to remove all hardcoded definitions and FDT writes
of ibm,associativity arrays, doing instead a call to the new
helper spapr_numa_write_associativity_dt() helper, that will
be able to write the DT with the correct values.
We'll start small, handling the trivial cases first. The
remaining instances of ibm,associativity will be handled
next.
Signed-off-by: Daniel Henrique Barboza <danielhb413@gmail.com>
Message-Id: <20200903220639.563090-2-danielhb413@gmail.com>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
2020-09-04 00:06:33 +02:00
|
|
|
|
2021-01-28 18:42:11 +01:00
|
|
|
static bool spapr_machine_using_legacy_numa(SpaprMachineState *spapr)
|
|
|
|
{
|
|
|
|
MachineState *machine = MACHINE(spapr);
|
|
|
|
SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine);
|
|
|
|
|
|
|
|
return smc->pre_5_2_numa_associativity ||
|
|
|
|
machine->numa_state->num_nodes <= 1;
|
|
|
|
}
|
|
|
|
|
2020-10-07 19:28:46 +02:00
|
|
|
static bool spapr_numa_is_symmetrical(MachineState *ms)
|
|
|
|
{
|
|
|
|
int src, dst;
|
|
|
|
int nb_numa_nodes = ms->numa_state->num_nodes;
|
|
|
|
NodeInfo *numa_info = ms->numa_state->nodes;
|
|
|
|
|
|
|
|
for (src = 0; src < nb_numa_nodes; src++) {
|
|
|
|
for (dst = src; dst < nb_numa_nodes; dst++) {
|
|
|
|
if (numa_info[src].distance[dst] !=
|
|
|
|
numa_info[dst].distance[src]) {
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
return true;
|
|
|
|
}
|
|
|
|
|
2021-01-28 18:42:12 +01:00
|
|
|
/*
|
|
|
|
* NVLink2-connected GPU RAM needs to be placed on a separate NUMA node.
|
|
|
|
* We assign a new numa ID per GPU in spapr_pci_collect_nvgpu() which is
|
|
|
|
* called from vPHB reset handler so we initialize the counter here.
|
|
|
|
* If no NUMA is configured from the QEMU side, we start from 1 as GPU RAM
|
|
|
|
* must be equally distant from any other node.
|
|
|
|
* The final value of spapr->gpu_numa_id is going to be written to
|
|
|
|
* max-associativity-domains in spapr_build_fdt().
|
|
|
|
*/
|
|
|
|
unsigned int spapr_numa_initial_nvgpu_numa_id(MachineState *machine)
|
|
|
|
{
|
|
|
|
return MAX(1, machine->numa_state->num_nodes);
|
|
|
|
}
|
|
|
|
|
spapr_numa: consider user input when defining associativity
A new function called spapr_numa_define_associativity_domains()
is created to calculate the associativity domains and change
the associativity arrays considering user input. This is how
the associativity domain between two NUMA nodes A and B is
calculated:
- get the distance D between them
- get the correspondent NUMA level 'n_level' for D. This is done
via a helper called spapr_numa_get_numa_level()
- all associativity arrays were initialized with their own
numa_ids, and we're calculating the distance in node_id ascending
order, starting from node id 0 (the first node retrieved by
numa_state). This will have a cascade effect in the algorithm because
the associativity domains that node 0 defines will be carried over to
other nodes, and node 1 associativities will be carried over after
taking node 0 associativities into account, and so on. This
happens because we'll assign assoc_src as the associativity domain
of dst as well, for all NUMA levels beyond and including n_level.
The PPC kernel expects the associativity domains of the first node
(node id 0) to be always 0 [1], and this algorithm will grant that
by default.
Ultimately, all of this results in a best effort approximation for
the actual NUMA distances the user input in the command line. Given
the nature of how PAPR itself interprets NUMA distances versus the
expectations risen by how ACPI SLIT works, there might be better
algorithms but, in the end, it'll also result in another way to
approximate what the user really wanted.
To keep this commit message no longer than it already is, the next
patch will update the existing documentation in ppc-spapr-numa.rst
with more in depth details and design considerations/drawbacks.
[1] https://lore.kernel.org/linuxppc-dev/5e8fbea3-8faf-0951-172a-b41a2138fbcf@gmail.com/
Signed-off-by: Daniel Henrique Barboza <danielhb413@gmail.com>
Message-Id: <20201007172849.302240-5-danielhb413@gmail.com>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
2020-10-07 19:28:48 +02:00
|
|
|
/*
|
|
|
|
* This function will translate the user distances into
|
|
|
|
* what the kernel understand as possible values: 10
|
|
|
|
* (local distance), 20, 40, 80 and 160, and return the equivalent
|
|
|
|
* NUMA level for each. Current heuristic is:
|
|
|
|
* - local distance (10) returns numa_level = 0x4, meaning there is
|
|
|
|
* no rounding for local distance
|
|
|
|
* - distances between 11 and 30 inclusive -> rounded to 20,
|
|
|
|
* numa_level = 0x3
|
|
|
|
* - distances between 31 and 60 inclusive -> rounded to 40,
|
|
|
|
* numa_level = 0x2
|
|
|
|
* - distances between 61 and 120 inclusive -> rounded to 80,
|
|
|
|
* numa_level = 0x1
|
|
|
|
* - everything above 120 returns numa_level = 0 to indicate that
|
|
|
|
* there is no match. This will be calculated as disntace = 160
|
|
|
|
* by the kernel (as of v5.9)
|
|
|
|
*/
|
|
|
|
static uint8_t spapr_numa_get_numa_level(uint8_t distance)
|
|
|
|
{
|
|
|
|
if (distance == 10) {
|
|
|
|
return 0x4;
|
|
|
|
} else if (distance > 11 && distance <= 30) {
|
|
|
|
return 0x3;
|
|
|
|
} else if (distance > 31 && distance <= 60) {
|
|
|
|
return 0x2;
|
|
|
|
} else if (distance > 61 && distance <= 120) {
|
|
|
|
return 0x1;
|
|
|
|
}
|
|
|
|
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
static void spapr_numa_define_associativity_domains(SpaprMachineState *spapr)
|
|
|
|
{
|
|
|
|
MachineState *ms = MACHINE(spapr);
|
|
|
|
NodeInfo *numa_info = ms->numa_state->nodes;
|
|
|
|
int nb_numa_nodes = ms->numa_state->num_nodes;
|
|
|
|
int src, dst, i;
|
|
|
|
|
|
|
|
for (src = 0; src < nb_numa_nodes; src++) {
|
|
|
|
for (dst = src; dst < nb_numa_nodes; dst++) {
|
|
|
|
/*
|
|
|
|
* This is how the associativity domain between A and B
|
|
|
|
* is calculated:
|
|
|
|
*
|
|
|
|
* - get the distance D between them
|
|
|
|
* - get the correspondent NUMA level 'n_level' for D
|
|
|
|
* - all associativity arrays were initialized with their own
|
|
|
|
* numa_ids, and we're calculating the distance in node_id
|
|
|
|
* ascending order, starting from node id 0 (the first node
|
|
|
|
* retrieved by numa_state). This will have a cascade effect in
|
|
|
|
* the algorithm because the associativity domains that node 0
|
|
|
|
* defines will be carried over to other nodes, and node 1
|
|
|
|
* associativities will be carried over after taking node 0
|
|
|
|
* associativities into account, and so on. This happens because
|
|
|
|
* we'll assign assoc_src as the associativity domain of dst
|
|
|
|
* as well, for all NUMA levels beyond and including n_level.
|
|
|
|
*
|
|
|
|
* The PPC kernel expects the associativity domains of node 0 to
|
|
|
|
* be always 0, and this algorithm will grant that by default.
|
|
|
|
*/
|
|
|
|
uint8_t distance = numa_info[src].distance[dst];
|
|
|
|
uint8_t n_level = spapr_numa_get_numa_level(distance);
|
|
|
|
uint32_t assoc_src;
|
|
|
|
|
|
|
|
/*
|
|
|
|
* n_level = 0 means that the distance is greater than our last
|
|
|
|
* rounded value (120). In this case there is no NUMA level match
|
|
|
|
* between src and dst and we can skip the remaining of the loop.
|
|
|
|
*
|
|
|
|
* The Linux kernel will assume that the distance between src and
|
|
|
|
* dst, in this case of no match, is 10 (local distance) doubled
|
|
|
|
* for each NUMA it didn't match. We have MAX_DISTANCE_REF_POINTS
|
|
|
|
* levels (4), so this gives us 10*2*2*2*2 = 160.
|
|
|
|
*
|
|
|
|
* This logic can be seen in the Linux kernel source code, as of
|
|
|
|
* v5.9, in arch/powerpc/mm/numa.c, function __node_distance().
|
|
|
|
*/
|
|
|
|
if (n_level == 0) {
|
|
|
|
continue;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* We must assign all assoc_src to dst, starting from n_level
|
|
|
|
* and going up to 0x1.
|
|
|
|
*/
|
|
|
|
for (i = n_level; i > 0; i--) {
|
|
|
|
assoc_src = spapr->numa_assoc_array[src][i];
|
|
|
|
spapr->numa_assoc_array[dst][i] = assoc_src;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
}
|
|
|
|
|
spapr: introduce SpaprMachineState::numa_assoc_array
The next step to centralize all NUMA/associativity handling in
the spapr machine is to create a 'one stop place' for all
things ibm,associativity.
This patch introduces numa_assoc_array, a 2 dimensional array
that will store all ibm,associativity arrays of all NUMA nodes.
This array is initialized in a new spapr_numa_associativity_init()
function, called in spapr_machine_init(). It is being initialized
with the same values used in other ibm,associativity properties
around spapr files (i.e. all zeros, last value is node_id).
The idea is to remove all hardcoded definitions and FDT writes
of ibm,associativity arrays, doing instead a call to the new
helper spapr_numa_write_associativity_dt() helper, that will
be able to write the DT with the correct values.
We'll start small, handling the trivial cases first. The
remaining instances of ibm,associativity will be handled
next.
Signed-off-by: Daniel Henrique Barboza <danielhb413@gmail.com>
Message-Id: <20200903220639.563090-2-danielhb413@gmail.com>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
2020-09-04 00:06:33 +02:00
|
|
|
void spapr_numa_associativity_init(SpaprMachineState *spapr,
|
|
|
|
MachineState *machine)
|
|
|
|
{
|
2020-09-04 00:06:36 +02:00
|
|
|
SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
|
spapr: introduce SpaprMachineState::numa_assoc_array
The next step to centralize all NUMA/associativity handling in
the spapr machine is to create a 'one stop place' for all
things ibm,associativity.
This patch introduces numa_assoc_array, a 2 dimensional array
that will store all ibm,associativity arrays of all NUMA nodes.
This array is initialized in a new spapr_numa_associativity_init()
function, called in spapr_machine_init(). It is being initialized
with the same values used in other ibm,associativity properties
around spapr files (i.e. all zeros, last value is node_id).
The idea is to remove all hardcoded definitions and FDT writes
of ibm,associativity arrays, doing instead a call to the new
helper spapr_numa_write_associativity_dt() helper, that will
be able to write the DT with the correct values.
We'll start small, handling the trivial cases first. The
remaining instances of ibm,associativity will be handled
next.
Signed-off-by: Daniel Henrique Barboza <danielhb413@gmail.com>
Message-Id: <20200903220639.563090-2-danielhb413@gmail.com>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
2020-09-04 00:06:33 +02:00
|
|
|
int nb_numa_nodes = machine->numa_state->num_nodes;
|
2020-09-04 00:06:36 +02:00
|
|
|
int i, j, max_nodes_with_gpus;
|
spapr_numa: consider user input when defining associativity
A new function called spapr_numa_define_associativity_domains()
is created to calculate the associativity domains and change
the associativity arrays considering user input. This is how
the associativity domain between two NUMA nodes A and B is
calculated:
- get the distance D between them
- get the correspondent NUMA level 'n_level' for D. This is done
via a helper called spapr_numa_get_numa_level()
- all associativity arrays were initialized with their own
numa_ids, and we're calculating the distance in node_id ascending
order, starting from node id 0 (the first node retrieved by
numa_state). This will have a cascade effect in the algorithm because
the associativity domains that node 0 defines will be carried over to
other nodes, and node 1 associativities will be carried over after
taking node 0 associativities into account, and so on. This
happens because we'll assign assoc_src as the associativity domain
of dst as well, for all NUMA levels beyond and including n_level.
The PPC kernel expects the associativity domains of the first node
(node id 0) to be always 0 [1], and this algorithm will grant that
by default.
Ultimately, all of this results in a best effort approximation for
the actual NUMA distances the user input in the command line. Given
the nature of how PAPR itself interprets NUMA distances versus the
expectations risen by how ACPI SLIT works, there might be better
algorithms but, in the end, it'll also result in another way to
approximate what the user really wanted.
To keep this commit message no longer than it already is, the next
patch will update the existing documentation in ppc-spapr-numa.rst
with more in depth details and design considerations/drawbacks.
[1] https://lore.kernel.org/linuxppc-dev/5e8fbea3-8faf-0951-172a-b41a2138fbcf@gmail.com/
Signed-off-by: Daniel Henrique Barboza <danielhb413@gmail.com>
Message-Id: <20201007172849.302240-5-danielhb413@gmail.com>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
2020-10-07 19:28:48 +02:00
|
|
|
bool using_legacy_numa = spapr_machine_using_legacy_numa(spapr);
|
spapr: introduce SpaprMachineState::numa_assoc_array
The next step to centralize all NUMA/associativity handling in
the spapr machine is to create a 'one stop place' for all
things ibm,associativity.
This patch introduces numa_assoc_array, a 2 dimensional array
that will store all ibm,associativity arrays of all NUMA nodes.
This array is initialized in a new spapr_numa_associativity_init()
function, called in spapr_machine_init(). It is being initialized
with the same values used in other ibm,associativity properties
around spapr files (i.e. all zeros, last value is node_id).
The idea is to remove all hardcoded definitions and FDT writes
of ibm,associativity arrays, doing instead a call to the new
helper spapr_numa_write_associativity_dt() helper, that will
be able to write the DT with the correct values.
We'll start small, handling the trivial cases first. The
remaining instances of ibm,associativity will be handled
next.
Signed-off-by: Daniel Henrique Barboza <danielhb413@gmail.com>
Message-Id: <20200903220639.563090-2-danielhb413@gmail.com>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
2020-09-04 00:06:33 +02:00
|
|
|
|
|
|
|
/*
|
|
|
|
* For all associativity arrays: first position is the size,
|
|
|
|
* position MAX_DISTANCE_REF_POINTS is always the numa_id,
|
|
|
|
* represented by the index 'i'.
|
|
|
|
*
|
|
|
|
* This will break on sparse NUMA setups, when/if QEMU starts
|
|
|
|
* to support it, because there will be no more guarantee that
|
|
|
|
* 'i' will be a valid node_id set by the user.
|
|
|
|
*/
|
|
|
|
for (i = 0; i < nb_numa_nodes; i++) {
|
|
|
|
spapr->numa_assoc_array[i][0] = cpu_to_be32(MAX_DISTANCE_REF_POINTS);
|
|
|
|
spapr->numa_assoc_array[i][MAX_DISTANCE_REF_POINTS] = cpu_to_be32(i);
|
spapr_numa: consider user input when defining associativity
A new function called spapr_numa_define_associativity_domains()
is created to calculate the associativity domains and change
the associativity arrays considering user input. This is how
the associativity domain between two NUMA nodes A and B is
calculated:
- get the distance D between them
- get the correspondent NUMA level 'n_level' for D. This is done
via a helper called spapr_numa_get_numa_level()
- all associativity arrays were initialized with their own
numa_ids, and we're calculating the distance in node_id ascending
order, starting from node id 0 (the first node retrieved by
numa_state). This will have a cascade effect in the algorithm because
the associativity domains that node 0 defines will be carried over to
other nodes, and node 1 associativities will be carried over after
taking node 0 associativities into account, and so on. This
happens because we'll assign assoc_src as the associativity domain
of dst as well, for all NUMA levels beyond and including n_level.
The PPC kernel expects the associativity domains of the first node
(node id 0) to be always 0 [1], and this algorithm will grant that
by default.
Ultimately, all of this results in a best effort approximation for
the actual NUMA distances the user input in the command line. Given
the nature of how PAPR itself interprets NUMA distances versus the
expectations risen by how ACPI SLIT works, there might be better
algorithms but, in the end, it'll also result in another way to
approximate what the user really wanted.
To keep this commit message no longer than it already is, the next
patch will update the existing documentation in ppc-spapr-numa.rst
with more in depth details and design considerations/drawbacks.
[1] https://lore.kernel.org/linuxppc-dev/5e8fbea3-8faf-0951-172a-b41a2138fbcf@gmail.com/
Signed-off-by: Daniel Henrique Barboza <danielhb413@gmail.com>
Message-Id: <20201007172849.302240-5-danielhb413@gmail.com>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
2020-10-07 19:28:48 +02:00
|
|
|
|
|
|
|
/*
|
|
|
|
* Fill all associativity domains of non-zero NUMA nodes with
|
|
|
|
* node_id. This is required because the default value (0) is
|
|
|
|
* considered a match with associativity domains of node 0.
|
|
|
|
*/
|
|
|
|
if (!using_legacy_numa && i != 0) {
|
|
|
|
for (j = 1; j < MAX_DISTANCE_REF_POINTS; j++) {
|
|
|
|
spapr->numa_assoc_array[i][j] = cpu_to_be32(i);
|
|
|
|
}
|
|
|
|
}
|
spapr: introduce SpaprMachineState::numa_assoc_array
The next step to centralize all NUMA/associativity handling in
the spapr machine is to create a 'one stop place' for all
things ibm,associativity.
This patch introduces numa_assoc_array, a 2 dimensional array
that will store all ibm,associativity arrays of all NUMA nodes.
This array is initialized in a new spapr_numa_associativity_init()
function, called in spapr_machine_init(). It is being initialized
with the same values used in other ibm,associativity properties
around spapr files (i.e. all zeros, last value is node_id).
The idea is to remove all hardcoded definitions and FDT writes
of ibm,associativity arrays, doing instead a call to the new
helper spapr_numa_write_associativity_dt() helper, that will
be able to write the DT with the correct values.
We'll start small, handling the trivial cases first. The
remaining instances of ibm,associativity will be handled
next.
Signed-off-by: Daniel Henrique Barboza <danielhb413@gmail.com>
Message-Id: <20200903220639.563090-2-danielhb413@gmail.com>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
2020-09-04 00:06:33 +02:00
|
|
|
}
|
2020-09-04 00:06:36 +02:00
|
|
|
|
|
|
|
/*
|
|
|
|
* Initialize NVLink GPU associativity arrays. We know that
|
|
|
|
* the first GPU will take the first available NUMA id, and
|
|
|
|
* we'll have a maximum of NVGPU_MAX_NUM GPUs in the machine.
|
|
|
|
* At this point we're not sure if there are GPUs or not, but
|
|
|
|
* let's initialize the associativity arrays and allow NVLink
|
|
|
|
* GPUs to be handled like regular NUMA nodes later on.
|
|
|
|
*/
|
|
|
|
max_nodes_with_gpus = nb_numa_nodes + NVGPU_MAX_NUM;
|
|
|
|
|
|
|
|
for (i = nb_numa_nodes; i < max_nodes_with_gpus; i++) {
|
|
|
|
spapr->numa_assoc_array[i][0] = cpu_to_be32(MAX_DISTANCE_REF_POINTS);
|
|
|
|
|
|
|
|
for (j = 1; j < MAX_DISTANCE_REF_POINTS; j++) {
|
|
|
|
uint32_t gpu_assoc = smc->pre_5_1_assoc_refpoints ?
|
|
|
|
SPAPR_GPU_NUMA_ID : cpu_to_be32(i);
|
|
|
|
spapr->numa_assoc_array[i][j] = gpu_assoc;
|
|
|
|
}
|
|
|
|
|
|
|
|
spapr->numa_assoc_array[i][MAX_DISTANCE_REF_POINTS] = cpu_to_be32(i);
|
|
|
|
}
|
2020-10-07 19:28:46 +02:00
|
|
|
|
|
|
|
/*
|
|
|
|
* Legacy NUMA guests (pseries-5.1 and older, or guests with only
|
|
|
|
* 1 NUMA node) will not benefit from anything we're going to do
|
|
|
|
* after this point.
|
|
|
|
*/
|
spapr_numa: consider user input when defining associativity
A new function called spapr_numa_define_associativity_domains()
is created to calculate the associativity domains and change
the associativity arrays considering user input. This is how
the associativity domain between two NUMA nodes A and B is
calculated:
- get the distance D between them
- get the correspondent NUMA level 'n_level' for D. This is done
via a helper called spapr_numa_get_numa_level()
- all associativity arrays were initialized with their own
numa_ids, and we're calculating the distance in node_id ascending
order, starting from node id 0 (the first node retrieved by
numa_state). This will have a cascade effect in the algorithm because
the associativity domains that node 0 defines will be carried over to
other nodes, and node 1 associativities will be carried over after
taking node 0 associativities into account, and so on. This
happens because we'll assign assoc_src as the associativity domain
of dst as well, for all NUMA levels beyond and including n_level.
The PPC kernel expects the associativity domains of the first node
(node id 0) to be always 0 [1], and this algorithm will grant that
by default.
Ultimately, all of this results in a best effort approximation for
the actual NUMA distances the user input in the command line. Given
the nature of how PAPR itself interprets NUMA distances versus the
expectations risen by how ACPI SLIT works, there might be better
algorithms but, in the end, it'll also result in another way to
approximate what the user really wanted.
To keep this commit message no longer than it already is, the next
patch will update the existing documentation in ppc-spapr-numa.rst
with more in depth details and design considerations/drawbacks.
[1] https://lore.kernel.org/linuxppc-dev/5e8fbea3-8faf-0951-172a-b41a2138fbcf@gmail.com/
Signed-off-by: Daniel Henrique Barboza <danielhb413@gmail.com>
Message-Id: <20201007172849.302240-5-danielhb413@gmail.com>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
2020-10-07 19:28:48 +02:00
|
|
|
if (using_legacy_numa) {
|
2020-10-07 19:28:46 +02:00
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (!spapr_numa_is_symmetrical(machine)) {
|
|
|
|
error_report("Asymmetrical NUMA topologies aren't supported "
|
|
|
|
"in the pSeries machine");
|
|
|
|
exit(EXIT_FAILURE);
|
|
|
|
}
|
|
|
|
|
spapr_numa: consider user input when defining associativity
A new function called spapr_numa_define_associativity_domains()
is created to calculate the associativity domains and change
the associativity arrays considering user input. This is how
the associativity domain between two NUMA nodes A and B is
calculated:
- get the distance D between them
- get the correspondent NUMA level 'n_level' for D. This is done
via a helper called spapr_numa_get_numa_level()
- all associativity arrays were initialized with their own
numa_ids, and we're calculating the distance in node_id ascending
order, starting from node id 0 (the first node retrieved by
numa_state). This will have a cascade effect in the algorithm because
the associativity domains that node 0 defines will be carried over to
other nodes, and node 1 associativities will be carried over after
taking node 0 associativities into account, and so on. This
happens because we'll assign assoc_src as the associativity domain
of dst as well, for all NUMA levels beyond and including n_level.
The PPC kernel expects the associativity domains of the first node
(node id 0) to be always 0 [1], and this algorithm will grant that
by default.
Ultimately, all of this results in a best effort approximation for
the actual NUMA distances the user input in the command line. Given
the nature of how PAPR itself interprets NUMA distances versus the
expectations risen by how ACPI SLIT works, there might be better
algorithms but, in the end, it'll also result in another way to
approximate what the user really wanted.
To keep this commit message no longer than it already is, the next
patch will update the existing documentation in ppc-spapr-numa.rst
with more in depth details and design considerations/drawbacks.
[1] https://lore.kernel.org/linuxppc-dev/5e8fbea3-8faf-0951-172a-b41a2138fbcf@gmail.com/
Signed-off-by: Daniel Henrique Barboza <danielhb413@gmail.com>
Message-Id: <20201007172849.302240-5-danielhb413@gmail.com>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
2020-10-07 19:28:48 +02:00
|
|
|
spapr_numa_define_associativity_domains(spapr);
|
spapr: introduce SpaprMachineState::numa_assoc_array
The next step to centralize all NUMA/associativity handling in
the spapr machine is to create a 'one stop place' for all
things ibm,associativity.
This patch introduces numa_assoc_array, a 2 dimensional array
that will store all ibm,associativity arrays of all NUMA nodes.
This array is initialized in a new spapr_numa_associativity_init()
function, called in spapr_machine_init(). It is being initialized
with the same values used in other ibm,associativity properties
around spapr files (i.e. all zeros, last value is node_id).
The idea is to remove all hardcoded definitions and FDT writes
of ibm,associativity arrays, doing instead a call to the new
helper spapr_numa_write_associativity_dt() helper, that will
be able to write the DT with the correct values.
We'll start small, handling the trivial cases first. The
remaining instances of ibm,associativity will be handled
next.
Signed-off-by: Daniel Henrique Barboza <danielhb413@gmail.com>
Message-Id: <20200903220639.563090-2-danielhb413@gmail.com>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
2020-09-04 00:06:33 +02:00
|
|
|
}
|
|
|
|
|
|
|
|
void spapr_numa_write_associativity_dt(SpaprMachineState *spapr, void *fdt,
|
|
|
|
int offset, int nodeid)
|
|
|
|
{
|
|
|
|
_FDT((fdt_setprop(fdt, offset, "ibm,associativity",
|
|
|
|
spapr->numa_assoc_array[nodeid],
|
|
|
|
sizeof(spapr->numa_assoc_array[nodeid]))));
|
2020-09-04 00:06:34 +02:00
|
|
|
}
|
|
|
|
|
2020-09-04 19:24:21 +02:00
|
|
|
static uint32_t *spapr_numa_get_vcpu_assoc(SpaprMachineState *spapr,
|
|
|
|
PowerPCCPU *cpu)
|
2020-09-04 00:06:34 +02:00
|
|
|
{
|
2020-09-04 19:24:21 +02:00
|
|
|
uint32_t *vcpu_assoc = g_new(uint32_t, VCPU_ASSOC_SIZE);
|
2020-09-04 00:06:34 +02:00
|
|
|
int index = spapr_get_vcpu_id(cpu);
|
|
|
|
|
|
|
|
/*
|
|
|
|
* VCPUs have an extra 'cpu_id' value in ibm,associativity
|
|
|
|
* compared to other resources. Increment the size at index
|
2020-09-04 19:24:21 +02:00
|
|
|
* 0, put cpu_id last, then copy the remaining associativity
|
|
|
|
* domains.
|
2020-09-04 00:06:34 +02:00
|
|
|
*/
|
|
|
|
vcpu_assoc[0] = cpu_to_be32(MAX_DISTANCE_REF_POINTS + 1);
|
2020-09-04 19:24:21 +02:00
|
|
|
vcpu_assoc[VCPU_ASSOC_SIZE - 1] = cpu_to_be32(index);
|
|
|
|
memcpy(vcpu_assoc + 1, spapr->numa_assoc_array[cpu->node_id] + 1,
|
|
|
|
(VCPU_ASSOC_SIZE - 2) * sizeof(uint32_t));
|
2020-09-04 00:06:34 +02:00
|
|
|
|
2020-09-04 19:24:21 +02:00
|
|
|
return vcpu_assoc;
|
|
|
|
}
|
|
|
|
|
|
|
|
int spapr_numa_fixup_cpu_dt(SpaprMachineState *spapr, void *fdt,
|
|
|
|
int offset, PowerPCCPU *cpu)
|
|
|
|
{
|
|
|
|
g_autofree uint32_t *vcpu_assoc = NULL;
|
2020-09-04 00:06:34 +02:00
|
|
|
|
2020-09-04 19:24:21 +02:00
|
|
|
vcpu_assoc = spapr_numa_get_vcpu_assoc(spapr, cpu);
|
2020-09-04 00:06:34 +02:00
|
|
|
|
|
|
|
/* Advertise NUMA via ibm,associativity */
|
2020-09-04 19:24:21 +02:00
|
|
|
return fdt_setprop(fdt, offset, "ibm,associativity", vcpu_assoc,
|
|
|
|
VCPU_ASSOC_SIZE * sizeof(uint32_t));
|
spapr: introduce SpaprMachineState::numa_assoc_array
The next step to centralize all NUMA/associativity handling in
the spapr machine is to create a 'one stop place' for all
things ibm,associativity.
This patch introduces numa_assoc_array, a 2 dimensional array
that will store all ibm,associativity arrays of all NUMA nodes.
This array is initialized in a new spapr_numa_associativity_init()
function, called in spapr_machine_init(). It is being initialized
with the same values used in other ibm,associativity properties
around spapr files (i.e. all zeros, last value is node_id).
The idea is to remove all hardcoded definitions and FDT writes
of ibm,associativity arrays, doing instead a call to the new
helper spapr_numa_write_associativity_dt() helper, that will
be able to write the DT with the correct values.
We'll start small, handling the trivial cases first. The
remaining instances of ibm,associativity will be handled
next.
Signed-off-by: Daniel Henrique Barboza <danielhb413@gmail.com>
Message-Id: <20200903220639.563090-2-danielhb413@gmail.com>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
2020-09-04 00:06:33 +02:00
|
|
|
}
|
|
|
|
|
2020-09-04 00:06:35 +02:00
|
|
|
|
|
|
|
int spapr_numa_write_assoc_lookup_arrays(SpaprMachineState *spapr, void *fdt,
|
|
|
|
int offset)
|
|
|
|
{
|
|
|
|
MachineState *machine = MACHINE(spapr);
|
|
|
|
int nb_numa_nodes = machine->numa_state->num_nodes;
|
|
|
|
int nr_nodes = nb_numa_nodes ? nb_numa_nodes : 1;
|
|
|
|
uint32_t *int_buf, *cur_index, buf_len;
|
|
|
|
int ret, i;
|
|
|
|
|
|
|
|
/* ibm,associativity-lookup-arrays */
|
|
|
|
buf_len = (nr_nodes * MAX_DISTANCE_REF_POINTS + 2) * sizeof(uint32_t);
|
|
|
|
cur_index = int_buf = g_malloc0(buf_len);
|
|
|
|
int_buf[0] = cpu_to_be32(nr_nodes);
|
|
|
|
/* Number of entries per associativity list */
|
|
|
|
int_buf[1] = cpu_to_be32(MAX_DISTANCE_REF_POINTS);
|
|
|
|
cur_index += 2;
|
|
|
|
for (i = 0; i < nr_nodes; i++) {
|
|
|
|
/*
|
|
|
|
* For the lookup-array we use the ibm,associativity array,
|
|
|
|
* from numa_assoc_array. without the first element (size).
|
|
|
|
*/
|
|
|
|
uint32_t *associativity = spapr->numa_assoc_array[i];
|
|
|
|
memcpy(cur_index, ++associativity,
|
|
|
|
sizeof(uint32_t) * MAX_DISTANCE_REF_POINTS);
|
|
|
|
cur_index += MAX_DISTANCE_REF_POINTS;
|
|
|
|
}
|
|
|
|
ret = fdt_setprop(fdt, offset, "ibm,associativity-lookup-arrays", int_buf,
|
|
|
|
(cur_index - int_buf) * sizeof(uint32_t));
|
|
|
|
g_free(int_buf);
|
|
|
|
|
|
|
|
return ret;
|
|
|
|
}
|
|
|
|
|
2020-09-01 14:56:39 +02:00
|
|
|
/*
|
|
|
|
* Helper that writes ibm,associativity-reference-points and
|
|
|
|
* max-associativity-domains in the RTAS pointed by @rtas
|
|
|
|
* in the DT @fdt.
|
|
|
|
*/
|
|
|
|
void spapr_numa_write_rtas_dt(SpaprMachineState *spapr, void *fdt, int rtas)
|
|
|
|
{
|
2020-10-07 19:28:47 +02:00
|
|
|
MachineState *ms = MACHINE(spapr);
|
2020-09-01 14:56:39 +02:00
|
|
|
SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
|
spapr_numa.c: fix ibm,max-associativity-domains calculation
The current logic for calculating 'maxdomain' making it a sum of
numa_state->num_nodes with spapr->gpu_numa_id. spapr->gpu_numa_id is
used as a index to determine the next available NUMA id that a
given NVGPU can use.
The problem is that the initial value of gpu_numa_id, for any topology
that has more than one NUMA node, is equal to numa_state->num_nodes.
This means that our maxdomain will always be, at least, twice the
amount of existing NUMA nodes. This means that a guest with 4 NUMA
nodes will end up with the following max-associativity-domains:
rtas/ibm,max-associativity-domains
00000004 00000008 00000008 00000008 00000008
This overtuning of maxdomains doesn't go unnoticed in the guest, being
detected in SLUB during boot:
dmesg | grep SLUB
[ 0.000000] SLUB: HWalign=128, Order=0-3, MinObjects=0, CPUs=4, Nodes=8
SLUB is detecting 8 total nodes, with 4 nodes being online.
This patch fixes ibm,max-associativity-domains by considering the amount
of NVGPUs NUMA nodes presented in the guest, instead of just
spapr->gpu_numa_id.
Reported-by: Cédric Le Goater <clg@kaod.org>
Tested-by: Cédric Le Goater <clg@kaod.org>
Signed-off-by: Daniel Henrique Barboza <danielhb413@gmail.com>
Message-Id: <20210128174213.1349181-4-danielhb413@gmail.com>
Reviewed-by: Greg Kurz <groug@kaod.org>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
2021-01-28 18:42:13 +01:00
|
|
|
uint32_t number_nvgpus_nodes = spapr->gpu_numa_id -
|
|
|
|
spapr_numa_initial_nvgpu_numa_id(ms);
|
2020-09-01 14:56:39 +02:00
|
|
|
uint32_t refpoints[] = {
|
|
|
|
cpu_to_be32(0x4),
|
2020-10-07 19:28:47 +02:00
|
|
|
cpu_to_be32(0x3),
|
2020-09-01 14:56:39 +02:00
|
|
|
cpu_to_be32(0x2),
|
2020-10-07 19:28:47 +02:00
|
|
|
cpu_to_be32(0x1),
|
2020-09-01 14:56:39 +02:00
|
|
|
};
|
|
|
|
uint32_t nr_refpoints = ARRAY_SIZE(refpoints);
|
spapr_numa.c: fix ibm,max-associativity-domains calculation
The current logic for calculating 'maxdomain' making it a sum of
numa_state->num_nodes with spapr->gpu_numa_id. spapr->gpu_numa_id is
used as a index to determine the next available NUMA id that a
given NVGPU can use.
The problem is that the initial value of gpu_numa_id, for any topology
that has more than one NUMA node, is equal to numa_state->num_nodes.
This means that our maxdomain will always be, at least, twice the
amount of existing NUMA nodes. This means that a guest with 4 NUMA
nodes will end up with the following max-associativity-domains:
rtas/ibm,max-associativity-domains
00000004 00000008 00000008 00000008 00000008
This overtuning of maxdomains doesn't go unnoticed in the guest, being
detected in SLUB during boot:
dmesg | grep SLUB
[ 0.000000] SLUB: HWalign=128, Order=0-3, MinObjects=0, CPUs=4, Nodes=8
SLUB is detecting 8 total nodes, with 4 nodes being online.
This patch fixes ibm,max-associativity-domains by considering the amount
of NVGPUs NUMA nodes presented in the guest, instead of just
spapr->gpu_numa_id.
Reported-by: Cédric Le Goater <clg@kaod.org>
Tested-by: Cédric Le Goater <clg@kaod.org>
Signed-off-by: Daniel Henrique Barboza <danielhb413@gmail.com>
Message-Id: <20210128174213.1349181-4-danielhb413@gmail.com>
Reviewed-by: Greg Kurz <groug@kaod.org>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
2021-01-28 18:42:13 +01:00
|
|
|
uint32_t maxdomain = ms->numa_state->num_nodes + number_nvgpus_nodes;
|
2020-09-01 14:56:39 +02:00
|
|
|
uint32_t maxdomains[] = {
|
|
|
|
cpu_to_be32(4),
|
2020-10-07 19:28:47 +02:00
|
|
|
cpu_to_be32(maxdomain),
|
|
|
|
cpu_to_be32(maxdomain),
|
|
|
|
cpu_to_be32(maxdomain),
|
|
|
|
cpu_to_be32(maxdomain)
|
2020-09-01 14:56:39 +02:00
|
|
|
};
|
|
|
|
|
2020-10-07 19:28:47 +02:00
|
|
|
if (spapr_machine_using_legacy_numa(spapr)) {
|
|
|
|
uint32_t legacy_refpoints[] = {
|
|
|
|
cpu_to_be32(0x4),
|
|
|
|
cpu_to_be32(0x4),
|
|
|
|
cpu_to_be32(0x2),
|
|
|
|
};
|
|
|
|
uint32_t legacy_maxdomain = spapr->gpu_numa_id > 1 ? 1 : 0;
|
|
|
|
uint32_t legacy_maxdomains[] = {
|
|
|
|
cpu_to_be32(4),
|
|
|
|
cpu_to_be32(legacy_maxdomain),
|
|
|
|
cpu_to_be32(legacy_maxdomain),
|
|
|
|
cpu_to_be32(legacy_maxdomain),
|
|
|
|
cpu_to_be32(spapr->gpu_numa_id),
|
|
|
|
};
|
|
|
|
|
|
|
|
G_STATIC_ASSERT(sizeof(legacy_refpoints) <= sizeof(refpoints));
|
|
|
|
G_STATIC_ASSERT(sizeof(legacy_maxdomains) <= sizeof(maxdomains));
|
|
|
|
|
|
|
|
nr_refpoints = 3;
|
|
|
|
|
|
|
|
memcpy(refpoints, legacy_refpoints, sizeof(legacy_refpoints));
|
|
|
|
memcpy(maxdomains, legacy_maxdomains, sizeof(legacy_maxdomains));
|
|
|
|
|
|
|
|
/* pseries-5.0 and older reference-points array is {0x4, 0x4} */
|
|
|
|
if (smc->pre_5_1_assoc_refpoints) {
|
|
|
|
nr_refpoints = 2;
|
|
|
|
}
|
2020-09-01 14:56:39 +02:00
|
|
|
}
|
|
|
|
|
|
|
|
_FDT(fdt_setprop(fdt, rtas, "ibm,associativity-reference-points",
|
|
|
|
refpoints, nr_refpoints * sizeof(refpoints[0])));
|
|
|
|
|
|
|
|
_FDT(fdt_setprop(fdt, rtas, "ibm,max-associativity-domains",
|
|
|
|
maxdomains, sizeof(maxdomains)));
|
|
|
|
}
|
2020-09-04 19:24:20 +02:00
|
|
|
|
|
|
|
static target_ulong h_home_node_associativity(PowerPCCPU *cpu,
|
|
|
|
SpaprMachineState *spapr,
|
|
|
|
target_ulong opcode,
|
|
|
|
target_ulong *args)
|
|
|
|
{
|
2020-09-04 19:24:22 +02:00
|
|
|
g_autofree uint32_t *vcpu_assoc = NULL;
|
2020-09-04 19:24:20 +02:00
|
|
|
target_ulong flags = args[0];
|
|
|
|
target_ulong procno = args[1];
|
|
|
|
PowerPCCPU *tcpu;
|
2020-09-04 19:24:22 +02:00
|
|
|
int idx, assoc_idx;
|
2020-09-04 19:24:20 +02:00
|
|
|
|
|
|
|
/* only support procno from H_REGISTER_VPA */
|
|
|
|
if (flags != 0x1) {
|
|
|
|
return H_FUNCTION;
|
|
|
|
}
|
|
|
|
|
|
|
|
tcpu = spapr_find_cpu(procno);
|
|
|
|
if (tcpu == NULL) {
|
|
|
|
return H_P2;
|
|
|
|
}
|
|
|
|
|
2020-09-04 19:24:22 +02:00
|
|
|
/*
|
|
|
|
* Given that we want to be flexible with the sizes and indexes,
|
|
|
|
* we must consider that there is a hard limit of how many
|
|
|
|
* associativities domain we can fit in R4 up to R9, which would be
|
|
|
|
* 12 associativity domains for vcpus. Assert and bail if that's
|
|
|
|
* not the case.
|
|
|
|
*/
|
|
|
|
G_STATIC_ASSERT((VCPU_ASSOC_SIZE - 1) <= 12);
|
|
|
|
|
|
|
|
vcpu_assoc = spapr_numa_get_vcpu_assoc(spapr, tcpu);
|
|
|
|
/* assoc_idx starts at 1 to skip associativity size */
|
|
|
|
assoc_idx = 1;
|
2020-09-04 19:24:20 +02:00
|
|
|
|
|
|
|
#define ASSOCIATIVITY(a, b) (((uint64_t)(a) << 32) | \
|
|
|
|
((uint64_t)(b) & 0xffffffff))
|
2020-09-04 19:24:22 +02:00
|
|
|
|
|
|
|
for (idx = 0; idx < 6; idx++) {
|
|
|
|
int32_t a, b;
|
|
|
|
|
|
|
|
/*
|
|
|
|
* vcpu_assoc[] will contain the associativity domains for tcpu,
|
|
|
|
* including tcpu->node_id and procno, meaning that we don't
|
|
|
|
* need to use these variables here.
|
|
|
|
*
|
|
|
|
* We'll read 2 values at a time to fill up the ASSOCIATIVITY()
|
|
|
|
* macro. The ternary will fill the remaining registers with -1
|
|
|
|
* after we went through vcpu_assoc[].
|
|
|
|
*/
|
|
|
|
a = assoc_idx < VCPU_ASSOC_SIZE ?
|
|
|
|
be32_to_cpu(vcpu_assoc[assoc_idx++]) : -1;
|
|
|
|
b = assoc_idx < VCPU_ASSOC_SIZE ?
|
|
|
|
be32_to_cpu(vcpu_assoc[assoc_idx++]) : -1;
|
|
|
|
|
|
|
|
args[idx] = ASSOCIATIVITY(a, b);
|
2020-09-04 19:24:20 +02:00
|
|
|
}
|
|
|
|
#undef ASSOCIATIVITY
|
|
|
|
|
|
|
|
return H_SUCCESS;
|
|
|
|
}
|
|
|
|
|
|
|
|
static void spapr_numa_register_types(void)
|
|
|
|
{
|
|
|
|
/* Virtual Processor Home Node */
|
|
|
|
spapr_register_hypercall(H_HOME_NODE_ASSOCIATIVITY,
|
|
|
|
h_home_node_associativity);
|
|
|
|
}
|
|
|
|
|
|
|
|
type_init(spapr_numa_register_types)
|