315 lines
8.6 KiB
C
Raw Normal View History

#ifndef QEMU_H
#define QEMU_H
#include "thunk.h"
#include <signal.h>
#include <string.h>
#include "syscall_defs.h"
#include "cpu.h"
#include "syscall.h"
#include "gdbstub.h"
/* This struct is used to hold certain information about the image.
* Basically, it replicates in user space what would be certain
* task_struct fields in the kernel
*/
struct image_info {
unsigned long start_code;
unsigned long end_code;
unsigned long start_data;
unsigned long end_data;
unsigned long start_brk;
unsigned long brk;
unsigned long start_mmap;
unsigned long mmap;
unsigned long rss;
unsigned long start_stack;
unsigned long entry;
target_ulong code_offset;
target_ulong data_offset;
char **host_argv;
int personality;
};
#ifdef TARGET_I386
/* Information about the current linux thread */
struct vm86_saved_state {
uint32_t eax; /* return code */
uint32_t ebx;
uint32_t ecx;
uint32_t edx;
uint32_t esi;
uint32_t edi;
uint32_t ebp;
uint32_t esp;
uint32_t eflags;
uint32_t eip;
uint16_t cs, ss, ds, es, fs, gs;
};
#endif
#ifdef TARGET_ARM
/* FPU emulator */
#include "nwfpe/fpa11.h"
#endif
/* NOTE: we force a big alignment so that the stack stored after is
aligned too */
typedef struct TaskState {
struct TaskState *next;
#ifdef TARGET_ARM
/* FPA state */
FPA11 fpa;
int swi_errno;
#endif
#if defined(TARGET_I386) && !defined(TARGET_X86_64)
target_ulong target_v86;
struct vm86_saved_state vm86_saved_regs;
struct target_vm86plus_struct vm86plus;
uint32_t v86flags;
uint32_t v86mask;
#endif
#ifdef TARGET_M68K
int sim_syscalls;
#endif
#if defined(TARGET_ARM) || defined(TARGET_M68K)
/* Extra fields for semihosted binaries. */
uint32_t stack_base;
uint32_t heap_base;
uint32_t heap_limit;
#endif
int used; /* non zero if used */
struct image_info *info;
uint8_t stack[0];
} __attribute__((aligned(16))) TaskState;
extern TaskState *first_task_state;
extern const char *qemu_uname_release;
/* ??? See if we can avoid exposing so much of the loader internals. */
/*
* MAX_ARG_PAGES defines the number of pages allocated for arguments
* and envelope for the new program. 32 should suffice, this gives
* a maximum env+arg of 128kB w/4KB pages!
*/
#define MAX_ARG_PAGES 32
/*
* This structure is used to hold the arguments that are
* used when loading binaries.
*/
struct linux_binprm {
char buf[128];
void *page[MAX_ARG_PAGES];
unsigned long p;
int fd;
int e_uid, e_gid;
int argc, envc;
char **argv;
char **envp;
char * filename; /* Name of binary */
};
void do_init_thread(struct target_pt_regs *regs, struct image_info *infop);
target_ulong loader_build_argptr(int envc, int argc, target_ulong sp,
target_ulong stringp, int push_ptr);
int loader_exec(const char * filename, char ** argv, char ** envp,
struct target_pt_regs * regs, struct image_info *infop);
int load_elf_binary(struct linux_binprm * bprm, struct target_pt_regs * regs,
struct image_info * info);
int load_flt_binary(struct linux_binprm * bprm, struct target_pt_regs * regs,
struct image_info * info);
void memcpy_to_target(target_ulong dest, const void *src,
unsigned long len);
void target_set_brk(target_ulong new_brk);
long do_brk(target_ulong new_brk);
void syscall_init(void);
long do_syscall(void *cpu_env, int num, long arg1, long arg2, long arg3,
long arg4, long arg5, long arg6);
void gemu_log(const char *fmt, ...) __attribute__((format(printf,1,2)));
extern CPUState *global_env;
void cpu_loop(CPUState *env);
void init_paths(const char *prefix);
const char *path(const char *pathname);
extern int loglevel;
extern FILE *logfile;
/* signal.c */
void process_pending_signals(void *cpu_env);
void signal_init(void);
int queue_signal(int sig, target_siginfo_t *info);
void host_to_target_siginfo(target_siginfo_t *tinfo, const siginfo_t *info);
void target_to_host_siginfo(siginfo_t *info, const target_siginfo_t *tinfo);
long do_sigreturn(CPUState *env);
long do_rt_sigreturn(CPUState *env);
#ifdef TARGET_I386
/* vm86.c */
void save_v86_state(CPUX86State *env);
void handle_vm86_trap(CPUX86State *env, int trapno);
void handle_vm86_fault(CPUX86State *env);
int do_vm86(CPUX86State *env, long subfunction, target_ulong v86_addr);
#endif
/* mmap.c */
int target_mprotect(target_ulong start, target_ulong len, int prot);
long target_mmap(target_ulong start, target_ulong len, int prot,
int flags, int fd, target_ulong offset);
int target_munmap(target_ulong start, target_ulong len);
long target_mremap(target_ulong old_addr, target_ulong old_size,
target_ulong new_size, unsigned long flags,
target_ulong new_addr);
int target_msync(target_ulong start, target_ulong len, int flags);
/* user access */
#define VERIFY_READ 0
#define VERIFY_WRITE 1
#define access_ok(type,addr,size) (1)
/* NOTE get_user and put_user use host addresses. */
#define __put_user(x,ptr)\
({\
int size = sizeof(*ptr);\
switch(size) {\
case 1:\
*(uint8_t *)(ptr) = (typeof(*ptr))(x);\
break;\
case 2:\
*(uint16_t *)(ptr) = tswap16((typeof(*ptr))(x));\
break;\
case 4:\
*(uint32_t *)(ptr) = tswap32((typeof(*ptr))(x));\
break;\
case 8:\
*(uint64_t *)(ptr) = tswap64((typeof(*ptr))(x));\
break;\
default:\
abort();\
}\
0;\
})
#define __get_user(x, ptr) \
({\
int size = sizeof(*ptr);\
switch(size) {\
case 1:\
x = (typeof(*ptr))*(uint8_t *)(ptr);\
break;\
case 2:\
x = (typeof(*ptr))tswap16(*(uint16_t *)(ptr));\
break;\
case 4:\
x = (typeof(*ptr))tswap32(*(uint32_t *)(ptr));\
break;\
case 8:\
x = (typeof(*ptr))tswap64(*(uint64_t *)(ptr));\
break;\
default:\
abort();\
}\
0;\
})
#define put_user(x,ptr)\
({\
int __ret;\
if (access_ok(VERIFY_WRITE, ptr, sizeof(*ptr)))\
__ret = __put_user(x, ptr);\
else\
__ret = -EFAULT;\
__ret;\
})
#define get_user(x,ptr)\
({\
int __ret;\
if (access_ok(VERIFY_READ, ptr, sizeof(*ptr)))\
__ret = __get_user(x, ptr);\
else\
__ret = -EFAULT;\
__ret;\
})
/* Functions for accessing guest memory. The tget and tput functions
read/write single values, byteswapping as neccessary. The lock_user
gets a pointer to a contiguous area of guest memory, but does not perform
and byteswapping. lock_user may return either a pointer to the guest
memory, or a temporary buffer. */
/* Lock an area of guest memory into the host. If copy is true then the
host area will have the same contents as the guest. */
static inline void *lock_user(target_ulong guest_addr, long len, int copy)
{
#ifdef DEBUG_REMAP
void *addr;
addr = malloc(len);
if (copy)
memcpy(addr, g2h(guest_addr), len);
else
memset(addr, 0, len);
return addr;
#else
return g2h(guest_addr);
#endif
}
/* Unlock an area of guest memory. The first LEN bytes must be flushed back
to guest memory. */
static inline void unlock_user(void *host_addr, target_ulong guest_addr,
long len)
{
#ifdef DEBUG_REMAP
if (host_addr == g2h(guest_addr))
return;
if (len > 0)
memcpy(g2h(guest_addr), host_addr, len);
free(host_addr);
#endif
}
/* Return the length of a string in target memory. */
static inline int target_strlen(target_ulong ptr)
{
return strlen(g2h(ptr));
}
/* Like lock_user but for null terminated strings. */
static inline void *lock_user_string(target_ulong guest_addr)
{
long len;
len = target_strlen(guest_addr) + 1;
return lock_user(guest_addr, len, 1);
}
/* Helper macros for locking/ulocking a target struct. */
#define lock_user_struct(host_ptr, guest_addr, copy) \
host_ptr = lock_user(guest_addr, sizeof(*host_ptr), copy)
#define unlock_user_struct(host_ptr, guest_addr, copy) \
unlock_user(host_ptr, guest_addr, (copy) ? sizeof(*host_ptr) : 0)
#define tget8(addr) ldub(addr)
#define tput8(addr, val) stb(addr, val)
#define tget16(addr) lduw(addr)
#define tput16(addr, val) stw(addr, val)
#define tget32(addr) ldl(addr)
#define tput32(addr, val) stl(addr, val)
#define tget64(addr) ldq(addr)
#define tput64(addr, val) stq(addr, val)
#if TARGET_LONG_BITS == 64
#define tgetl(addr) ldq(addr)
#define tputl(addr, val) stq(addr, val)
#else
#define tgetl(addr) ldl(addr)
#define tputl(addr, val) stl(addr, val)
#endif
#endif /* QEMU_H */