qemu-e2k/hw/misc/aspeed_scu.c

459 lines
13 KiB
C
Raw Normal View History

/*
* ASPEED System Control Unit
*
* Andrew Jeffery <andrew@aj.id.au>
*
* Copyright 2016 IBM Corp.
*
* This code is licensed under the GPL version 2 or later. See
* the COPYING file in the top-level directory.
*/
#include "qemu/osdep.h"
#include "hw/misc/aspeed_scu.h"
#include "hw/qdev-properties.h"
#include "qapi/error.h"
#include "qapi/visitor.h"
#include "qemu/bitops.h"
#include "qemu/log.h"
#include "crypto/random.h"
#include "trace.h"
#define TO_REG(offset) ((offset) >> 2)
#define PROT_KEY TO_REG(0x00)
#define SYS_RST_CTRL TO_REG(0x04)
#define CLK_SEL TO_REG(0x08)
#define CLK_STOP_CTRL TO_REG(0x0C)
#define FREQ_CNTR_CTRL TO_REG(0x10)
#define FREQ_CNTR_EVAL TO_REG(0x14)
#define IRQ_CTRL TO_REG(0x18)
#define D2PLL_PARAM TO_REG(0x1C)
#define MPLL_PARAM TO_REG(0x20)
#define HPLL_PARAM TO_REG(0x24)
#define FREQ_CNTR_RANGE TO_REG(0x28)
#define MISC_CTRL1 TO_REG(0x2C)
#define PCI_CTRL1 TO_REG(0x30)
#define PCI_CTRL2 TO_REG(0x34)
#define PCI_CTRL3 TO_REG(0x38)
#define SYS_RST_STATUS TO_REG(0x3C)
#define SOC_SCRATCH1 TO_REG(0x40)
#define SOC_SCRATCH2 TO_REG(0x44)
#define MAC_CLK_DELAY TO_REG(0x48)
#define MISC_CTRL2 TO_REG(0x4C)
#define VGA_SCRATCH1 TO_REG(0x50)
#define VGA_SCRATCH2 TO_REG(0x54)
#define VGA_SCRATCH3 TO_REG(0x58)
#define VGA_SCRATCH4 TO_REG(0x5C)
#define VGA_SCRATCH5 TO_REG(0x60)
#define VGA_SCRATCH6 TO_REG(0x64)
#define VGA_SCRATCH7 TO_REG(0x68)
#define VGA_SCRATCH8 TO_REG(0x6C)
#define HW_STRAP1 TO_REG(0x70)
#define RNG_CTRL TO_REG(0x74)
#define RNG_DATA TO_REG(0x78)
#define SILICON_REV TO_REG(0x7C)
#define PINMUX_CTRL1 TO_REG(0x80)
#define PINMUX_CTRL2 TO_REG(0x84)
#define PINMUX_CTRL3 TO_REG(0x88)
#define PINMUX_CTRL4 TO_REG(0x8C)
#define PINMUX_CTRL5 TO_REG(0x90)
#define PINMUX_CTRL6 TO_REG(0x94)
#define WDT_RST_CTRL TO_REG(0x9C)
#define PINMUX_CTRL7 TO_REG(0xA0)
#define PINMUX_CTRL8 TO_REG(0xA4)
#define PINMUX_CTRL9 TO_REG(0xA8)
#define WAKEUP_EN TO_REG(0xC0)
#define WAKEUP_CTRL TO_REG(0xC4)
#define HW_STRAP2 TO_REG(0xD0)
#define FREE_CNTR4 TO_REG(0xE0)
#define FREE_CNTR4_EXT TO_REG(0xE4)
#define CPU2_CTRL TO_REG(0x100)
#define CPU2_BASE_SEG1 TO_REG(0x104)
#define CPU2_BASE_SEG2 TO_REG(0x108)
#define CPU2_BASE_SEG3 TO_REG(0x10C)
#define CPU2_BASE_SEG4 TO_REG(0x110)
#define CPU2_BASE_SEG5 TO_REG(0x114)
#define CPU2_CACHE_CTRL TO_REG(0x118)
#define UART_HPLL_CLK TO_REG(0x160)
#define PCIE_CTRL TO_REG(0x180)
#define BMC_MMIO_CTRL TO_REG(0x184)
#define RELOC_DECODE_BASE1 TO_REG(0x188)
#define RELOC_DECODE_BASE2 TO_REG(0x18C)
#define MAILBOX_DECODE_BASE TO_REG(0x190)
#define SRAM_DECODE_BASE1 TO_REG(0x194)
#define SRAM_DECODE_BASE2 TO_REG(0x198)
#define BMC_REV TO_REG(0x19C)
#define BMC_DEV_ID TO_REG(0x1A4)
#define SCU_IO_REGION_SIZE 0x1000
static const uint32_t ast2400_a0_resets[ASPEED_SCU_NR_REGS] = {
[SYS_RST_CTRL] = 0xFFCFFEDCU,
[CLK_SEL] = 0xF3F40000U,
[CLK_STOP_CTRL] = 0x19FC3E8BU,
[D2PLL_PARAM] = 0x00026108U,
[MPLL_PARAM] = 0x00030291U,
[HPLL_PARAM] = 0x00000291U,
[MISC_CTRL1] = 0x00000010U,
[PCI_CTRL1] = 0x20001A03U,
[PCI_CTRL2] = 0x20001A03U,
[PCI_CTRL3] = 0x04000030U,
[SYS_RST_STATUS] = 0x00000001U,
[SOC_SCRATCH1] = 0x000000C0U, /* SoC completed DRAM init */
[MISC_CTRL2] = 0x00000023U,
[RNG_CTRL] = 0x0000000EU,
[PINMUX_CTRL2] = 0x0000F000U,
[PINMUX_CTRL3] = 0x01000000U,
[PINMUX_CTRL4] = 0x000000FFU,
[PINMUX_CTRL5] = 0x0000A000U,
[WDT_RST_CTRL] = 0x003FFFF3U,
[PINMUX_CTRL8] = 0xFFFF0000U,
[PINMUX_CTRL9] = 0x000FFFFFU,
[FREE_CNTR4] = 0x000000FFU,
[FREE_CNTR4_EXT] = 0x000000FFU,
[CPU2_BASE_SEG1] = 0x80000000U,
[CPU2_BASE_SEG4] = 0x1E600000U,
[CPU2_BASE_SEG5] = 0xC0000000U,
[UART_HPLL_CLK] = 0x00001903U,
[PCIE_CTRL] = 0x0000007BU,
[BMC_DEV_ID] = 0x00002402U
};
/* SCU70 bit 23: 0 24Mhz. bit 11:9: 0b001 AXI:ABH ratio 2:1 */
/* AST2500 revision A1 */
static const uint32_t ast2500_a1_resets[ASPEED_SCU_NR_REGS] = {
[SYS_RST_CTRL] = 0xFFCFFEDCU,
[CLK_SEL] = 0xF3F40000U,
[CLK_STOP_CTRL] = 0x19FC3E8BU,
[D2PLL_PARAM] = 0x00026108U,
[MPLL_PARAM] = 0x00030291U,
[HPLL_PARAM] = 0x93000400U,
[MISC_CTRL1] = 0x00000010U,
[PCI_CTRL1] = 0x20001A03U,
[PCI_CTRL2] = 0x20001A03U,
[PCI_CTRL3] = 0x04000030U,
[SYS_RST_STATUS] = 0x00000001U,
[SOC_SCRATCH1] = 0x000000C0U, /* SoC completed DRAM init */
[MISC_CTRL2] = 0x00000023U,
[RNG_CTRL] = 0x0000000EU,
[PINMUX_CTRL2] = 0x0000F000U,
[PINMUX_CTRL3] = 0x03000000U,
[PINMUX_CTRL4] = 0x00000000U,
[PINMUX_CTRL5] = 0x0000A000U,
[WDT_RST_CTRL] = 0x023FFFF3U,
[PINMUX_CTRL8] = 0xFFFF0000U,
[PINMUX_CTRL9] = 0x000FFFFFU,
[FREE_CNTR4] = 0x000000FFU,
[FREE_CNTR4_EXT] = 0x000000FFU,
[CPU2_BASE_SEG1] = 0x80000000U,
[CPU2_BASE_SEG4] = 0x1E600000U,
[CPU2_BASE_SEG5] = 0xC0000000U,
[UART_HPLL_CLK] = 0x00001903U,
[PCIE_CTRL] = 0x0000007BU,
[BMC_DEV_ID] = 0x00002402U
};
static uint32_t aspeed_scu_get_random(void)
{
Error *err = NULL;
uint32_t num;
if (qcrypto_random_bytes((uint8_t *)&num, sizeof(num), &err)) {
error_report_err(err);
exit(1);
}
return num;
}
static void aspeed_scu_set_apb_freq(AspeedSCUState *s)
{
uint32_t apb_divider;
switch (s->silicon_rev) {
case AST2400_A0_SILICON_REV:
case AST2400_A1_SILICON_REV:
apb_divider = 2;
break;
case AST2500_A0_SILICON_REV:
case AST2500_A1_SILICON_REV:
apb_divider = 4;
break;
default:
g_assert_not_reached();
}
s->apb_freq = s->hpll / (SCU_CLK_GET_PCLK_DIV(s->regs[CLK_SEL]) + 1)
/ apb_divider;
}
static uint64_t aspeed_scu_read(void *opaque, hwaddr offset, unsigned size)
{
AspeedSCUState *s = ASPEED_SCU(opaque);
int reg = TO_REG(offset);
if (reg >= ARRAY_SIZE(s->regs)) {
qemu_log_mask(LOG_GUEST_ERROR,
"%s: Out-of-bounds read at offset 0x%" HWADDR_PRIx "\n",
__func__, offset);
return 0;
}
switch (reg) {
case RNG_DATA:
/* On hardware, RNG_DATA works regardless of
* the state of the enable bit in RNG_CTRL
*/
s->regs[RNG_DATA] = aspeed_scu_get_random();
break;
case WAKEUP_EN:
qemu_log_mask(LOG_GUEST_ERROR,
"%s: Read of write-only offset 0x%" HWADDR_PRIx "\n",
__func__, offset);
break;
}
return s->regs[reg];
}
static void aspeed_scu_write(void *opaque, hwaddr offset, uint64_t data,
unsigned size)
{
AspeedSCUState *s = ASPEED_SCU(opaque);
int reg = TO_REG(offset);
if (reg >= ARRAY_SIZE(s->regs)) {
qemu_log_mask(LOG_GUEST_ERROR,
"%s: Out-of-bounds write at offset 0x%" HWADDR_PRIx "\n",
__func__, offset);
return;
}
if (reg > PROT_KEY && reg < CPU2_BASE_SEG1 &&
Fix ast2500 protection register emulation Some register blocks of the ast2500 are protected by protection key registers which require the right magic value to be written to those registers to allow those registers to be mutated. Register manuals indicate that writing the correct magic value to these registers should cause subsequent reads from those values to return 1, and writing any other value should cause subsequent reads to return 0. Previously, qemu implemented these registers incorrectly: the registers were handled as simple memory, meaning that writing some value x to a protection key register would result in subsequent reads from that register returning the same value x. The protection was implemented by ensuring that the current value of that register equaled the magic value. This modifies qemu to have the correct behaviour: attempts to write to a ast2500 protection register results in a transition to 1 or 0 depending on whether the written value is the correct magic. The protection logic is updated to ensure that the value of the register is nonzero. This bug caused deadlocks with u-boot HEAD: when u-boot is done with a protectable register block, it attempts to lock it by writing the bitwise inverse of the correct magic value, and then spinning forever until the register reads as zero. Since qemu implemented writes to these registers as ordinary memory writes, writing the inverse of the magic value resulted in subsequent reads returning that value, leading to u-boot spinning forever. Signed-off-by: Hugo Landau <hlandau@devever.net> Reviewed-by: Cédric Le Goater <clg@kaod.org> Acked-by: Andrew Jeffery <andrew@aj.id.au> Message-id: 20180220132627.4163-1-hlandau@devever.net [PMM: fixed incorrect code indentation] Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
2018-02-22 16:12:51 +01:00
!s->regs[PROT_KEY]) {
qemu_log_mask(LOG_GUEST_ERROR, "%s: SCU is locked!\n", __func__);
return;
}
trace_aspeed_scu_write(offset, size, data);
switch (reg) {
Fix ast2500 protection register emulation Some register blocks of the ast2500 are protected by protection key registers which require the right magic value to be written to those registers to allow those registers to be mutated. Register manuals indicate that writing the correct magic value to these registers should cause subsequent reads from those values to return 1, and writing any other value should cause subsequent reads to return 0. Previously, qemu implemented these registers incorrectly: the registers were handled as simple memory, meaning that writing some value x to a protection key register would result in subsequent reads from that register returning the same value x. The protection was implemented by ensuring that the current value of that register equaled the magic value. This modifies qemu to have the correct behaviour: attempts to write to a ast2500 protection register results in a transition to 1 or 0 depending on whether the written value is the correct magic. The protection logic is updated to ensure that the value of the register is nonzero. This bug caused deadlocks with u-boot HEAD: when u-boot is done with a protectable register block, it attempts to lock it by writing the bitwise inverse of the correct magic value, and then spinning forever until the register reads as zero. Since qemu implemented writes to these registers as ordinary memory writes, writing the inverse of the magic value resulted in subsequent reads returning that value, leading to u-boot spinning forever. Signed-off-by: Hugo Landau <hlandau@devever.net> Reviewed-by: Cédric Le Goater <clg@kaod.org> Acked-by: Andrew Jeffery <andrew@aj.id.au> Message-id: 20180220132627.4163-1-hlandau@devever.net [PMM: fixed incorrect code indentation] Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
2018-02-22 16:12:51 +01:00
case PROT_KEY:
s->regs[reg] = (data == ASPEED_SCU_PROT_KEY) ? 1 : 0;
return;
case CLK_SEL:
s->regs[reg] = data;
aspeed_scu_set_apb_freq(s);
break;
Fix ast2500 protection register emulation Some register blocks of the ast2500 are protected by protection key registers which require the right magic value to be written to those registers to allow those registers to be mutated. Register manuals indicate that writing the correct magic value to these registers should cause subsequent reads from those values to return 1, and writing any other value should cause subsequent reads to return 0. Previously, qemu implemented these registers incorrectly: the registers were handled as simple memory, meaning that writing some value x to a protection key register would result in subsequent reads from that register returning the same value x. The protection was implemented by ensuring that the current value of that register equaled the magic value. This modifies qemu to have the correct behaviour: attempts to write to a ast2500 protection register results in a transition to 1 or 0 depending on whether the written value is the correct magic. The protection logic is updated to ensure that the value of the register is nonzero. This bug caused deadlocks with u-boot HEAD: when u-boot is done with a protectable register block, it attempts to lock it by writing the bitwise inverse of the correct magic value, and then spinning forever until the register reads as zero. Since qemu implemented writes to these registers as ordinary memory writes, writing the inverse of the magic value resulted in subsequent reads returning that value, leading to u-boot spinning forever. Signed-off-by: Hugo Landau <hlandau@devever.net> Reviewed-by: Cédric Le Goater <clg@kaod.org> Acked-by: Andrew Jeffery <andrew@aj.id.au> Message-id: 20180220132627.4163-1-hlandau@devever.net [PMM: fixed incorrect code indentation] Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
2018-02-22 16:12:51 +01:00
case FREQ_CNTR_EVAL:
case VGA_SCRATCH1 ... VGA_SCRATCH8:
case RNG_DATA:
case SILICON_REV:
case FREE_CNTR4:
case FREE_CNTR4_EXT:
qemu_log_mask(LOG_GUEST_ERROR,
"%s: Write to read-only offset 0x%" HWADDR_PRIx "\n",
__func__, offset);
return;
}
s->regs[reg] = data;
}
static const MemoryRegionOps aspeed_scu_ops = {
.read = aspeed_scu_read,
.write = aspeed_scu_write,
.endianness = DEVICE_LITTLE_ENDIAN,
.valid.min_access_size = 4,
.valid.max_access_size = 4,
.valid.unaligned = false,
};
static uint32_t aspeed_scu_get_clkin(AspeedSCUState *s)
{
if (s->hw_strap1 & SCU_HW_STRAP_CLK_25M_IN) {
return 25000000;
} else if (s->hw_strap1 & SCU_HW_STRAP_CLK_48M_IN) {
return 48000000;
} else {
return 24000000;
}
}
/*
* Strapped frequencies for the AST2400 in MHz. They depend on the
* clkin frequency.
*/
static const uint32_t hpll_ast2400_freqs[][4] = {
{ 384, 360, 336, 408 }, /* 24MHz or 48MHz */
{ 400, 375, 350, 425 }, /* 25MHz */
};
static uint32_t aspeed_scu_calc_hpll_ast2400(AspeedSCUState *s)
{
uint32_t hpll_reg = s->regs[HPLL_PARAM];
uint8_t freq_select;
bool clk_25m_in;
if (hpll_reg & SCU_AST2400_H_PLL_OFF) {
return 0;
}
if (hpll_reg & SCU_AST2400_H_PLL_PROGRAMMED) {
uint32_t multiplier = 1;
if (!(hpll_reg & SCU_AST2400_H_PLL_BYPASS_EN)) {
uint32_t n = (hpll_reg >> 5) & 0x3f;
uint32_t od = (hpll_reg >> 4) & 0x1;
uint32_t d = hpll_reg & 0xf;
multiplier = (2 - od) * ((n + 2) / (d + 1));
}
return s->clkin * multiplier;
}
/* HW strapping */
clk_25m_in = !!(s->hw_strap1 & SCU_HW_STRAP_CLK_25M_IN);
freq_select = SCU_AST2400_HW_STRAP_GET_H_PLL_CLK(s->hw_strap1);
return hpll_ast2400_freqs[clk_25m_in][freq_select] * 1000000;
}
static uint32_t aspeed_scu_calc_hpll_ast2500(AspeedSCUState *s)
{
uint32_t hpll_reg = s->regs[HPLL_PARAM];
uint32_t multiplier = 1;
if (hpll_reg & SCU_H_PLL_OFF) {
return 0;
}
if (!(hpll_reg & SCU_H_PLL_BYPASS_EN)) {
uint32_t p = (hpll_reg >> 13) & 0x3f;
uint32_t m = (hpll_reg >> 5) & 0xff;
uint32_t n = hpll_reg & 0x1f;
multiplier = ((m + 1) / (n + 1)) / (p + 1);
}
return s->clkin * multiplier;
}
static void aspeed_scu_reset(DeviceState *dev)
{
AspeedSCUState *s = ASPEED_SCU(dev);
const uint32_t *reset;
uint32_t (*calc_hpll)(AspeedSCUState *s);
switch (s->silicon_rev) {
case AST2400_A0_SILICON_REV:
case AST2400_A1_SILICON_REV:
reset = ast2400_a0_resets;
calc_hpll = aspeed_scu_calc_hpll_ast2400;
break;
case AST2500_A0_SILICON_REV:
case AST2500_A1_SILICON_REV:
reset = ast2500_a1_resets;
calc_hpll = aspeed_scu_calc_hpll_ast2500;
break;
default:
g_assert_not_reached();
}
memcpy(s->regs, reset, sizeof(s->regs));
s->regs[SILICON_REV] = s->silicon_rev;
s->regs[HW_STRAP1] = s->hw_strap1;
s->regs[HW_STRAP2] = s->hw_strap2;
s->regs[PROT_KEY] = s->hw_prot_key;
/*
* All registers are set. Now compute the frequencies of the main clocks
*/
s->clkin = aspeed_scu_get_clkin(s);
s->hpll = calc_hpll(s);
aspeed_scu_set_apb_freq(s);
}
static uint32_t aspeed_silicon_revs[] = {
AST2400_A0_SILICON_REV,
AST2400_A1_SILICON_REV,
AST2500_A0_SILICON_REV,
AST2500_A1_SILICON_REV,
};
bool is_supported_silicon_rev(uint32_t silicon_rev)
{
int i;
for (i = 0; i < ARRAY_SIZE(aspeed_silicon_revs); i++) {
if (silicon_rev == aspeed_silicon_revs[i]) {
return true;
}
}
return false;
}
static void aspeed_scu_realize(DeviceState *dev, Error **errp)
{
SysBusDevice *sbd = SYS_BUS_DEVICE(dev);
AspeedSCUState *s = ASPEED_SCU(dev);
if (!is_supported_silicon_rev(s->silicon_rev)) {
error_setg(errp, "Unknown silicon revision: 0x%" PRIx32,
s->silicon_rev);
return;
}
memory_region_init_io(&s->iomem, OBJECT(s), &aspeed_scu_ops, s,
TYPE_ASPEED_SCU, SCU_IO_REGION_SIZE);
sysbus_init_mmio(sbd, &s->iomem);
}
static const VMStateDescription vmstate_aspeed_scu = {
.name = "aspeed.scu",
.version_id = 1,
.minimum_version_id = 1,
.fields = (VMStateField[]) {
VMSTATE_UINT32_ARRAY(regs, AspeedSCUState, ASPEED_SCU_NR_REGS),
VMSTATE_END_OF_LIST()
}
};
static Property aspeed_scu_properties[] = {
DEFINE_PROP_UINT32("silicon-rev", AspeedSCUState, silicon_rev, 0),
DEFINE_PROP_UINT32("hw-strap1", AspeedSCUState, hw_strap1, 0),
DEFINE_PROP_UINT32("hw-strap2", AspeedSCUState, hw_strap2, 0),
DEFINE_PROP_UINT32("hw-prot-key", AspeedSCUState, hw_prot_key, 0),
DEFINE_PROP_END_OF_LIST(),
};
static void aspeed_scu_class_init(ObjectClass *klass, void *data)
{
DeviceClass *dc = DEVICE_CLASS(klass);
dc->realize = aspeed_scu_realize;
dc->reset = aspeed_scu_reset;
dc->desc = "ASPEED System Control Unit";
dc->vmsd = &vmstate_aspeed_scu;
dc->props = aspeed_scu_properties;
}
static const TypeInfo aspeed_scu_info = {
.name = TYPE_ASPEED_SCU,
.parent = TYPE_SYS_BUS_DEVICE,
.instance_size = sizeof(AspeedSCUState),
.class_init = aspeed_scu_class_init,
};
static void aspeed_scu_register_types(void)
{
type_register_static(&aspeed_scu_info);
}
type_init(aspeed_scu_register_types);