qemu-e2k/hw/acpi.c

443 lines
12 KiB
C
Raw Normal View History

/*
* ACPI implementation
*
* Copyright (c) 2006 Fabrice Bellard
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License version 2 as published by the Free Software Foundation.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, see <http://www.gnu.org/licenses/>
*/
#include "sysemu.h"
#include "hw.h"
#include "pc.h"
#include "acpi.h"
struct acpi_table_header {
uint16_t _length; /* our length, not actual part of the hdr */
/* XXX why we have 2 length fields here? */
char sig[4]; /* ACPI signature (4 ASCII characters) */
uint32_t length; /* Length of table, in bytes, including header */
uint8_t revision; /* ACPI Specification minor version # */
uint8_t checksum; /* To make sum of entire table == 0 */
char oem_id[6]; /* OEM identification */
char oem_table_id[8]; /* OEM table identification */
uint32_t oem_revision; /* OEM revision number */
char asl_compiler_id[4]; /* ASL compiler vendor ID */
uint32_t asl_compiler_revision; /* ASL compiler revision number */
} QEMU_PACKED;
#define ACPI_TABLE_HDR_SIZE sizeof(struct acpi_table_header)
#define ACPI_TABLE_PFX_SIZE sizeof(uint16_t) /* size of the extra prefix */
static const char dfl_hdr[ACPI_TABLE_HDR_SIZE] =
"\0\0" /* fake _length (2) */
"QEMU\0\0\0\0\1\0" /* sig (4), len(4), revno (1), csum (1) */
"QEMUQEQEMUQEMU\1\0\0\0" /* OEM id (6), table (8), revno (4) */
"QEMU\1\0\0\0" /* ASL compiler ID (4), version (4) */
;
char *acpi_tables;
size_t acpi_tables_len;
static int acpi_checksum(const uint8_t *data, int len)
{
int sum, i;
sum = 0;
for (i = 0; i < len; i++) {
sum += data[i];
}
return (-sum) & 0xff;
}
/* like strncpy() but zero-fills the tail of destination */
static void strzcpy(char *dst, const char *src, size_t size)
{
size_t len = strlen(src);
if (len >= size) {
len = size;
} else {
memset(dst + len, 0, size - len);
}
memcpy(dst, src, len);
}
/* XXX fixme: this function uses obsolete argument parsing interface */
int acpi_table_add(const char *t)
{
char buf[1024], *p, *f;
unsigned long val;
size_t len, start, allen;
bool has_header;
int changed;
int r;
struct acpi_table_header hdr;
r = 0;
r |= get_param_value(buf, sizeof(buf), "data", t) ? 1 : 0;
r |= get_param_value(buf, sizeof(buf), "file", t) ? 2 : 0;
switch (r) {
case 0:
buf[0] = '\0';
/* fallthrough for default behavior */
case 1:
has_header = false;
break;
case 2:
has_header = true;
break;
default:
fprintf(stderr, "acpitable: both data and file are specified\n");
return -1;
}
if (!acpi_tables) {
allen = sizeof(uint16_t);
acpi_tables = g_malloc0(allen);
} else {
allen = acpi_tables_len;
}
start = allen;
acpi_tables = g_realloc(acpi_tables, start + ACPI_TABLE_HDR_SIZE);
allen += has_header ? ACPI_TABLE_PFX_SIZE : ACPI_TABLE_HDR_SIZE;
/* now read in the data files, reallocating buffer as needed */
for (f = strtok(buf, ":"); f; f = strtok(NULL, ":")) {
int fd = open(f, O_RDONLY);
if (fd < 0) {
fprintf(stderr, "can't open file %s: %s\n", f, strerror(errno));
return -1;
}
for (;;) {
char data[8192];
r = read(fd, data, sizeof(data));
if (r == 0) {
break;
} else if (r > 0) {
acpi_tables = g_realloc(acpi_tables, allen + r);
memcpy(acpi_tables + allen, data, r);
allen += r;
} else if (errno != EINTR) {
fprintf(stderr, "can't read file %s: %s\n",
f, strerror(errno));
close(fd);
return -1;
}
}
close(fd);
}
/* now fill in the header fields */
f = acpi_tables + start; /* start of the table */
changed = 0;
/* copy the header to temp place to align the fields */
memcpy(&hdr, has_header ? f : dfl_hdr, ACPI_TABLE_HDR_SIZE);
/* length of the table minus our prefix */
len = allen - start - ACPI_TABLE_PFX_SIZE;
hdr._length = cpu_to_le16(len);
if (get_param_value(buf, sizeof(buf), "sig", t)) {
strzcpy(hdr.sig, buf, sizeof(hdr.sig));
++changed;
}
/* length of the table including header, in bytes */
if (has_header) {
/* check if actual length is correct */
val = le32_to_cpu(hdr.length);
if (val != len) {
fprintf(stderr,
"warning: acpitable has wrong length,"
" header says %lu, actual size %zu bytes\n",
val, len);
++changed;
}
}
/* we may avoid putting length here if has_header is true */
hdr.length = cpu_to_le32(len);
if (get_param_value(buf, sizeof(buf), "rev", t)) {
val = strtoul(buf, &p, 0);
if (val > 255 || *p) {
fprintf(stderr, "acpitable: \"rev=%s\" is invalid\n", buf);
return -1;
}
hdr.revision = (uint8_t)val;
++changed;
}
if (get_param_value(buf, sizeof(buf), "oem_id", t)) {
strzcpy(hdr.oem_id, buf, sizeof(hdr.oem_id));
++changed;
}
if (get_param_value(buf, sizeof(buf), "oem_table_id", t)) {
strzcpy(hdr.oem_table_id, buf, sizeof(hdr.oem_table_id));
++changed;
}
if (get_param_value(buf, sizeof(buf), "oem_rev", t)) {
val = strtol(buf, &p, 0);
if (*p) {
fprintf(stderr, "acpitable: \"oem_rev=%s\" is invalid\n", buf);
return -1;
}
hdr.oem_revision = cpu_to_le32(val);
++changed;
}
if (get_param_value(buf, sizeof(buf), "asl_compiler_id", t)) {
strzcpy(hdr.asl_compiler_id, buf, sizeof(hdr.asl_compiler_id));
++changed;
}
if (get_param_value(buf, sizeof(buf), "asl_compiler_rev", t)) {
val = strtol(buf, &p, 0);
if (*p) {
fprintf(stderr, "acpitable: \"%s=%s\" is invalid\n",
"asl_compiler_rev", buf);
return -1;
}
hdr.asl_compiler_revision = cpu_to_le32(val);
++changed;
}
if (!has_header && !changed) {
fprintf(stderr, "warning: acpitable: no table headers are specified\n");
}
/* now calculate checksum of the table, complete with the header */
/* we may as well leave checksum intact if has_header is true */
/* alternatively there may be a way to set cksum to a given value */
hdr.checksum = 0; /* for checksum calculation */
/* put header back */
memcpy(f, &hdr, sizeof(hdr));
if (changed || !has_header || 1) {
((struct acpi_table_header *)f)->checksum =
acpi_checksum((uint8_t *)f + ACPI_TABLE_PFX_SIZE, len);
}
/* increase number of tables */
(*(uint16_t *)acpi_tables) =
cpu_to_le32(le32_to_cpu(*(uint16_t *)acpi_tables) + 1);
acpi_tables_len = allen;
return 0;
}
/* ACPI PM1a EVT */
uint16_t acpi_pm1_evt_get_sts(ACPIPM1EVT *pm1, int64_t overflow_time)
{
int64_t d = acpi_pm_tmr_get_clock();
if (d >= overflow_time) {
pm1->sts |= ACPI_BITMASK_TIMER_STATUS;
}
return pm1->sts;
}
void acpi_pm1_evt_write_sts(ACPIPM1EVT *pm1, ACPIPMTimer *tmr, uint16_t val)
{
uint16_t pm1_sts = acpi_pm1_evt_get_sts(pm1, tmr->overflow_time);
if (pm1_sts & val & ACPI_BITMASK_TIMER_STATUS) {
/* if TMRSTS is reset, then compute the new overflow time */
acpi_pm_tmr_calc_overflow_time(tmr);
}
pm1->sts &= ~val;
}
void acpi_pm1_evt_power_down(ACPIPM1EVT *pm1, ACPIPMTimer *tmr)
{
if (!pm1) {
qemu_system_shutdown_request();
} else if (pm1->en & ACPI_BITMASK_POWER_BUTTON_ENABLE) {
pm1->sts |= ACPI_BITMASK_POWER_BUTTON_STATUS;
tmr->update_sci(tmr);
}
}
void acpi_pm1_evt_reset(ACPIPM1EVT *pm1)
{
pm1->sts = 0;
pm1->en = 0;
}
/* ACPI PM_TMR */
void acpi_pm_tmr_update(ACPIPMTimer *tmr, bool enable)
{
int64_t expire_time;
/* schedule a timer interruption if needed */
if (enable) {
expire_time = muldiv64(tmr->overflow_time, get_ticks_per_sec(),
PM_TIMER_FREQUENCY);
qemu_mod_timer(tmr->timer, expire_time);
} else {
qemu_del_timer(tmr->timer);
}
}
void acpi_pm_tmr_calc_overflow_time(ACPIPMTimer *tmr)
{
int64_t d = acpi_pm_tmr_get_clock();
tmr->overflow_time = (d + 0x800000LL) & ~0x7fffffLL;
}
uint32_t acpi_pm_tmr_get(ACPIPMTimer *tmr)
{
uint32_t d = acpi_pm_tmr_get_clock();
return d & 0xffffff;
}
static void acpi_pm_tmr_timer(void *opaque)
{
ACPIPMTimer *tmr = opaque;
tmr->update_sci(tmr);
}
void acpi_pm_tmr_init(ACPIPMTimer *tmr, acpi_update_sci_fn update_sci)
{
tmr->update_sci = update_sci;
tmr->timer = qemu_new_timer_ns(vm_clock, acpi_pm_tmr_timer, tmr);
}
void acpi_pm_tmr_reset(ACPIPMTimer *tmr)
{
tmr->overflow_time = 0;
qemu_del_timer(tmr->timer);
}
/* ACPI PM1aCNT */
void acpi_pm1_cnt_init(ACPIPM1CNT *pm1_cnt, qemu_irq cmos_s3)
{
pm1_cnt->cmos_s3 = cmos_s3;
}
void acpi_pm1_cnt_write(ACPIPM1EVT *pm1a, ACPIPM1CNT *pm1_cnt, uint16_t val)
{
pm1_cnt->cnt = val & ~(ACPI_BITMASK_SLEEP_ENABLE);
if (val & ACPI_BITMASK_SLEEP_ENABLE) {
/* change suspend type */
uint16_t sus_typ = (val >> 10) & 7;
switch(sus_typ) {
case 0: /* soft power off */
qemu_system_shutdown_request();
break;
case 1:
/* ACPI_BITMASK_WAKE_STATUS should be set on resume.
Pretend that resume was caused by power button */
pm1a->sts |=
(ACPI_BITMASK_WAKE_STATUS | ACPI_BITMASK_POWER_BUTTON_STATUS);
qemu_system_reset_request();
qemu_irq_raise(pm1_cnt->cmos_s3);
default:
break;
}
}
}
void acpi_pm1_cnt_update(ACPIPM1CNT *pm1_cnt,
bool sci_enable, bool sci_disable)
{
/* ACPI specs 3.0, 4.7.2.5 */
if (sci_enable) {
pm1_cnt->cnt |= ACPI_BITMASK_SCI_ENABLE;
} else if (sci_disable) {
pm1_cnt->cnt &= ~ACPI_BITMASK_SCI_ENABLE;
}
}
void acpi_pm1_cnt_reset(ACPIPM1CNT *pm1_cnt)
{
pm1_cnt->cnt = 0;
if (pm1_cnt->cmos_s3) {
qemu_irq_lower(pm1_cnt->cmos_s3);
}
}
/* ACPI GPE */
void acpi_gpe_init(ACPIGPE *gpe, uint8_t len)
{
gpe->len = len;
gpe->sts = g_malloc0(len / 2);
gpe->en = g_malloc0(len / 2);
}
void acpi_gpe_blk(ACPIGPE *gpe, uint32_t blk)
{
gpe->blk = blk;
}
void acpi_gpe_reset(ACPIGPE *gpe)
{
memset(gpe->sts, 0, gpe->len / 2);
memset(gpe->en, 0, gpe->len / 2);
}
static uint8_t *acpi_gpe_ioport_get_ptr(ACPIGPE *gpe, uint32_t addr)
{
uint8_t *cur = NULL;
if (addr < gpe->len / 2) {
cur = gpe->sts + addr;
} else if (addr < gpe->len) {
cur = gpe->en + addr - gpe->len / 2;
} else {
abort();
}
return cur;
}
void acpi_gpe_ioport_writeb(ACPIGPE *gpe, uint32_t addr, uint32_t val)
{
uint8_t *cur;
addr -= gpe->blk;
cur = acpi_gpe_ioport_get_ptr(gpe, addr);
if (addr < gpe->len / 2) {
/* GPE_STS */
*cur = (*cur) & ~val;
} else if (addr < gpe->len) {
/* GPE_EN */
*cur = val;
} else {
abort();
}
}
uint32_t acpi_gpe_ioport_readb(ACPIGPE *gpe, uint32_t addr)
{
uint8_t *cur;
uint32_t val;
addr -= gpe->blk;
cur = acpi_gpe_ioport_get_ptr(gpe, addr);
val = 0;
if (cur != NULL) {
val = *cur;
}
return val;
}