qemu-e2k/qapi/qmp-input-visitor.c

400 lines
10 KiB
C
Raw Normal View History

/*
* Input Visitor
*
* Copyright (C) 2012-2016 Red Hat, Inc.
* Copyright IBM, Corp. 2011
*
* Authors:
* Anthony Liguori <aliguori@us.ibm.com>
*
* This work is licensed under the terms of the GNU LGPL, version 2.1 or later.
* See the COPYING.LIB file in the top-level directory.
*
*/
#include "qemu/osdep.h"
2016-03-14 09:01:28 +01:00
#include "qapi/error.h"
#include "qapi/qmp-input-visitor.h"
#include "qapi/visitor-impl.h"
#include "qemu/queue.h"
#include "qemu-common.h"
#include "qapi/qmp/types.h"
#include "qapi/qmp/qerror.h"
#define QIV_STACK_SIZE 1024
typedef struct StackObject
{
QObject *obj; /* Object being visited */
GHashTable *h; /* If obj is dict: unvisited keys */
const QListEntry *entry; /* If obj is list: unvisited tail */
qmp-input: Refactor when list is advanced In the QMP input visitor, visiting a list traverses two objects: the QAPI GenericList of the caller (which gets advanced in visit_next_list() regardless of this patch), and the QList input that we are converting to QAPI. For consistency with QDict visits, we want to consume elements from the input QList during the visit_type_FOO() for the list element; that is, we want ALL the code for consuming an input to live in qmp_input_get_object(), rather than having it split according to whether we are visiting a dict or a list. Making qmp_input_get_object() the common point of consumption will make it easier for a later patch to refactor visit_start_list() to cover the GenericList * head of a QAPI list, and in turn will get rid of the 'first' flag (which lived in qmp_input_next_list() pre-patch, and is hoisted to StackObject by this patch). This patch is therefore altering the post-condition use of 'entry', while keeping what gets visited unchanged, from: start_list next_list type_ELT ... next_list type_ELT next_list end_list visits 1st elt last elt entry NULL 1st elt 1st elt last elt last elt NULL gone where type_ELT() returns (entry ? entry : 1st elt) and next_list() steps entry to this usage: start_list next_list type_ELT ... next_list type_ELT next_list end_list visits 1st elt last elt entry 1st elt 1nd elt 2nd elt last elt NULL NULL gone where type_ELT() steps entry and returns the old entry, and next_list() leaves entry alone. Signed-off-by: Eric Blake <eblake@redhat.com> Message-Id: <1461879932-9020-12-git-send-email-eblake@redhat.com> Signed-off-by: Markus Armbruster <armbru@redhat.com>
2016-04-28 23:45:19 +02:00
bool first; /* If obj is list: next_list() not yet called? */
} StackObject;
struct QmpInputVisitor
{
Visitor visitor;
/* Root of visit at visitor creation. */
QObject *root;
/* Stack of objects being visited (all entries will be either
* QDict or QList). */
StackObject stack[QIV_STACK_SIZE];
int nb_stack;
/* True to reject parse in visit_end_struct() if unvisited keys remain. */
bool strict;
};
static QmpInputVisitor *to_qiv(Visitor *v)
{
return container_of(v, QmpInputVisitor, visitor);
}
static QObject *qmp_input_get_object(QmpInputVisitor *qiv,
const char *name,
bool consume)
{
StackObject *tos;
QObject *qobj;
QObject *ret;
if (!qiv->nb_stack) {
/* Starting at root, name is ignored. */
return qiv->root;
}
/* We are in a container; find the next element. */
tos = &qiv->stack[qiv->nb_stack - 1];
qobj = tos->obj;
assert(qobj);
if (qobject_type(qobj) == QTYPE_QDICT) {
assert(name);
ret = qdict_get(qobject_to_qdict(qobj), name);
if (tos->h && consume && ret) {
bool removed = g_hash_table_remove(tos->h, name);
assert(removed);
}
} else {
assert(qobject_type(qobj) == QTYPE_QLIST);
assert(!name);
qmp-input: Refactor when list is advanced In the QMP input visitor, visiting a list traverses two objects: the QAPI GenericList of the caller (which gets advanced in visit_next_list() regardless of this patch), and the QList input that we are converting to QAPI. For consistency with QDict visits, we want to consume elements from the input QList during the visit_type_FOO() for the list element; that is, we want ALL the code for consuming an input to live in qmp_input_get_object(), rather than having it split according to whether we are visiting a dict or a list. Making qmp_input_get_object() the common point of consumption will make it easier for a later patch to refactor visit_start_list() to cover the GenericList * head of a QAPI list, and in turn will get rid of the 'first' flag (which lived in qmp_input_next_list() pre-patch, and is hoisted to StackObject by this patch). This patch is therefore altering the post-condition use of 'entry', while keeping what gets visited unchanged, from: start_list next_list type_ELT ... next_list type_ELT next_list end_list visits 1st elt last elt entry NULL 1st elt 1st elt last elt last elt NULL gone where type_ELT() returns (entry ? entry : 1st elt) and next_list() steps entry to this usage: start_list next_list type_ELT ... next_list type_ELT next_list end_list visits 1st elt last elt entry 1st elt 1nd elt 2nd elt last elt NULL NULL gone where type_ELT() steps entry and returns the old entry, and next_list() leaves entry alone. Signed-off-by: Eric Blake <eblake@redhat.com> Message-Id: <1461879932-9020-12-git-send-email-eblake@redhat.com> Signed-off-by: Markus Armbruster <armbru@redhat.com>
2016-04-28 23:45:19 +02:00
assert(!tos->first);
ret = qlist_entry_obj(tos->entry);
qmp-input: Refactor when list is advanced In the QMP input visitor, visiting a list traverses two objects: the QAPI GenericList of the caller (which gets advanced in visit_next_list() regardless of this patch), and the QList input that we are converting to QAPI. For consistency with QDict visits, we want to consume elements from the input QList during the visit_type_FOO() for the list element; that is, we want ALL the code for consuming an input to live in qmp_input_get_object(), rather than having it split according to whether we are visiting a dict or a list. Making qmp_input_get_object() the common point of consumption will make it easier for a later patch to refactor visit_start_list() to cover the GenericList * head of a QAPI list, and in turn will get rid of the 'first' flag (which lived in qmp_input_next_list() pre-patch, and is hoisted to StackObject by this patch). This patch is therefore altering the post-condition use of 'entry', while keeping what gets visited unchanged, from: start_list next_list type_ELT ... next_list type_ELT next_list end_list visits 1st elt last elt entry NULL 1st elt 1st elt last elt last elt NULL gone where type_ELT() returns (entry ? entry : 1st elt) and next_list() steps entry to this usage: start_list next_list type_ELT ... next_list type_ELT next_list end_list visits 1st elt last elt entry 1st elt 1nd elt 2nd elt last elt NULL NULL gone where type_ELT() steps entry and returns the old entry, and next_list() leaves entry alone. Signed-off-by: Eric Blake <eblake@redhat.com> Message-Id: <1461879932-9020-12-git-send-email-eblake@redhat.com> Signed-off-by: Markus Armbruster <armbru@redhat.com>
2016-04-28 23:45:19 +02:00
if (consume) {
tos->entry = qlist_next(tos->entry);
}
}
return ret;
}
static void qdict_add_key(const char *key, QObject *obj, void *opaque)
{
GHashTable *h = opaque;
g_hash_table_insert(h, (gpointer) key, NULL);
}
static void qmp_input_push(QmpInputVisitor *qiv, QObject *obj, Error **errp)
{
GHashTable *h;
StackObject *tos = &qiv->stack[qiv->nb_stack];
assert(obj);
if (qiv->nb_stack >= QIV_STACK_SIZE) {
error_setg(errp, "An internal buffer overran");
return;
}
tos->obj = obj;
qmp-input: Refactor when list is advanced In the QMP input visitor, visiting a list traverses two objects: the QAPI GenericList of the caller (which gets advanced in visit_next_list() regardless of this patch), and the QList input that we are converting to QAPI. For consistency with QDict visits, we want to consume elements from the input QList during the visit_type_FOO() for the list element; that is, we want ALL the code for consuming an input to live in qmp_input_get_object(), rather than having it split according to whether we are visiting a dict or a list. Making qmp_input_get_object() the common point of consumption will make it easier for a later patch to refactor visit_start_list() to cover the GenericList * head of a QAPI list, and in turn will get rid of the 'first' flag (which lived in qmp_input_next_list() pre-patch, and is hoisted to StackObject by this patch). This patch is therefore altering the post-condition use of 'entry', while keeping what gets visited unchanged, from: start_list next_list type_ELT ... next_list type_ELT next_list end_list visits 1st elt last elt entry NULL 1st elt 1st elt last elt last elt NULL gone where type_ELT() returns (entry ? entry : 1st elt) and next_list() steps entry to this usage: start_list next_list type_ELT ... next_list type_ELT next_list end_list visits 1st elt last elt entry 1st elt 1nd elt 2nd elt last elt NULL NULL gone where type_ELT() steps entry and returns the old entry, and next_list() leaves entry alone. Signed-off-by: Eric Blake <eblake@redhat.com> Message-Id: <1461879932-9020-12-git-send-email-eblake@redhat.com> Signed-off-by: Markus Armbruster <armbru@redhat.com>
2016-04-28 23:45:19 +02:00
assert(!tos->h);
assert(!tos->entry);
if (qiv->strict && qobject_type(obj) == QTYPE_QDICT) {
h = g_hash_table_new(g_str_hash, g_str_equal);
qdict_iter(qobject_to_qdict(obj), qdict_add_key, h);
tos->h = h;
qmp-input: Refactor when list is advanced In the QMP input visitor, visiting a list traverses two objects: the QAPI GenericList of the caller (which gets advanced in visit_next_list() regardless of this patch), and the QList input that we are converting to QAPI. For consistency with QDict visits, we want to consume elements from the input QList during the visit_type_FOO() for the list element; that is, we want ALL the code for consuming an input to live in qmp_input_get_object(), rather than having it split according to whether we are visiting a dict or a list. Making qmp_input_get_object() the common point of consumption will make it easier for a later patch to refactor visit_start_list() to cover the GenericList * head of a QAPI list, and in turn will get rid of the 'first' flag (which lived in qmp_input_next_list() pre-patch, and is hoisted to StackObject by this patch). This patch is therefore altering the post-condition use of 'entry', while keeping what gets visited unchanged, from: start_list next_list type_ELT ... next_list type_ELT next_list end_list visits 1st elt last elt entry NULL 1st elt 1st elt last elt last elt NULL gone where type_ELT() returns (entry ? entry : 1st elt) and next_list() steps entry to this usage: start_list next_list type_ELT ... next_list type_ELT next_list end_list visits 1st elt last elt entry 1st elt 1nd elt 2nd elt last elt NULL NULL gone where type_ELT() steps entry and returns the old entry, and next_list() leaves entry alone. Signed-off-by: Eric Blake <eblake@redhat.com> Message-Id: <1461879932-9020-12-git-send-email-eblake@redhat.com> Signed-off-by: Markus Armbruster <armbru@redhat.com>
2016-04-28 23:45:19 +02:00
} else if (qobject_type(obj) == QTYPE_QLIST) {
tos->entry = qlist_first(qobject_to_qlist(obj));
tos->first = true;
}
qiv->nb_stack++;
}
static void qmp_input_pop(QmpInputVisitor *qiv, Error **errp)
{
qmp-input: Refactor when list is advanced In the QMP input visitor, visiting a list traverses two objects: the QAPI GenericList of the caller (which gets advanced in visit_next_list() regardless of this patch), and the QList input that we are converting to QAPI. For consistency with QDict visits, we want to consume elements from the input QList during the visit_type_FOO() for the list element; that is, we want ALL the code for consuming an input to live in qmp_input_get_object(), rather than having it split according to whether we are visiting a dict or a list. Making qmp_input_get_object() the common point of consumption will make it easier for a later patch to refactor visit_start_list() to cover the GenericList * head of a QAPI list, and in turn will get rid of the 'first' flag (which lived in qmp_input_next_list() pre-patch, and is hoisted to StackObject by this patch). This patch is therefore altering the post-condition use of 'entry', while keeping what gets visited unchanged, from: start_list next_list type_ELT ... next_list type_ELT next_list end_list visits 1st elt last elt entry NULL 1st elt 1st elt last elt last elt NULL gone where type_ELT() returns (entry ? entry : 1st elt) and next_list() steps entry to this usage: start_list next_list type_ELT ... next_list type_ELT next_list end_list visits 1st elt last elt entry 1st elt 1nd elt 2nd elt last elt NULL NULL gone where type_ELT() steps entry and returns the old entry, and next_list() leaves entry alone. Signed-off-by: Eric Blake <eblake@redhat.com> Message-Id: <1461879932-9020-12-git-send-email-eblake@redhat.com> Signed-off-by: Markus Armbruster <armbru@redhat.com>
2016-04-28 23:45:19 +02:00
StackObject *tos = &qiv->stack[qiv->nb_stack - 1];
assert(qiv->nb_stack > 0);
if (qiv->strict) {
qmp-input: Refactor when list is advanced In the QMP input visitor, visiting a list traverses two objects: the QAPI GenericList of the caller (which gets advanced in visit_next_list() regardless of this patch), and the QList input that we are converting to QAPI. For consistency with QDict visits, we want to consume elements from the input QList during the visit_type_FOO() for the list element; that is, we want ALL the code for consuming an input to live in qmp_input_get_object(), rather than having it split according to whether we are visiting a dict or a list. Making qmp_input_get_object() the common point of consumption will make it easier for a later patch to refactor visit_start_list() to cover the GenericList * head of a QAPI list, and in turn will get rid of the 'first' flag (which lived in qmp_input_next_list() pre-patch, and is hoisted to StackObject by this patch). This patch is therefore altering the post-condition use of 'entry', while keeping what gets visited unchanged, from: start_list next_list type_ELT ... next_list type_ELT next_list end_list visits 1st elt last elt entry NULL 1st elt 1st elt last elt last elt NULL gone where type_ELT() returns (entry ? entry : 1st elt) and next_list() steps entry to this usage: start_list next_list type_ELT ... next_list type_ELT next_list end_list visits 1st elt last elt entry 1st elt 1nd elt 2nd elt last elt NULL NULL gone where type_ELT() steps entry and returns the old entry, and next_list() leaves entry alone. Signed-off-by: Eric Blake <eblake@redhat.com> Message-Id: <1461879932-9020-12-git-send-email-eblake@redhat.com> Signed-off-by: Markus Armbruster <armbru@redhat.com>
2016-04-28 23:45:19 +02:00
GHashTable *const top_ht = tos->h;
if (top_ht) {
GHashTableIter iter;
const char *key;
g_hash_table_iter_init(&iter, top_ht);
if (g_hash_table_iter_next(&iter, (void **)&key, NULL)) {
error_setg(errp, QERR_QMP_EXTRA_MEMBER, key);
}
g_hash_table_unref(top_ht);
}
qmp-input: Refactor when list is advanced In the QMP input visitor, visiting a list traverses two objects: the QAPI GenericList of the caller (which gets advanced in visit_next_list() regardless of this patch), and the QList input that we are converting to QAPI. For consistency with QDict visits, we want to consume elements from the input QList during the visit_type_FOO() for the list element; that is, we want ALL the code for consuming an input to live in qmp_input_get_object(), rather than having it split according to whether we are visiting a dict or a list. Making qmp_input_get_object() the common point of consumption will make it easier for a later patch to refactor visit_start_list() to cover the GenericList * head of a QAPI list, and in turn will get rid of the 'first' flag (which lived in qmp_input_next_list() pre-patch, and is hoisted to StackObject by this patch). This patch is therefore altering the post-condition use of 'entry', while keeping what gets visited unchanged, from: start_list next_list type_ELT ... next_list type_ELT next_list end_list visits 1st elt last elt entry NULL 1st elt 1st elt last elt last elt NULL gone where type_ELT() returns (entry ? entry : 1st elt) and next_list() steps entry to this usage: start_list next_list type_ELT ... next_list type_ELT next_list end_list visits 1st elt last elt entry 1st elt 1nd elt 2nd elt last elt NULL NULL gone where type_ELT() steps entry and returns the old entry, and next_list() leaves entry alone. Signed-off-by: Eric Blake <eblake@redhat.com> Message-Id: <1461879932-9020-12-git-send-email-eblake@redhat.com> Signed-off-by: Markus Armbruster <armbru@redhat.com>
2016-04-28 23:45:19 +02:00
tos->h = NULL;
}
qiv->nb_stack--;
}
static void qmp_input_start_struct(Visitor *v, const char *name, void **obj,
size_t size, Error **errp)
{
QmpInputVisitor *qiv = to_qiv(v);
QObject *qobj = qmp_input_get_object(qiv, name, true);
Error *err = NULL;
if (obj) {
*obj = NULL;
}
if (!qobj || qobject_type(qobj) != QTYPE_QDICT) {
error_setg(errp, QERR_INVALID_PARAMETER_TYPE, name ? name : "null",
"QDict");
return;
}
qmp_input_push(qiv, qobj, &err);
if (err) {
error_propagate(errp, err);
return;
}
if (obj) {
*obj = g_malloc0(size);
}
}
static void qmp_input_end_struct(Visitor *v, Error **errp)
{
QmpInputVisitor *qiv = to_qiv(v);
qmp_input_pop(qiv, errp);
}
static void qmp_input_start_list(Visitor *v, const char *name, Error **errp)
{
QmpInputVisitor *qiv = to_qiv(v);
QObject *qobj = qmp_input_get_object(qiv, name, true);
if (!qobj || qobject_type(qobj) != QTYPE_QLIST) {
error_setg(errp, QERR_INVALID_PARAMETER_TYPE, name ? name : "null",
"list");
return;
}
qmp_input_push(qiv, qobj, errp);
}
qapi: Adjust layout of FooList types By sticking the next pointer first, we don't need a union with 64-bit padding for smaller types. On 32-bit platforms, this can reduce the size of uint8List from 16 bytes (or 12, depending on whether 64-bit ints can tolerate 4-byte alignment) down to 8. It has no effect on 64-bit platforms (where alignment still dictates a 16-byte struct); but fewer anonymous unions is still a win in my book. It requires visit_next_list() to gain a size parameter, to know what size element to allocate; comparable to the size parameter of visit_start_struct(). I debated about going one step further, to allow for fewer casts, by doing: typedef GenericList GenericList; struct GenericList { GenericList *next; }; struct FooList { GenericList base; Foo *value; }; so that you convert to 'GenericList *' by '&foolist->base', and back by 'container_of(generic, GenericList, base)' (as opposed to the existing '(GenericList *)foolist' and '(FooList *)generic'). But doing that would require hoisting the declaration of GenericList prior to inclusion of qapi-types.h, rather than its current spot in visitor.h; it also makes iteration a bit more verbose through 'foolist->base.next' instead of 'foolist->next'. Note that for lists of objects, the 'value' payload is still hidden behind a boxed pointer. Someday, it would be nice to do: struct FooList { FooList *next; Foo value; }; for one less level of malloc for each list element. This patch is a step in that direction (now that 'next' is no longer at a fixed non-zero offset within the struct, we can store more than just a pointer's-worth of data as the value payload), but the actual conversion would be a task for another series, as it will touch a lot of code. Signed-off-by: Eric Blake <eblake@redhat.com> Message-Id: <1455778109-6278-10-git-send-email-eblake@redhat.com> Signed-off-by: Markus Armbruster <armbru@redhat.com>
2016-02-18 07:48:23 +01:00
static GenericList *qmp_input_next_list(Visitor *v, GenericList **list,
size_t size)
{
QmpInputVisitor *qiv = to_qiv(v);
GenericList *entry;
StackObject *so = &qiv->stack[qiv->nb_stack - 1];
qmp-input: Refactor when list is advanced In the QMP input visitor, visiting a list traverses two objects: the QAPI GenericList of the caller (which gets advanced in visit_next_list() regardless of this patch), and the QList input that we are converting to QAPI. For consistency with QDict visits, we want to consume elements from the input QList during the visit_type_FOO() for the list element; that is, we want ALL the code for consuming an input to live in qmp_input_get_object(), rather than having it split according to whether we are visiting a dict or a list. Making qmp_input_get_object() the common point of consumption will make it easier for a later patch to refactor visit_start_list() to cover the GenericList * head of a QAPI list, and in turn will get rid of the 'first' flag (which lived in qmp_input_next_list() pre-patch, and is hoisted to StackObject by this patch). This patch is therefore altering the post-condition use of 'entry', while keeping what gets visited unchanged, from: start_list next_list type_ELT ... next_list type_ELT next_list end_list visits 1st elt last elt entry NULL 1st elt 1st elt last elt last elt NULL gone where type_ELT() returns (entry ? entry : 1st elt) and next_list() steps entry to this usage: start_list next_list type_ELT ... next_list type_ELT next_list end_list visits 1st elt last elt entry 1st elt 1nd elt 2nd elt last elt NULL NULL gone where type_ELT() steps entry and returns the old entry, and next_list() leaves entry alone. Signed-off-by: Eric Blake <eblake@redhat.com> Message-Id: <1461879932-9020-12-git-send-email-eblake@redhat.com> Signed-off-by: Markus Armbruster <armbru@redhat.com>
2016-04-28 23:45:19 +02:00
if (!so->entry) {
return NULL;
}
qapi: Adjust layout of FooList types By sticking the next pointer first, we don't need a union with 64-bit padding for smaller types. On 32-bit platforms, this can reduce the size of uint8List from 16 bytes (or 12, depending on whether 64-bit ints can tolerate 4-byte alignment) down to 8. It has no effect on 64-bit platforms (where alignment still dictates a 16-byte struct); but fewer anonymous unions is still a win in my book. It requires visit_next_list() to gain a size parameter, to know what size element to allocate; comparable to the size parameter of visit_start_struct(). I debated about going one step further, to allow for fewer casts, by doing: typedef GenericList GenericList; struct GenericList { GenericList *next; }; struct FooList { GenericList base; Foo *value; }; so that you convert to 'GenericList *' by '&foolist->base', and back by 'container_of(generic, GenericList, base)' (as opposed to the existing '(GenericList *)foolist' and '(FooList *)generic'). But doing that would require hoisting the declaration of GenericList prior to inclusion of qapi-types.h, rather than its current spot in visitor.h; it also makes iteration a bit more verbose through 'foolist->base.next' instead of 'foolist->next'. Note that for lists of objects, the 'value' payload is still hidden behind a boxed pointer. Someday, it would be nice to do: struct FooList { FooList *next; Foo value; }; for one less level of malloc for each list element. This patch is a step in that direction (now that 'next' is no longer at a fixed non-zero offset within the struct, we can store more than just a pointer's-worth of data as the value payload), but the actual conversion would be a task for another series, as it will touch a lot of code. Signed-off-by: Eric Blake <eblake@redhat.com> Message-Id: <1455778109-6278-10-git-send-email-eblake@redhat.com> Signed-off-by: Markus Armbruster <armbru@redhat.com>
2016-02-18 07:48:23 +01:00
entry = g_malloc0(size);
qmp-input: Refactor when list is advanced In the QMP input visitor, visiting a list traverses two objects: the QAPI GenericList of the caller (which gets advanced in visit_next_list() regardless of this patch), and the QList input that we are converting to QAPI. For consistency with QDict visits, we want to consume elements from the input QList during the visit_type_FOO() for the list element; that is, we want ALL the code for consuming an input to live in qmp_input_get_object(), rather than having it split according to whether we are visiting a dict or a list. Making qmp_input_get_object() the common point of consumption will make it easier for a later patch to refactor visit_start_list() to cover the GenericList * head of a QAPI list, and in turn will get rid of the 'first' flag (which lived in qmp_input_next_list() pre-patch, and is hoisted to StackObject by this patch). This patch is therefore altering the post-condition use of 'entry', while keeping what gets visited unchanged, from: start_list next_list type_ELT ... next_list type_ELT next_list end_list visits 1st elt last elt entry NULL 1st elt 1st elt last elt last elt NULL gone where type_ELT() returns (entry ? entry : 1st elt) and next_list() steps entry to this usage: start_list next_list type_ELT ... next_list type_ELT next_list end_list visits 1st elt last elt entry 1st elt 1nd elt 2nd elt last elt NULL NULL gone where type_ELT() steps entry and returns the old entry, and next_list() leaves entry alone. Signed-off-by: Eric Blake <eblake@redhat.com> Message-Id: <1461879932-9020-12-git-send-email-eblake@redhat.com> Signed-off-by: Markus Armbruster <armbru@redhat.com>
2016-04-28 23:45:19 +02:00
if (so->first) {
*list = entry;
qmp-input: Refactor when list is advanced In the QMP input visitor, visiting a list traverses two objects: the QAPI GenericList of the caller (which gets advanced in visit_next_list() regardless of this patch), and the QList input that we are converting to QAPI. For consistency with QDict visits, we want to consume elements from the input QList during the visit_type_FOO() for the list element; that is, we want ALL the code for consuming an input to live in qmp_input_get_object(), rather than having it split according to whether we are visiting a dict or a list. Making qmp_input_get_object() the common point of consumption will make it easier for a later patch to refactor visit_start_list() to cover the GenericList * head of a QAPI list, and in turn will get rid of the 'first' flag (which lived in qmp_input_next_list() pre-patch, and is hoisted to StackObject by this patch). This patch is therefore altering the post-condition use of 'entry', while keeping what gets visited unchanged, from: start_list next_list type_ELT ... next_list type_ELT next_list end_list visits 1st elt last elt entry NULL 1st elt 1st elt last elt last elt NULL gone where type_ELT() returns (entry ? entry : 1st elt) and next_list() steps entry to this usage: start_list next_list type_ELT ... next_list type_ELT next_list end_list visits 1st elt last elt entry 1st elt 1nd elt 2nd elt last elt NULL NULL gone where type_ELT() steps entry and returns the old entry, and next_list() leaves entry alone. Signed-off-by: Eric Blake <eblake@redhat.com> Message-Id: <1461879932-9020-12-git-send-email-eblake@redhat.com> Signed-off-by: Markus Armbruster <armbru@redhat.com>
2016-04-28 23:45:19 +02:00
so->first = false;
} else {
(*list)->next = entry;
}
return entry;
}
static void qmp_input_end_list(Visitor *v)
{
QmpInputVisitor *qiv = to_qiv(v);
qmp_input_pop(qiv, &error_abort);
}
static void qmp_input_start_alternate(Visitor *v, const char *name,
GenericAlternate **obj, size_t size,
bool promote_int, Error **errp)
{
QmpInputVisitor *qiv = to_qiv(v);
QObject *qobj = qmp_input_get_object(qiv, name, false);
if (!qobj) {
*obj = NULL;
error_setg(errp, QERR_MISSING_PARAMETER, name ? name : "null");
return;
}
*obj = g_malloc0(size);
(*obj)->type = qobject_type(qobj);
if (promote_int && (*obj)->type == QTYPE_QINT) {
(*obj)->type = QTYPE_QFLOAT;
}
}
static void qmp_input_type_int64(Visitor *v, const char *name, int64_t *obj,
Error **errp)
{
QmpInputVisitor *qiv = to_qiv(v);
QInt *qint = qobject_to_qint(qmp_input_get_object(qiv, name, true));
if (!qint) {
error_setg(errp, QERR_INVALID_PARAMETER_TYPE, name ? name : "null",
"integer");
return;
}
*obj = qint_get_int(qint);
}
static void qmp_input_type_uint64(Visitor *v, const char *name, uint64_t *obj,
Error **errp)
{
/* FIXME: qobject_to_qint mishandles values over INT64_MAX */
QmpInputVisitor *qiv = to_qiv(v);
QInt *qint = qobject_to_qint(qmp_input_get_object(qiv, name, true));
if (!qint) {
error_setg(errp, QERR_INVALID_PARAMETER_TYPE, name ? name : "null",
"integer");
return;
}
*obj = qint_get_int(qint);
}
static void qmp_input_type_bool(Visitor *v, const char *name, bool *obj,
Error **errp)
{
QmpInputVisitor *qiv = to_qiv(v);
QBool *qbool = qobject_to_qbool(qmp_input_get_object(qiv, name, true));
if (!qbool) {
error_setg(errp, QERR_INVALID_PARAMETER_TYPE, name ? name : "null",
"boolean");
return;
}
*obj = qbool_get_bool(qbool);
}
static void qmp_input_type_str(Visitor *v, const char *name, char **obj,
Error **errp)
{
QmpInputVisitor *qiv = to_qiv(v);
QString *qstr = qobject_to_qstring(qmp_input_get_object(qiv, name, true));
if (!qstr) {
*obj = NULL;
error_setg(errp, QERR_INVALID_PARAMETER_TYPE, name ? name : "null",
"string");
return;
}
*obj = g_strdup(qstring_get_str(qstr));
}
static void qmp_input_type_number(Visitor *v, const char *name, double *obj,
Error **errp)
{
QmpInputVisitor *qiv = to_qiv(v);
QObject *qobj = qmp_input_get_object(qiv, name, true);
QInt *qint;
QFloat *qfloat;
qint = qobject_to_qint(qobj);
if (qint) {
*obj = qint_get_int(qobject_to_qint(qobj));
return;
}
qfloat = qobject_to_qfloat(qobj);
if (qfloat) {
*obj = qfloat_get_double(qobject_to_qfloat(qobj));
return;
}
error_setg(errp, QERR_INVALID_PARAMETER_TYPE, name ? name : "null",
"number");
}
static void qmp_input_type_any(Visitor *v, const char *name, QObject **obj,
Error **errp)
{
QmpInputVisitor *qiv = to_qiv(v);
QObject *qobj = qmp_input_get_object(qiv, name, true);
qobject_incref(qobj);
*obj = qobj;
}
2016-04-28 23:45:22 +02:00
static void qmp_input_type_null(Visitor *v, const char *name, Error **errp)
{
abort();
}
static void qmp_input_optional(Visitor *v, const char *name, bool *present)
{
QmpInputVisitor *qiv = to_qiv(v);
QObject *qobj = qmp_input_get_object(qiv, name, false);
if (!qobj) {
*present = false;
return;
}
*present = true;
}
Visitor *qmp_input_get_visitor(QmpInputVisitor *v)
{
return &v->visitor;
}
void qmp_input_visitor_cleanup(QmpInputVisitor *v)
{
qobject_decref(v->root);
g_free(v);
}
QmpInputVisitor *qmp_input_visitor_new(QObject *obj, bool strict)
{
QmpInputVisitor *v;
v = g_malloc0(sizeof(*v));
v->visitor.type = VISITOR_INPUT;
v->visitor.start_struct = qmp_input_start_struct;
v->visitor.end_struct = qmp_input_end_struct;
v->visitor.start_list = qmp_input_start_list;
v->visitor.next_list = qmp_input_next_list;
v->visitor.end_list = qmp_input_end_list;
v->visitor.start_alternate = qmp_input_start_alternate;
v->visitor.type_int64 = qmp_input_type_int64;
v->visitor.type_uint64 = qmp_input_type_uint64;
v->visitor.type_bool = qmp_input_type_bool;
v->visitor.type_str = qmp_input_type_str;
v->visitor.type_number = qmp_input_type_number;
v->visitor.type_any = qmp_input_type_any;
2016-04-28 23:45:22 +02:00
v->visitor.type_null = qmp_input_type_null;
v->visitor.optional = qmp_input_optional;
v->strict = strict;
v->root = obj;
qobject_incref(obj);
return v;
}