qemu-e2k/target/i386/gdbstub.c

400 lines
13 KiB
C
Raw Normal View History

/*
* x86 gdb server stub
*
* Copyright (c) 2003-2005 Fabrice Bellard
* Copyright (c) 2013 SUSE LINUX Products GmbH
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, see <http://www.gnu.org/licenses/>.
*/
#include "qemu/osdep.h"
#include "cpu.h"
#include "include/gdbstub/helpers.h"
#ifdef TARGET_X86_64
static const int gpr_map[16] = {
R_EAX, R_EBX, R_ECX, R_EDX, R_ESI, R_EDI, R_EBP, R_ESP,
8, 9, 10, 11, 12, 13, 14, 15
};
#else
#define gpr_map gpr_map32
#endif
static const int gpr_map32[8] = { 0, 1, 2, 3, 4, 5, 6, 7 };
/*
* Keep these in sync with assignment to
* gdb_num_core_regs in target/i386/cpu.c
* and with the machine description
*/
/*
* SEG: 6 segments, plus fs_base, gs_base, kernel_gs_base
*/
/*
* general regs -----> 8 or 16
*/
#define IDX_NB_IP 1
#define IDX_NB_FLAGS 1
#define IDX_NB_SEG (6 + 3)
#define IDX_NB_CTL 6
#define IDX_NB_FP 16
/*
* fpu regs ----------> 8 or 16
*/
#define IDX_NB_MXCSR 1
/*
* total ----> 8+1+1+9+6+16+8+1=50 or 16+1+1+9+6+16+16+1=66
*/
#define IDX_IP_REG CPU_NB_REGS
#define IDX_FLAGS_REG (IDX_IP_REG + IDX_NB_IP)
#define IDX_SEG_REGS (IDX_FLAGS_REG + IDX_NB_FLAGS)
#define IDX_CTL_REGS (IDX_SEG_REGS + IDX_NB_SEG)
#define IDX_FP_REGS (IDX_CTL_REGS + IDX_NB_CTL)
#define IDX_XMM_REGS (IDX_FP_REGS + IDX_NB_FP)
#define IDX_MXCSR_REG (IDX_XMM_REGS + CPU_NB_REGS)
#define IDX_CTL_CR0_REG (IDX_CTL_REGS + 0)
#define IDX_CTL_CR2_REG (IDX_CTL_REGS + 1)
#define IDX_CTL_CR3_REG (IDX_CTL_REGS + 2)
#define IDX_CTL_CR4_REG (IDX_CTL_REGS + 3)
#define IDX_CTL_CR8_REG (IDX_CTL_REGS + 4)
#define IDX_CTL_EFER_REG (IDX_CTL_REGS + 5)
#ifdef TARGET_X86_64
#define GDB_FORCE_64 1
#else
#define GDB_FORCE_64 0
#endif
static int gdb_read_reg_cs64(uint32_t hflags, GByteArray *buf, target_ulong val)
{
if ((hflags & HF_CS64_MASK) || GDB_FORCE_64) {
return gdb_get_reg64(buf, val);
}
return gdb_get_reg32(buf, val);
}
static int gdb_write_reg_cs64(uint32_t hflags, uint8_t *buf, target_ulong *val)
{
if (hflags & HF_CS64_MASK) {
*val = ldq_p(buf);
return 8;
}
*val = ldl_p(buf);
return 4;
}
int x86_cpu_gdb_read_register(CPUState *cs, GByteArray *mem_buf, int n)
{
X86CPU *cpu = X86_CPU(cs);
CPUX86State *env = &cpu->env;
uint64_t tpr;
/* N.B. GDB can't deal with changes in registers or sizes in the middle
of a session. So if we're in 32-bit mode on a 64-bit cpu, still act
as if we're on a 64-bit cpu. */
if (n < CPU_NB_REGS) {
if (TARGET_LONG_BITS == 64) {
if (env->hflags & HF_CS64_MASK) {
return gdb_get_reg64(mem_buf, env->regs[gpr_map[n]]);
} else if (n < CPU_NB_REGS32) {
return gdb_get_reg64(mem_buf,
env->regs[gpr_map[n]] & 0xffffffffUL);
} else {
return gdb_get_regl(mem_buf, 0);
}
} else {
return gdb_get_reg32(mem_buf, env->regs[gpr_map32[n]]);
}
} else if (n >= IDX_FP_REGS && n < IDX_FP_REGS + 8) {
int st_index = n - IDX_FP_REGS;
int r_index = (st_index + env->fpstt) % 8;
floatx80 *fp = &env->fpregs[r_index].d;
int len = gdb_get_reg64(mem_buf, cpu_to_le64(fp->low));
len += gdb_get_reg16(mem_buf, cpu_to_le16(fp->high));
return len;
} else if (n >= IDX_XMM_REGS && n < IDX_XMM_REGS + CPU_NB_REGS) {
n -= IDX_XMM_REGS;
if (n < CPU_NB_REGS32 || TARGET_LONG_BITS == 64) {
return gdb_get_reg128(mem_buf,
env->xmm_regs[n].ZMM_Q(1),
env->xmm_regs[n].ZMM_Q(0));
}
} else {
switch (n) {
case IDX_IP_REG:
if (TARGET_LONG_BITS == 64) {
if (env->hflags & HF_CS64_MASK) {
return gdb_get_reg64(mem_buf, env->eip);
} else {
return gdb_get_reg64(mem_buf, env->eip & 0xffffffffUL);
}
} else {
return gdb_get_reg32(mem_buf, env->eip);
}
case IDX_FLAGS_REG:
return gdb_get_reg32(mem_buf, env->eflags);
case IDX_SEG_REGS:
return gdb_get_reg32(mem_buf, env->segs[R_CS].selector);
case IDX_SEG_REGS + 1:
return gdb_get_reg32(mem_buf, env->segs[R_SS].selector);
case IDX_SEG_REGS + 2:
return gdb_get_reg32(mem_buf, env->segs[R_DS].selector);
case IDX_SEG_REGS + 3:
return gdb_get_reg32(mem_buf, env->segs[R_ES].selector);
case IDX_SEG_REGS + 4:
return gdb_get_reg32(mem_buf, env->segs[R_FS].selector);
case IDX_SEG_REGS + 5:
return gdb_get_reg32(mem_buf, env->segs[R_GS].selector);
case IDX_SEG_REGS + 6:
return gdb_read_reg_cs64(env->hflags, mem_buf, env->segs[R_FS].base);
case IDX_SEG_REGS + 7:
return gdb_read_reg_cs64(env->hflags, mem_buf, env->segs[R_GS].base);
case IDX_SEG_REGS + 8:
#ifdef TARGET_X86_64
return gdb_read_reg_cs64(env->hflags, mem_buf, env->kernelgsbase);
#else
return gdb_get_reg32(mem_buf, 0);
#endif
case IDX_FP_REGS + 8:
return gdb_get_reg32(mem_buf, env->fpuc);
case IDX_FP_REGS + 9:
return gdb_get_reg32(mem_buf, (env->fpus & ~0x3800) |
(env->fpstt & 0x7) << 11);
case IDX_FP_REGS + 10:
return gdb_get_reg32(mem_buf, 0); /* ftag */
case IDX_FP_REGS + 11:
return gdb_get_reg32(mem_buf, 0); /* fiseg */
case IDX_FP_REGS + 12:
return gdb_get_reg32(mem_buf, 0); /* fioff */
case IDX_FP_REGS + 13:
return gdb_get_reg32(mem_buf, 0); /* foseg */
case IDX_FP_REGS + 14:
return gdb_get_reg32(mem_buf, 0); /* fooff */
case IDX_FP_REGS + 15:
return gdb_get_reg32(mem_buf, 0); /* fop */
case IDX_MXCSR_REG:
target/i386: fix IEEE SSE floating-point exception raising The SSE instruction implementations all fail to raise the expected IEEE floating-point exceptions because they do nothing to convert the exception state from the softfloat machinery into the exception flags in MXCSR. Fix this by adding such conversions. Unlike for x87, emulated SSE floating-point operations might be optimized using hardware floating point on the host, and so a different approach is taken that is compatible with such optimizations. The required invariant is that all exceptions set in env->sse_status (other than "denormal operand", for which the SSE semantics are different from those in the softfloat code) are ones that are set in the MXCSR; the emulated MXCSR is updated lazily when code reads MXCSR, while when code sets MXCSR, the exceptions in env->sse_status are set accordingly. A few instructions do not raise all the exceptions that would be raised by the softfloat code, and those instructions are made to save and restore the softfloat exception state accordingly. Nothing is done about "denormal operand"; setting that (only for the case when input denormals are *not* flushed to zero, the opposite of the logic in the softfloat code for such an exception) will require custom code for relevant instructions, or else architecture-specific conditionals in the softfloat code for when to set such an exception together with custom code for various SSE conversion and rounding instructions that do not set that exception. Nothing is done about trapping exceptions (for which there is minimal and largely broken support in QEMU's emulation in the x87 case and no support at all in the SSE case). Signed-off-by: Joseph Myers <joseph@codesourcery.com> Message-Id: <alpine.DEB.2.21.2006252358000.3832@digraph.polyomino.org.uk> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2020-06-26 01:58:31 +02:00
update_mxcsr_from_sse_status(env);
return gdb_get_reg32(mem_buf, env->mxcsr);
case IDX_CTL_CR0_REG:
return gdb_read_reg_cs64(env->hflags, mem_buf, env->cr[0]);
case IDX_CTL_CR2_REG:
return gdb_read_reg_cs64(env->hflags, mem_buf, env->cr[2]);
case IDX_CTL_CR3_REG:
return gdb_read_reg_cs64(env->hflags, mem_buf, env->cr[3]);
case IDX_CTL_CR4_REG:
return gdb_read_reg_cs64(env->hflags, mem_buf, env->cr[4]);
case IDX_CTL_CR8_REG:
#ifndef CONFIG_USER_ONLY
tpr = cpu_get_apic_tpr(cpu->apic_state);
#else
tpr = 0;
#endif
return gdb_read_reg_cs64(env->hflags, mem_buf, tpr);
case IDX_CTL_EFER_REG:
return gdb_read_reg_cs64(env->hflags, mem_buf, env->efer);
}
}
return 0;
}
static int x86_cpu_gdb_load_seg(X86CPU *cpu, X86Seg sreg, uint8_t *mem_buf)
{
CPUX86State *env = &cpu->env;
uint16_t selector = ldl_p(mem_buf);
if (selector != env->segs[sreg].selector) {
#if defined(CONFIG_USER_ONLY)
cpu_x86_load_seg(env, sreg, selector);
#else
unsigned int limit, flags;
target_ulong base;
if (!(env->cr[0] & CR0_PE_MASK) || (env->eflags & VM_MASK)) {
int dpl = (env->eflags & VM_MASK) ? 3 : 0;
base = selector << 4;
limit = 0xffff;
flags = DESC_P_MASK | DESC_S_MASK | DESC_W_MASK |
DESC_A_MASK | (dpl << DESC_DPL_SHIFT);
} else {
if (!cpu_x86_get_descr_debug(env, selector, &base, &limit,
&flags)) {
return 4;
}
}
cpu_x86_load_seg_cache(env, sreg, selector, base, limit, flags);
#endif
}
return 4;
}
int x86_cpu_gdb_write_register(CPUState *cs, uint8_t *mem_buf, int n)
{
X86CPU *cpu = X86_CPU(cs);
CPUX86State *env = &cpu->env;
target_ulong tmp;
int len;
/* N.B. GDB can't deal with changes in registers or sizes in the middle
of a session. So if we're in 32-bit mode on a 64-bit cpu, still act
as if we're on a 64-bit cpu. */
if (n < CPU_NB_REGS) {
if (TARGET_LONG_BITS == 64) {
if (env->hflags & HF_CS64_MASK) {
env->regs[gpr_map[n]] = ldtul_p(mem_buf);
} else if (n < CPU_NB_REGS32) {
env->regs[gpr_map[n]] = ldtul_p(mem_buf) & 0xffffffffUL;
}
return sizeof(target_ulong);
} else if (n < CPU_NB_REGS32) {
n = gpr_map32[n];
env->regs[n] &= ~0xffffffffUL;
env->regs[n] |= (uint32_t)ldl_p(mem_buf);
return 4;
}
} else if (n >= IDX_FP_REGS && n < IDX_FP_REGS + 8) {
floatx80 *fp = (floatx80 *) &env->fpregs[n - IDX_FP_REGS];
fp->low = le64_to_cpu(* (uint64_t *) mem_buf);
fp->high = le16_to_cpu(* (uint16_t *) (mem_buf + 8));
return 10;
} else if (n >= IDX_XMM_REGS && n < IDX_XMM_REGS + CPU_NB_REGS) {
n -= IDX_XMM_REGS;
if (n < CPU_NB_REGS32 || TARGET_LONG_BITS == 64) {
env->xmm_regs[n].ZMM_Q(0) = ldq_p(mem_buf);
env->xmm_regs[n].ZMM_Q(1) = ldq_p(mem_buf + 8);
return 16;
}
} else {
switch (n) {
case IDX_IP_REG:
if (TARGET_LONG_BITS == 64) {
if (env->hflags & HF_CS64_MASK) {
env->eip = ldq_p(mem_buf);
} else {
env->eip = ldq_p(mem_buf) & 0xffffffffUL;
}
return 8;
} else {
env->eip &= ~0xffffffffUL;
env->eip |= (uint32_t)ldl_p(mem_buf);
return 4;
}
case IDX_FLAGS_REG:
env->eflags = ldl_p(mem_buf);
return 4;
case IDX_SEG_REGS:
return x86_cpu_gdb_load_seg(cpu, R_CS, mem_buf);
case IDX_SEG_REGS + 1:
return x86_cpu_gdb_load_seg(cpu, R_SS, mem_buf);
case IDX_SEG_REGS + 2:
return x86_cpu_gdb_load_seg(cpu, R_DS, mem_buf);
case IDX_SEG_REGS + 3:
return x86_cpu_gdb_load_seg(cpu, R_ES, mem_buf);
case IDX_SEG_REGS + 4:
return x86_cpu_gdb_load_seg(cpu, R_FS, mem_buf);
case IDX_SEG_REGS + 5:
return x86_cpu_gdb_load_seg(cpu, R_GS, mem_buf);
case IDX_SEG_REGS + 6:
return gdb_write_reg_cs64(env->hflags, mem_buf, &env->segs[R_FS].base);
case IDX_SEG_REGS + 7:
return gdb_write_reg_cs64(env->hflags, mem_buf, &env->segs[R_GS].base);
case IDX_SEG_REGS + 8:
#ifdef TARGET_X86_64
return gdb_write_reg_cs64(env->hflags, mem_buf, &env->kernelgsbase);
#endif
return 4;
case IDX_FP_REGS + 8:
cpu_set_fpuc(env, ldl_p(mem_buf));
return 4;
case IDX_FP_REGS + 9:
tmp = ldl_p(mem_buf);
env->fpstt = (tmp >> 11) & 7;
env->fpus = tmp & ~0x3800;
return 4;
case IDX_FP_REGS + 10: /* ftag */
return 4;
case IDX_FP_REGS + 11: /* fiseg */
return 4;
case IDX_FP_REGS + 12: /* fioff */
return 4;
case IDX_FP_REGS + 13: /* foseg */
return 4;
case IDX_FP_REGS + 14: /* fooff */
return 4;
case IDX_FP_REGS + 15: /* fop */
return 4;
case IDX_MXCSR_REG:
cpu_set_mxcsr(env, ldl_p(mem_buf));
return 4;
case IDX_CTL_CR0_REG:
len = gdb_write_reg_cs64(env->hflags, mem_buf, &tmp);
#ifndef CONFIG_USER_ONLY
cpu_x86_update_cr0(env, tmp);
#endif
return len;
case IDX_CTL_CR2_REG:
len = gdb_write_reg_cs64(env->hflags, mem_buf, &tmp);
#ifndef CONFIG_USER_ONLY
env->cr[2] = tmp;
#endif
return len;
case IDX_CTL_CR3_REG:
len = gdb_write_reg_cs64(env->hflags, mem_buf, &tmp);
#ifndef CONFIG_USER_ONLY
cpu_x86_update_cr3(env, tmp);
#endif
return len;
case IDX_CTL_CR4_REG:
len = gdb_write_reg_cs64(env->hflags, mem_buf, &tmp);
#ifndef CONFIG_USER_ONLY
cpu_x86_update_cr4(env, tmp);
#endif
return len;
case IDX_CTL_CR8_REG:
len = gdb_write_reg_cs64(env->hflags, mem_buf, &tmp);
#ifndef CONFIG_USER_ONLY
cpu_set_apic_tpr(cpu->apic_state, tmp);
#endif
return len;
case IDX_CTL_EFER_REG:
len = gdb_write_reg_cs64(env->hflags, mem_buf, &tmp);
#ifndef CONFIG_USER_ONLY
cpu_load_efer(env, tmp);
#endif
return len;
}
}
/* Unrecognised register. */
return 0;
}