nvdimm acpi: build ACPI NFIT table
NFIT is defined in ACPI 6.0: 5.2.25 NVDIMM Firmware Interface Table (NFIT)
Currently, we only support PMEM mode. Each device has 3 structures:
- SPA structure, defines the PMEM region info
- MEM DEV structure, it has the @handle which is used to associate specified
ACPI NVDIMM device we will introduce in later patch.
Also we can happily ignored the memory device's interleave, the real
nvdimm hardware access is hidden behind host
- DCR structure, it defines vendor ID used to associate specified vendor
nvdimm driver. Since we only implement PMEM mode this time, Command
window and Data window are not needed
The NVDIMM functionality is controlled by the parameter, 'nvdimm', which
is introduced for the machine, there is a example to enable it:
-machine pc,nvdimm -m 8G,maxmem=100G,slots=100 -object \
memory-backend-file,id=mem1,share,mem-path=/tmp/nvdimm1,size=10G -device \
nvdimm,memdev=mem1,id=nv1
It is disabled on default
Reviewed-by: Stefan Hajnoczi <stefanha@redhat.com>
Signed-off-by: Xiao Guangrong <guangrong.xiao@linux.intel.com>
Reviewed-by: Michael S. Tsirkin <mst@redhat.com>
Signed-off-by: Michael S. Tsirkin <mst@redhat.com>
2015-12-02 08:20:58 +01:00
|
|
|
/*
|
|
|
|
* NVDIMM ACPI Implementation
|
|
|
|
*
|
|
|
|
* Copyright(C) 2015 Intel Corporation.
|
|
|
|
*
|
|
|
|
* Author:
|
|
|
|
* Xiao Guangrong <guangrong.xiao@linux.intel.com>
|
|
|
|
*
|
|
|
|
* NFIT is defined in ACPI 6.0: 5.2.25 NVDIMM Firmware Interface Table (NFIT)
|
|
|
|
* and the DSM specification can be found at:
|
|
|
|
* http://pmem.io/documents/NVDIMM_DSM_Interface_Example.pdf
|
|
|
|
*
|
|
|
|
* Currently, it only supports PMEM Virtualization.
|
|
|
|
*
|
|
|
|
* This library is free software; you can redistribute it and/or
|
|
|
|
* modify it under the terms of the GNU Lesser General Public
|
|
|
|
* License as published by the Free Software Foundation; either
|
|
|
|
* version 2 of the License, or (at your option) any later version.
|
|
|
|
*
|
|
|
|
* This library is distributed in the hope that it will be useful,
|
|
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
|
|
* Lesser General Public License for more details.
|
|
|
|
*
|
|
|
|
* You should have received a copy of the GNU Lesser General Public
|
|
|
|
* License along with this library; if not, see <http://www.gnu.org/licenses/>
|
|
|
|
*/
|
|
|
|
|
2016-01-26 19:17:03 +01:00
|
|
|
#include "qemu/osdep.h"
|
nvdimm acpi: build ACPI NFIT table
NFIT is defined in ACPI 6.0: 5.2.25 NVDIMM Firmware Interface Table (NFIT)
Currently, we only support PMEM mode. Each device has 3 structures:
- SPA structure, defines the PMEM region info
- MEM DEV structure, it has the @handle which is used to associate specified
ACPI NVDIMM device we will introduce in later patch.
Also we can happily ignored the memory device's interleave, the real
nvdimm hardware access is hidden behind host
- DCR structure, it defines vendor ID used to associate specified vendor
nvdimm driver. Since we only implement PMEM mode this time, Command
window and Data window are not needed
The NVDIMM functionality is controlled by the parameter, 'nvdimm', which
is introduced for the machine, there is a example to enable it:
-machine pc,nvdimm -m 8G,maxmem=100G,slots=100 -object \
memory-backend-file,id=mem1,share,mem-path=/tmp/nvdimm1,size=10G -device \
nvdimm,memdev=mem1,id=nv1
It is disabled on default
Reviewed-by: Stefan Hajnoczi <stefanha@redhat.com>
Signed-off-by: Xiao Guangrong <guangrong.xiao@linux.intel.com>
Reviewed-by: Michael S. Tsirkin <mst@redhat.com>
Signed-off-by: Michael S. Tsirkin <mst@redhat.com>
2015-12-02 08:20:58 +01:00
|
|
|
#include "hw/acpi/acpi.h"
|
|
|
|
#include "hw/acpi/aml-build.h"
|
2016-03-04 17:00:33 +01:00
|
|
|
#include "hw/acpi/bios-linker-loader.h"
|
2016-03-04 17:00:32 +01:00
|
|
|
#include "hw/nvram/fw_cfg.h"
|
nvdimm acpi: build ACPI NFIT table
NFIT is defined in ACPI 6.0: 5.2.25 NVDIMM Firmware Interface Table (NFIT)
Currently, we only support PMEM mode. Each device has 3 structures:
- SPA structure, defines the PMEM region info
- MEM DEV structure, it has the @handle which is used to associate specified
ACPI NVDIMM device we will introduce in later patch.
Also we can happily ignored the memory device's interleave, the real
nvdimm hardware access is hidden behind host
- DCR structure, it defines vendor ID used to associate specified vendor
nvdimm driver. Since we only implement PMEM mode this time, Command
window and Data window are not needed
The NVDIMM functionality is controlled by the parameter, 'nvdimm', which
is introduced for the machine, there is a example to enable it:
-machine pc,nvdimm -m 8G,maxmem=100G,slots=100 -object \
memory-backend-file,id=mem1,share,mem-path=/tmp/nvdimm1,size=10G -device \
nvdimm,memdev=mem1,id=nv1
It is disabled on default
Reviewed-by: Stefan Hajnoczi <stefanha@redhat.com>
Signed-off-by: Xiao Guangrong <guangrong.xiao@linux.intel.com>
Reviewed-by: Michael S. Tsirkin <mst@redhat.com>
Signed-off-by: Michael S. Tsirkin <mst@redhat.com>
2015-12-02 08:20:58 +01:00
|
|
|
#include "hw/mem/nvdimm.h"
|
|
|
|
|
|
|
|
static int nvdimm_plugged_device_list(Object *obj, void *opaque)
|
|
|
|
{
|
|
|
|
GSList **list = opaque;
|
|
|
|
|
|
|
|
if (object_dynamic_cast(obj, TYPE_NVDIMM)) {
|
|
|
|
DeviceState *dev = DEVICE(obj);
|
|
|
|
|
|
|
|
if (dev->realized) { /* only realized NVDIMMs matter */
|
|
|
|
*list = g_slist_append(*list, DEVICE(obj));
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
object_child_foreach(obj, nvdimm_plugged_device_list, opaque);
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* inquire plugged NVDIMM devices and link them into the list which is
|
|
|
|
* returned to the caller.
|
|
|
|
*
|
|
|
|
* Note: it is the caller's responsibility to free the list to avoid
|
|
|
|
* memory leak.
|
|
|
|
*/
|
|
|
|
static GSList *nvdimm_get_plugged_device_list(void)
|
|
|
|
{
|
|
|
|
GSList *list = NULL;
|
|
|
|
|
|
|
|
object_child_foreach(qdev_get_machine(), nvdimm_plugged_device_list,
|
|
|
|
&list);
|
|
|
|
return list;
|
|
|
|
}
|
|
|
|
|
|
|
|
#define NVDIMM_UUID_LE(a, b, c, d0, d1, d2, d3, d4, d5, d6, d7) \
|
|
|
|
{ (a) & 0xff, ((a) >> 8) & 0xff, ((a) >> 16) & 0xff, ((a) >> 24) & 0xff, \
|
|
|
|
(b) & 0xff, ((b) >> 8) & 0xff, (c) & 0xff, ((c) >> 8) & 0xff, \
|
|
|
|
(d0), (d1), (d2), (d3), (d4), (d5), (d6), (d7) }
|
|
|
|
|
|
|
|
/*
|
|
|
|
* define Byte Addressable Persistent Memory (PM) Region according to
|
|
|
|
* ACPI 6.0: 5.2.25.1 System Physical Address Range Structure.
|
|
|
|
*/
|
|
|
|
static const uint8_t nvdimm_nfit_spa_uuid[] =
|
|
|
|
NVDIMM_UUID_LE(0x66f0d379, 0xb4f3, 0x4074, 0xac, 0x43, 0x0d, 0x33,
|
|
|
|
0x18, 0xb7, 0x8c, 0xdb);
|
|
|
|
|
|
|
|
/*
|
|
|
|
* NVDIMM Firmware Interface Table
|
|
|
|
* @signature: "NFIT"
|
|
|
|
*
|
|
|
|
* It provides information that allows OSPM to enumerate NVDIMM present in
|
|
|
|
* the platform and associate system physical address ranges created by the
|
|
|
|
* NVDIMMs.
|
|
|
|
*
|
|
|
|
* It is defined in ACPI 6.0: 5.2.25 NVDIMM Firmware Interface Table (NFIT)
|
|
|
|
*/
|
|
|
|
struct NvdimmNfitHeader {
|
|
|
|
ACPI_TABLE_HEADER_DEF
|
|
|
|
uint32_t reserved;
|
|
|
|
} QEMU_PACKED;
|
|
|
|
typedef struct NvdimmNfitHeader NvdimmNfitHeader;
|
|
|
|
|
|
|
|
/*
|
|
|
|
* define NFIT structures according to ACPI 6.0: 5.2.25 NVDIMM Firmware
|
|
|
|
* Interface Table (NFIT).
|
|
|
|
*/
|
|
|
|
|
|
|
|
/*
|
|
|
|
* System Physical Address Range Structure
|
|
|
|
*
|
|
|
|
* It describes the system physical address ranges occupied by NVDIMMs and
|
|
|
|
* the types of the regions.
|
|
|
|
*/
|
|
|
|
struct NvdimmNfitSpa {
|
|
|
|
uint16_t type;
|
|
|
|
uint16_t length;
|
|
|
|
uint16_t spa_index;
|
|
|
|
uint16_t flags;
|
|
|
|
uint32_t reserved;
|
|
|
|
uint32_t proximity_domain;
|
|
|
|
uint8_t type_guid[16];
|
|
|
|
uint64_t spa_base;
|
|
|
|
uint64_t spa_length;
|
|
|
|
uint64_t mem_attr;
|
|
|
|
} QEMU_PACKED;
|
|
|
|
typedef struct NvdimmNfitSpa NvdimmNfitSpa;
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Memory Device to System Physical Address Range Mapping Structure
|
|
|
|
*
|
|
|
|
* It enables identifying each NVDIMM region and the corresponding SPA
|
|
|
|
* describing the memory interleave
|
|
|
|
*/
|
|
|
|
struct NvdimmNfitMemDev {
|
|
|
|
uint16_t type;
|
|
|
|
uint16_t length;
|
|
|
|
uint32_t nfit_handle;
|
|
|
|
uint16_t phys_id;
|
|
|
|
uint16_t region_id;
|
|
|
|
uint16_t spa_index;
|
|
|
|
uint16_t dcr_index;
|
|
|
|
uint64_t region_len;
|
|
|
|
uint64_t region_offset;
|
|
|
|
uint64_t region_dpa;
|
|
|
|
uint16_t interleave_index;
|
|
|
|
uint16_t interleave_ways;
|
|
|
|
uint16_t flags;
|
|
|
|
uint16_t reserved;
|
|
|
|
} QEMU_PACKED;
|
|
|
|
typedef struct NvdimmNfitMemDev NvdimmNfitMemDev;
|
|
|
|
|
|
|
|
/*
|
|
|
|
* NVDIMM Control Region Structure
|
|
|
|
*
|
|
|
|
* It describes the NVDIMM and if applicable, Block Control Window.
|
|
|
|
*/
|
|
|
|
struct NvdimmNfitControlRegion {
|
|
|
|
uint16_t type;
|
|
|
|
uint16_t length;
|
|
|
|
uint16_t dcr_index;
|
|
|
|
uint16_t vendor_id;
|
|
|
|
uint16_t device_id;
|
|
|
|
uint16_t revision_id;
|
|
|
|
uint16_t sub_vendor_id;
|
|
|
|
uint16_t sub_device_id;
|
|
|
|
uint16_t sub_revision_id;
|
|
|
|
uint8_t reserved[6];
|
|
|
|
uint32_t serial_number;
|
|
|
|
uint16_t fic;
|
|
|
|
uint16_t num_bcw;
|
|
|
|
uint64_t bcw_size;
|
|
|
|
uint64_t cmd_offset;
|
|
|
|
uint64_t cmd_size;
|
|
|
|
uint64_t status_offset;
|
|
|
|
uint64_t status_size;
|
|
|
|
uint16_t flags;
|
|
|
|
uint8_t reserved2[6];
|
|
|
|
} QEMU_PACKED;
|
|
|
|
typedef struct NvdimmNfitControlRegion NvdimmNfitControlRegion;
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Module serial number is a unique number for each device. We use the
|
|
|
|
* slot id of NVDIMM device to generate this number so that each device
|
|
|
|
* associates with a different number.
|
|
|
|
*
|
|
|
|
* 0x123456 is a magic number we arbitrarily chose.
|
|
|
|
*/
|
|
|
|
static uint32_t nvdimm_slot_to_sn(int slot)
|
|
|
|
{
|
|
|
|
return 0x123456 + slot;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* handle is used to uniquely associate nfit_memdev structure with NVDIMM
|
|
|
|
* ACPI device - nfit_memdev.nfit_handle matches with the value returned
|
|
|
|
* by ACPI device _ADR method.
|
|
|
|
*
|
|
|
|
* We generate the handle with the slot id of NVDIMM device and reserve
|
|
|
|
* 0 for NVDIMM root device.
|
|
|
|
*/
|
|
|
|
static uint32_t nvdimm_slot_to_handle(int slot)
|
|
|
|
{
|
|
|
|
return slot + 1;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* index uniquely identifies the structure, 0 is reserved which indicates
|
|
|
|
* that the structure is not valid or the associated structure is not
|
|
|
|
* present.
|
|
|
|
*
|
|
|
|
* Each NVDIMM device needs two indexes, one for nfit_spa and another for
|
|
|
|
* nfit_dc which are generated by the slot id of NVDIMM device.
|
|
|
|
*/
|
|
|
|
static uint16_t nvdimm_slot_to_spa_index(int slot)
|
|
|
|
{
|
|
|
|
return (slot + 1) << 1;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* See the comments of nvdimm_slot_to_spa_index(). */
|
|
|
|
static uint32_t nvdimm_slot_to_dcr_index(int slot)
|
|
|
|
{
|
|
|
|
return nvdimm_slot_to_spa_index(slot) + 1;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* ACPI 6.0: 5.2.25.1 System Physical Address Range Structure */
|
|
|
|
static void
|
|
|
|
nvdimm_build_structure_spa(GArray *structures, DeviceState *dev)
|
|
|
|
{
|
|
|
|
NvdimmNfitSpa *nfit_spa;
|
|
|
|
uint64_t addr = object_property_get_int(OBJECT(dev), PC_DIMM_ADDR_PROP,
|
|
|
|
NULL);
|
|
|
|
uint64_t size = object_property_get_int(OBJECT(dev), PC_DIMM_SIZE_PROP,
|
|
|
|
NULL);
|
|
|
|
uint32_t node = object_property_get_int(OBJECT(dev), PC_DIMM_NODE_PROP,
|
|
|
|
NULL);
|
|
|
|
int slot = object_property_get_int(OBJECT(dev), PC_DIMM_SLOT_PROP,
|
|
|
|
NULL);
|
|
|
|
|
|
|
|
nfit_spa = acpi_data_push(structures, sizeof(*nfit_spa));
|
|
|
|
|
|
|
|
nfit_spa->type = cpu_to_le16(0 /* System Physical Address Range
|
|
|
|
Structure */);
|
|
|
|
nfit_spa->length = cpu_to_le16(sizeof(*nfit_spa));
|
|
|
|
nfit_spa->spa_index = cpu_to_le16(nvdimm_slot_to_spa_index(slot));
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Control region is strict as all the device info, such as SN, index,
|
|
|
|
* is associated with slot id.
|
|
|
|
*/
|
|
|
|
nfit_spa->flags = cpu_to_le16(1 /* Control region is strictly for
|
|
|
|
management during hot add/online
|
|
|
|
operation */ |
|
|
|
|
2 /* Data in Proximity Domain field is
|
|
|
|
valid*/);
|
|
|
|
|
|
|
|
/* NUMA node. */
|
|
|
|
nfit_spa->proximity_domain = cpu_to_le32(node);
|
|
|
|
/* the region reported as PMEM. */
|
|
|
|
memcpy(nfit_spa->type_guid, nvdimm_nfit_spa_uuid,
|
|
|
|
sizeof(nvdimm_nfit_spa_uuid));
|
|
|
|
|
|
|
|
nfit_spa->spa_base = cpu_to_le64(addr);
|
|
|
|
nfit_spa->spa_length = cpu_to_le64(size);
|
|
|
|
|
|
|
|
/* It is the PMEM and can be cached as writeback. */
|
|
|
|
nfit_spa->mem_attr = cpu_to_le64(0x8ULL /* EFI_MEMORY_WB */ |
|
|
|
|
0x8000ULL /* EFI_MEMORY_NV */);
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* ACPI 6.0: 5.2.25.2 Memory Device to System Physical Address Range Mapping
|
|
|
|
* Structure
|
|
|
|
*/
|
|
|
|
static void
|
|
|
|
nvdimm_build_structure_memdev(GArray *structures, DeviceState *dev)
|
|
|
|
{
|
|
|
|
NvdimmNfitMemDev *nfit_memdev;
|
|
|
|
uint64_t addr = object_property_get_int(OBJECT(dev), PC_DIMM_ADDR_PROP,
|
|
|
|
NULL);
|
|
|
|
uint64_t size = object_property_get_int(OBJECT(dev), PC_DIMM_SIZE_PROP,
|
|
|
|
NULL);
|
|
|
|
int slot = object_property_get_int(OBJECT(dev), PC_DIMM_SLOT_PROP,
|
|
|
|
NULL);
|
|
|
|
uint32_t handle = nvdimm_slot_to_handle(slot);
|
|
|
|
|
|
|
|
nfit_memdev = acpi_data_push(structures, sizeof(*nfit_memdev));
|
|
|
|
|
|
|
|
nfit_memdev->type = cpu_to_le16(1 /* Memory Device to System Address
|
|
|
|
Range Map Structure*/);
|
|
|
|
nfit_memdev->length = cpu_to_le16(sizeof(*nfit_memdev));
|
|
|
|
nfit_memdev->nfit_handle = cpu_to_le32(handle);
|
|
|
|
|
|
|
|
/*
|
|
|
|
* associate memory device with System Physical Address Range
|
|
|
|
* Structure.
|
|
|
|
*/
|
|
|
|
nfit_memdev->spa_index = cpu_to_le16(nvdimm_slot_to_spa_index(slot));
|
|
|
|
/* associate memory device with Control Region Structure. */
|
|
|
|
nfit_memdev->dcr_index = cpu_to_le16(nvdimm_slot_to_dcr_index(slot));
|
|
|
|
|
|
|
|
/* The memory region on the device. */
|
|
|
|
nfit_memdev->region_len = cpu_to_le64(size);
|
|
|
|
nfit_memdev->region_dpa = cpu_to_le64(addr);
|
|
|
|
|
|
|
|
/* Only one interleave for PMEM. */
|
|
|
|
nfit_memdev->interleave_ways = cpu_to_le16(1);
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* ACPI 6.0: 5.2.25.5 NVDIMM Control Region Structure.
|
|
|
|
*/
|
|
|
|
static void nvdimm_build_structure_dcr(GArray *structures, DeviceState *dev)
|
|
|
|
{
|
|
|
|
NvdimmNfitControlRegion *nfit_dcr;
|
|
|
|
int slot = object_property_get_int(OBJECT(dev), PC_DIMM_SLOT_PROP,
|
|
|
|
NULL);
|
|
|
|
uint32_t sn = nvdimm_slot_to_sn(slot);
|
|
|
|
|
|
|
|
nfit_dcr = acpi_data_push(structures, sizeof(*nfit_dcr));
|
|
|
|
|
|
|
|
nfit_dcr->type = cpu_to_le16(4 /* NVDIMM Control Region Structure */);
|
|
|
|
nfit_dcr->length = cpu_to_le16(sizeof(*nfit_dcr));
|
|
|
|
nfit_dcr->dcr_index = cpu_to_le16(nvdimm_slot_to_dcr_index(slot));
|
|
|
|
|
|
|
|
/* vendor: Intel. */
|
|
|
|
nfit_dcr->vendor_id = cpu_to_le16(0x8086);
|
|
|
|
nfit_dcr->device_id = cpu_to_le16(1);
|
|
|
|
|
|
|
|
/* The _DSM method is following Intel's DSM specification. */
|
|
|
|
nfit_dcr->revision_id = cpu_to_le16(1 /* Current Revision supported
|
|
|
|
in ACPI 6.0 is 1. */);
|
|
|
|
nfit_dcr->serial_number = cpu_to_le32(sn);
|
|
|
|
nfit_dcr->fic = cpu_to_le16(0x201 /* Format Interface Code. See Chapter
|
|
|
|
2: NVDIMM Device Specific Method
|
|
|
|
(DSM) in DSM Spec Rev1.*/);
|
|
|
|
}
|
|
|
|
|
|
|
|
static GArray *nvdimm_build_device_structure(GSList *device_list)
|
|
|
|
{
|
|
|
|
GArray *structures = g_array_new(false, true /* clear */, 1);
|
|
|
|
|
|
|
|
for (; device_list; device_list = device_list->next) {
|
|
|
|
DeviceState *dev = device_list->data;
|
|
|
|
|
|
|
|
/* build System Physical Address Range Structure. */
|
|
|
|
nvdimm_build_structure_spa(structures, dev);
|
|
|
|
|
|
|
|
/*
|
|
|
|
* build Memory Device to System Physical Address Range Mapping
|
|
|
|
* Structure.
|
|
|
|
*/
|
|
|
|
nvdimm_build_structure_memdev(structures, dev);
|
|
|
|
|
|
|
|
/* build NVDIMM Control Region Structure. */
|
|
|
|
nvdimm_build_structure_dcr(structures, dev);
|
|
|
|
}
|
|
|
|
|
|
|
|
return structures;
|
|
|
|
}
|
|
|
|
|
|
|
|
static void nvdimm_build_nfit(GSList *device_list, GArray *table_offsets,
|
|
|
|
GArray *table_data, GArray *linker)
|
|
|
|
{
|
|
|
|
GArray *structures = nvdimm_build_device_structure(device_list);
|
2015-12-25 03:57:42 +01:00
|
|
|
unsigned int header;
|
nvdimm acpi: build ACPI NFIT table
NFIT is defined in ACPI 6.0: 5.2.25 NVDIMM Firmware Interface Table (NFIT)
Currently, we only support PMEM mode. Each device has 3 structures:
- SPA structure, defines the PMEM region info
- MEM DEV structure, it has the @handle which is used to associate specified
ACPI NVDIMM device we will introduce in later patch.
Also we can happily ignored the memory device's interleave, the real
nvdimm hardware access is hidden behind host
- DCR structure, it defines vendor ID used to associate specified vendor
nvdimm driver. Since we only implement PMEM mode this time, Command
window and Data window are not needed
The NVDIMM functionality is controlled by the parameter, 'nvdimm', which
is introduced for the machine, there is a example to enable it:
-machine pc,nvdimm -m 8G,maxmem=100G,slots=100 -object \
memory-backend-file,id=mem1,share,mem-path=/tmp/nvdimm1,size=10G -device \
nvdimm,memdev=mem1,id=nv1
It is disabled on default
Reviewed-by: Stefan Hajnoczi <stefanha@redhat.com>
Signed-off-by: Xiao Guangrong <guangrong.xiao@linux.intel.com>
Reviewed-by: Michael S. Tsirkin <mst@redhat.com>
Signed-off-by: Michael S. Tsirkin <mst@redhat.com>
2015-12-02 08:20:58 +01:00
|
|
|
|
|
|
|
acpi_add_table(table_offsets, table_data);
|
|
|
|
|
|
|
|
/* NFIT header. */
|
2015-12-25 03:57:42 +01:00
|
|
|
header = table_data->len;
|
|
|
|
acpi_data_push(table_data, sizeof(NvdimmNfitHeader));
|
nvdimm acpi: build ACPI NFIT table
NFIT is defined in ACPI 6.0: 5.2.25 NVDIMM Firmware Interface Table (NFIT)
Currently, we only support PMEM mode. Each device has 3 structures:
- SPA structure, defines the PMEM region info
- MEM DEV structure, it has the @handle which is used to associate specified
ACPI NVDIMM device we will introduce in later patch.
Also we can happily ignored the memory device's interleave, the real
nvdimm hardware access is hidden behind host
- DCR structure, it defines vendor ID used to associate specified vendor
nvdimm driver. Since we only implement PMEM mode this time, Command
window and Data window are not needed
The NVDIMM functionality is controlled by the parameter, 'nvdimm', which
is introduced for the machine, there is a example to enable it:
-machine pc,nvdimm -m 8G,maxmem=100G,slots=100 -object \
memory-backend-file,id=mem1,share,mem-path=/tmp/nvdimm1,size=10G -device \
nvdimm,memdev=mem1,id=nv1
It is disabled on default
Reviewed-by: Stefan Hajnoczi <stefanha@redhat.com>
Signed-off-by: Xiao Guangrong <guangrong.xiao@linux.intel.com>
Reviewed-by: Michael S. Tsirkin <mst@redhat.com>
Signed-off-by: Michael S. Tsirkin <mst@redhat.com>
2015-12-02 08:20:58 +01:00
|
|
|
/* NVDIMM device structures. */
|
|
|
|
g_array_append_vals(table_data, structures->data, structures->len);
|
|
|
|
|
2015-12-25 03:57:42 +01:00
|
|
|
build_header(linker, table_data,
|
|
|
|
(void *)(table_data->data + header), "NFIT",
|
2016-01-18 15:12:10 +01:00
|
|
|
sizeof(NvdimmNfitHeader) + structures->len, 1, NULL, NULL);
|
nvdimm acpi: build ACPI NFIT table
NFIT is defined in ACPI 6.0: 5.2.25 NVDIMM Firmware Interface Table (NFIT)
Currently, we only support PMEM mode. Each device has 3 structures:
- SPA structure, defines the PMEM region info
- MEM DEV structure, it has the @handle which is used to associate specified
ACPI NVDIMM device we will introduce in later patch.
Also we can happily ignored the memory device's interleave, the real
nvdimm hardware access is hidden behind host
- DCR structure, it defines vendor ID used to associate specified vendor
nvdimm driver. Since we only implement PMEM mode this time, Command
window and Data window are not needed
The NVDIMM functionality is controlled by the parameter, 'nvdimm', which
is introduced for the machine, there is a example to enable it:
-machine pc,nvdimm -m 8G,maxmem=100G,slots=100 -object \
memory-backend-file,id=mem1,share,mem-path=/tmp/nvdimm1,size=10G -device \
nvdimm,memdev=mem1,id=nv1
It is disabled on default
Reviewed-by: Stefan Hajnoczi <stefanha@redhat.com>
Signed-off-by: Xiao Guangrong <guangrong.xiao@linux.intel.com>
Reviewed-by: Michael S. Tsirkin <mst@redhat.com>
Signed-off-by: Michael S. Tsirkin <mst@redhat.com>
2015-12-02 08:20:58 +01:00
|
|
|
g_array_free(structures, true);
|
|
|
|
}
|
|
|
|
|
2016-03-04 17:00:34 +01:00
|
|
|
struct NvdimmDsmIn {
|
|
|
|
uint32_t handle;
|
|
|
|
uint32_t revision;
|
|
|
|
uint32_t function;
|
|
|
|
/* the remaining size in the page is used by arg3. */
|
|
|
|
union {
|
|
|
|
uint8_t arg3[0];
|
|
|
|
};
|
|
|
|
} QEMU_PACKED;
|
|
|
|
typedef struct NvdimmDsmIn NvdimmDsmIn;
|
|
|
|
|
|
|
|
struct NvdimmDsmOut {
|
|
|
|
/* the size of buffer filled by QEMU. */
|
|
|
|
uint32_t len;
|
|
|
|
uint8_t data[0];
|
|
|
|
} QEMU_PACKED;
|
|
|
|
typedef struct NvdimmDsmOut NvdimmDsmOut;
|
|
|
|
|
2016-03-04 17:00:35 +01:00
|
|
|
struct NvdimmDsmFunc0Out {
|
|
|
|
/* the size of buffer filled by QEMU. */
|
|
|
|
uint32_t len;
|
|
|
|
uint32_t supported_func;
|
|
|
|
} QEMU_PACKED;
|
|
|
|
typedef struct NvdimmDsmFunc0Out NvdimmDsmFunc0Out;
|
|
|
|
|
|
|
|
struct NvdimmDsmFuncNoPayloadOut {
|
|
|
|
/* the size of buffer filled by QEMU. */
|
|
|
|
uint32_t len;
|
|
|
|
uint32_t func_ret_status;
|
|
|
|
} QEMU_PACKED;
|
|
|
|
typedef struct NvdimmDsmFuncNoPayloadOut NvdimmDsmFuncNoPayloadOut;
|
|
|
|
|
2016-03-04 17:00:32 +01:00
|
|
|
static uint64_t
|
|
|
|
nvdimm_dsm_read(void *opaque, hwaddr addr, unsigned size)
|
|
|
|
{
|
2016-03-04 17:00:35 +01:00
|
|
|
nvdimm_debug("BUG: we never read _DSM IO Port.\n");
|
2016-03-04 17:00:32 +01:00
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
static void
|
|
|
|
nvdimm_dsm_write(void *opaque, hwaddr addr, uint64_t val, unsigned size)
|
|
|
|
{
|
2016-03-04 17:00:35 +01:00
|
|
|
NvdimmDsmIn *in;
|
|
|
|
hwaddr dsm_mem_addr = val;
|
|
|
|
|
|
|
|
nvdimm_debug("dsm memory address %#" HWADDR_PRIx ".\n", dsm_mem_addr);
|
|
|
|
|
|
|
|
/*
|
|
|
|
* The DSM memory is mapped to guest address space so an evil guest
|
|
|
|
* can change its content while we are doing DSM emulation. Avoid
|
|
|
|
* this by copying DSM memory to QEMU local memory.
|
|
|
|
*/
|
|
|
|
in = g_malloc(TARGET_PAGE_SIZE);
|
|
|
|
cpu_physical_memory_read(dsm_mem_addr, in, TARGET_PAGE_SIZE);
|
|
|
|
|
|
|
|
le32_to_cpus(&in->revision);
|
|
|
|
le32_to_cpus(&in->function);
|
|
|
|
le32_to_cpus(&in->handle);
|
|
|
|
|
|
|
|
nvdimm_debug("Revision %#x Handler %#x Function %#x.\n", in->revision,
|
|
|
|
in->handle, in->function);
|
|
|
|
|
|
|
|
/*
|
|
|
|
* function 0 is called to inquire which functions are supported by
|
|
|
|
* OSPM
|
|
|
|
*/
|
|
|
|
if (in->function == 0) {
|
|
|
|
NvdimmDsmFunc0Out func0 = {
|
|
|
|
.len = cpu_to_le32(sizeof(func0)),
|
|
|
|
/* No function supported other than function 0 */
|
|
|
|
.supported_func = cpu_to_le32(0),
|
|
|
|
};
|
|
|
|
cpu_physical_memory_write(dsm_mem_addr, &func0, sizeof func0);
|
|
|
|
} else {
|
|
|
|
/* No function except function 0 is supported yet. */
|
|
|
|
NvdimmDsmFuncNoPayloadOut out = {
|
|
|
|
.len = cpu_to_le32(sizeof(out)),
|
|
|
|
.func_ret_status = cpu_to_le32(1) /* Not Supported */,
|
|
|
|
};
|
|
|
|
cpu_physical_memory_write(dsm_mem_addr, &out, sizeof(out));
|
|
|
|
}
|
|
|
|
|
|
|
|
g_free(in);
|
2016-03-04 17:00:32 +01:00
|
|
|
}
|
|
|
|
|
|
|
|
static const MemoryRegionOps nvdimm_dsm_ops = {
|
|
|
|
.read = nvdimm_dsm_read,
|
|
|
|
.write = nvdimm_dsm_write,
|
|
|
|
.endianness = DEVICE_LITTLE_ENDIAN,
|
|
|
|
.valid = {
|
|
|
|
.min_access_size = 4,
|
|
|
|
.max_access_size = 4,
|
|
|
|
},
|
|
|
|
};
|
|
|
|
|
|
|
|
void nvdimm_init_acpi_state(AcpiNVDIMMState *state, MemoryRegion *io,
|
|
|
|
FWCfgState *fw_cfg, Object *owner)
|
|
|
|
{
|
|
|
|
memory_region_init_io(&state->io_mr, owner, &nvdimm_dsm_ops, state,
|
|
|
|
"nvdimm-acpi-io", NVDIMM_ACPI_IO_LEN);
|
|
|
|
memory_region_add_subregion(io, NVDIMM_ACPI_IO_BASE, &state->io_mr);
|
|
|
|
|
|
|
|
state->dsm_mem = g_array_new(false, true /* clear */, 1);
|
|
|
|
acpi_data_push(state->dsm_mem, TARGET_PAGE_SIZE);
|
|
|
|
fw_cfg_add_file(fw_cfg, NVDIMM_DSM_MEM_FILE, state->dsm_mem->data,
|
|
|
|
state->dsm_mem->len);
|
|
|
|
}
|
|
|
|
|
2015-12-02 08:20:59 +01:00
|
|
|
#define NVDIMM_COMMON_DSM "NCAL"
|
2016-03-04 17:00:33 +01:00
|
|
|
#define NVDIMM_ACPI_MEM_ADDR "MEMA"
|
2015-12-02 08:20:59 +01:00
|
|
|
|
|
|
|
static void nvdimm_build_common_dsm(Aml *dev)
|
|
|
|
{
|
2016-03-04 17:00:34 +01:00
|
|
|
Aml *method, *ifctx, *function, *dsm_mem, *unpatched, *result_size;
|
2015-12-02 08:20:59 +01:00
|
|
|
uint8_t byte_list[1];
|
|
|
|
|
2016-03-04 17:00:34 +01:00
|
|
|
method = aml_method(NVDIMM_COMMON_DSM, 4, AML_SERIALIZED);
|
2015-12-02 08:20:59 +01:00
|
|
|
function = aml_arg(2);
|
2016-03-04 17:00:34 +01:00
|
|
|
dsm_mem = aml_name(NVDIMM_ACPI_MEM_ADDR);
|
|
|
|
|
|
|
|
/*
|
|
|
|
* do not support any method if DSM memory address has not been
|
|
|
|
* patched.
|
|
|
|
*/
|
|
|
|
unpatched = aml_if(aml_equal(dsm_mem, aml_int(0x0)));
|
2015-12-02 08:20:59 +01:00
|
|
|
|
|
|
|
/*
|
|
|
|
* function 0 is called to inquire what functions are supported by
|
|
|
|
* OSPM
|
|
|
|
*/
|
|
|
|
ifctx = aml_if(aml_equal(function, aml_int(0)));
|
|
|
|
byte_list[0] = 0 /* No function Supported */;
|
|
|
|
aml_append(ifctx, aml_return(aml_buffer(1, byte_list)));
|
2016-03-04 17:00:34 +01:00
|
|
|
aml_append(unpatched, ifctx);
|
2015-12-02 08:20:59 +01:00
|
|
|
|
|
|
|
/* No function is supported yet. */
|
|
|
|
byte_list[0] = 1 /* Not Supported */;
|
2016-03-04 17:00:34 +01:00
|
|
|
aml_append(unpatched, aml_return(aml_buffer(1, byte_list)));
|
|
|
|
aml_append(method, unpatched);
|
2015-12-02 08:20:59 +01:00
|
|
|
|
2016-03-04 17:00:34 +01:00
|
|
|
/*
|
|
|
|
* The HDLE indicates the DSM function is issued from which device,
|
|
|
|
* it is not used at this time as no function is supported yet.
|
|
|
|
* Currently we make it always be 0 for all the devices and will set
|
|
|
|
* the appropriate value once real function is implemented.
|
|
|
|
*/
|
|
|
|
aml_append(method, aml_store(aml_int(0x0), aml_name("HDLE")));
|
|
|
|
aml_append(method, aml_store(aml_arg(1), aml_name("REVS")));
|
|
|
|
aml_append(method, aml_store(aml_arg(2), aml_name("FUNC")));
|
|
|
|
|
|
|
|
/*
|
|
|
|
* tell QEMU about the real address of DSM memory, then QEMU
|
|
|
|
* gets the control and fills the result in DSM memory.
|
|
|
|
*/
|
|
|
|
aml_append(method, aml_store(dsm_mem, aml_name("NTFI")));
|
|
|
|
|
|
|
|
result_size = aml_local(1);
|
|
|
|
aml_append(method, aml_store(aml_name("RLEN"), result_size));
|
|
|
|
aml_append(method, aml_store(aml_shiftleft(result_size, aml_int(3)),
|
|
|
|
result_size));
|
|
|
|
aml_append(method, aml_create_field(aml_name("ODAT"), aml_int(0),
|
|
|
|
result_size, "OBUF"));
|
|
|
|
aml_append(method, aml_concatenate(aml_buffer(0, NULL), aml_name("OBUF"),
|
|
|
|
aml_arg(6)));
|
|
|
|
aml_append(method, aml_return(aml_arg(6)));
|
2015-12-02 08:20:59 +01:00
|
|
|
aml_append(dev, method);
|
|
|
|
}
|
|
|
|
|
|
|
|
static void nvdimm_build_device_dsm(Aml *dev)
|
|
|
|
{
|
|
|
|
Aml *method;
|
|
|
|
|
|
|
|
method = aml_method("_DSM", 4, AML_NOTSERIALIZED);
|
|
|
|
aml_append(method, aml_return(aml_call4(NVDIMM_COMMON_DSM, aml_arg(0),
|
|
|
|
aml_arg(1), aml_arg(2), aml_arg(3))));
|
|
|
|
aml_append(dev, method);
|
|
|
|
}
|
|
|
|
|
|
|
|
static void nvdimm_build_nvdimm_devices(GSList *device_list, Aml *root_dev)
|
|
|
|
{
|
|
|
|
for (; device_list; device_list = device_list->next) {
|
|
|
|
DeviceState *dev = device_list->data;
|
|
|
|
int slot = object_property_get_int(OBJECT(dev), PC_DIMM_SLOT_PROP,
|
|
|
|
NULL);
|
|
|
|
uint32_t handle = nvdimm_slot_to_handle(slot);
|
|
|
|
Aml *nvdimm_dev;
|
|
|
|
|
|
|
|
nvdimm_dev = aml_device("NV%02X", slot);
|
|
|
|
|
|
|
|
/*
|
|
|
|
* ACPI 6.0: 9.20 NVDIMM Devices:
|
|
|
|
*
|
|
|
|
* _ADR object that is used to supply OSPM with unique address
|
|
|
|
* of the NVDIMM device. This is done by returning the NFIT Device
|
|
|
|
* handle that is used to identify the associated entries in ACPI
|
|
|
|
* table NFIT or _FIT.
|
|
|
|
*/
|
|
|
|
aml_append(nvdimm_dev, aml_name_decl("_ADR", aml_int(handle)));
|
|
|
|
|
|
|
|
nvdimm_build_device_dsm(nvdimm_dev);
|
|
|
|
aml_append(root_dev, nvdimm_dev);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
static void nvdimm_build_ssdt(GSList *device_list, GArray *table_offsets,
|
|
|
|
GArray *table_data, GArray *linker)
|
|
|
|
{
|
2016-03-04 17:00:34 +01:00
|
|
|
Aml *ssdt, *sb_scope, *dev, *field;
|
2016-03-04 17:00:33 +01:00
|
|
|
int mem_addr_offset, nvdimm_ssdt;
|
2015-12-02 08:20:59 +01:00
|
|
|
|
|
|
|
acpi_add_table(table_offsets, table_data);
|
|
|
|
|
|
|
|
ssdt = init_aml_allocator();
|
|
|
|
acpi_data_push(ssdt->buf, sizeof(AcpiTableHeader));
|
|
|
|
|
|
|
|
sb_scope = aml_scope("\\_SB");
|
|
|
|
|
|
|
|
dev = aml_device("NVDR");
|
|
|
|
|
|
|
|
/*
|
|
|
|
* ACPI 6.0: 9.20 NVDIMM Devices:
|
|
|
|
*
|
|
|
|
* The ACPI Name Space device uses _HID of ACPI0012 to identify the root
|
|
|
|
* NVDIMM interface device. Platform firmware is required to contain one
|
|
|
|
* such device in _SB scope if NVDIMMs support is exposed by platform to
|
|
|
|
* OSPM.
|
|
|
|
* For each NVDIMM present or intended to be supported by platform,
|
|
|
|
* platform firmware also exposes an ACPI Namespace Device under the
|
|
|
|
* root device.
|
|
|
|
*/
|
|
|
|
aml_append(dev, aml_name_decl("_HID", aml_string("ACPI0012")));
|
|
|
|
|
2016-03-04 17:00:34 +01:00
|
|
|
/* map DSM memory and IO into ACPI namespace. */
|
|
|
|
aml_append(dev, aml_operation_region("NPIO", AML_SYSTEM_IO,
|
|
|
|
aml_int(NVDIMM_ACPI_IO_BASE), NVDIMM_ACPI_IO_LEN));
|
|
|
|
aml_append(dev, aml_operation_region("NRAM", AML_SYSTEM_MEMORY,
|
|
|
|
aml_name(NVDIMM_ACPI_MEM_ADDR), TARGET_PAGE_SIZE));
|
|
|
|
|
|
|
|
/*
|
|
|
|
* DSM notifier:
|
|
|
|
* NTFI: write the address of DSM memory and notify QEMU to emulate
|
|
|
|
* the access.
|
|
|
|
*
|
|
|
|
* It is the IO port so that accessing them will cause VM-exit, the
|
|
|
|
* control will be transferred to QEMU.
|
|
|
|
*/
|
|
|
|
field = aml_field("NPIO", AML_DWORD_ACC, AML_NOLOCK, AML_PRESERVE);
|
|
|
|
aml_append(field, aml_named_field("NTFI",
|
|
|
|
sizeof(uint32_t) * BITS_PER_BYTE));
|
|
|
|
aml_append(dev, field);
|
|
|
|
|
|
|
|
/*
|
|
|
|
* DSM input:
|
|
|
|
* HDLE: store device's handle, it's zero if the _DSM call happens
|
|
|
|
* on NVDIMM Root Device.
|
|
|
|
* REVS: store the Arg1 of _DSM call.
|
|
|
|
* FUNC: store the Arg2 of _DSM call.
|
|
|
|
* ARG3: store the Arg3 of _DSM call.
|
|
|
|
*
|
|
|
|
* They are RAM mapping on host so that these accesses never cause
|
|
|
|
* VM-EXIT.
|
|
|
|
*/
|
|
|
|
field = aml_field("NRAM", AML_DWORD_ACC, AML_NOLOCK, AML_PRESERVE);
|
|
|
|
aml_append(field, aml_named_field("HDLE",
|
|
|
|
sizeof(typeof_field(NvdimmDsmIn, handle)) * BITS_PER_BYTE));
|
|
|
|
aml_append(field, aml_named_field("REVS",
|
|
|
|
sizeof(typeof_field(NvdimmDsmIn, revision)) * BITS_PER_BYTE));
|
|
|
|
aml_append(field, aml_named_field("FUNC",
|
|
|
|
sizeof(typeof_field(NvdimmDsmIn, function)) * BITS_PER_BYTE));
|
|
|
|
aml_append(field, aml_named_field("ARG3",
|
|
|
|
(TARGET_PAGE_SIZE - offsetof(NvdimmDsmIn, arg3)) *
|
|
|
|
BITS_PER_BYTE));
|
|
|
|
aml_append(dev, field);
|
|
|
|
|
|
|
|
/*
|
|
|
|
* DSM output:
|
|
|
|
* RLEN: the size of the buffer filled by QEMU.
|
|
|
|
* ODAT: the buffer QEMU uses to store the result.
|
|
|
|
*
|
|
|
|
* Since the page is reused by both input and out, the input data
|
|
|
|
* will be lost after storing new result into ODAT so we should fetch
|
|
|
|
* all the input data before writing the result.
|
|
|
|
*/
|
|
|
|
field = aml_field("NRAM", AML_DWORD_ACC, AML_NOLOCK, AML_PRESERVE);
|
|
|
|
aml_append(field, aml_named_field("RLEN",
|
|
|
|
sizeof(typeof_field(NvdimmDsmOut, len)) * BITS_PER_BYTE));
|
|
|
|
aml_append(field, aml_named_field("ODAT",
|
|
|
|
(TARGET_PAGE_SIZE - offsetof(NvdimmDsmOut, data)) *
|
|
|
|
BITS_PER_BYTE));
|
|
|
|
aml_append(dev, field);
|
|
|
|
|
2015-12-02 08:20:59 +01:00
|
|
|
nvdimm_build_common_dsm(dev);
|
|
|
|
nvdimm_build_device_dsm(dev);
|
|
|
|
|
|
|
|
nvdimm_build_nvdimm_devices(device_list, dev);
|
|
|
|
|
|
|
|
aml_append(sb_scope, dev);
|
|
|
|
aml_append(ssdt, sb_scope);
|
2016-03-04 17:00:33 +01:00
|
|
|
|
|
|
|
nvdimm_ssdt = table_data->len;
|
|
|
|
|
2015-12-02 08:20:59 +01:00
|
|
|
/* copy AML table into ACPI tables blob and patch header there */
|
|
|
|
g_array_append_vals(table_data, ssdt->buf->data, ssdt->buf->len);
|
2016-03-04 17:00:33 +01:00
|
|
|
mem_addr_offset = build_append_named_dword(table_data,
|
|
|
|
NVDIMM_ACPI_MEM_ADDR);
|
|
|
|
|
|
|
|
bios_linker_loader_alloc(linker, NVDIMM_DSM_MEM_FILE, TARGET_PAGE_SIZE,
|
|
|
|
false /* high memory */);
|
|
|
|
bios_linker_loader_add_pointer(linker, ACPI_BUILD_TABLE_FILE,
|
|
|
|
NVDIMM_DSM_MEM_FILE, table_data,
|
|
|
|
table_data->data + mem_addr_offset,
|
|
|
|
sizeof(uint32_t));
|
2015-12-02 08:20:59 +01:00
|
|
|
build_header(linker, table_data,
|
2016-03-04 17:00:33 +01:00
|
|
|
(void *)(table_data->data + nvdimm_ssdt),
|
|
|
|
"SSDT", table_data->len - nvdimm_ssdt, 1, NULL, "NVDIMM");
|
2015-12-02 08:20:59 +01:00
|
|
|
free_aml_allocator();
|
|
|
|
}
|
|
|
|
|
nvdimm acpi: build ACPI NFIT table
NFIT is defined in ACPI 6.0: 5.2.25 NVDIMM Firmware Interface Table (NFIT)
Currently, we only support PMEM mode. Each device has 3 structures:
- SPA structure, defines the PMEM region info
- MEM DEV structure, it has the @handle which is used to associate specified
ACPI NVDIMM device we will introduce in later patch.
Also we can happily ignored the memory device's interleave, the real
nvdimm hardware access is hidden behind host
- DCR structure, it defines vendor ID used to associate specified vendor
nvdimm driver. Since we only implement PMEM mode this time, Command
window and Data window are not needed
The NVDIMM functionality is controlled by the parameter, 'nvdimm', which
is introduced for the machine, there is a example to enable it:
-machine pc,nvdimm -m 8G,maxmem=100G,slots=100 -object \
memory-backend-file,id=mem1,share,mem-path=/tmp/nvdimm1,size=10G -device \
nvdimm,memdev=mem1,id=nv1
It is disabled on default
Reviewed-by: Stefan Hajnoczi <stefanha@redhat.com>
Signed-off-by: Xiao Guangrong <guangrong.xiao@linux.intel.com>
Reviewed-by: Michael S. Tsirkin <mst@redhat.com>
Signed-off-by: Michael S. Tsirkin <mst@redhat.com>
2015-12-02 08:20:58 +01:00
|
|
|
void nvdimm_build_acpi(GArray *table_offsets, GArray *table_data,
|
|
|
|
GArray *linker)
|
|
|
|
{
|
|
|
|
GSList *device_list;
|
|
|
|
|
|
|
|
/* no NVDIMM device is plugged. */
|
|
|
|
device_list = nvdimm_get_plugged_device_list();
|
|
|
|
if (!device_list) {
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
nvdimm_build_nfit(device_list, table_offsets, table_data, linker);
|
2015-12-02 08:20:59 +01:00
|
|
|
nvdimm_build_ssdt(device_list, table_offsets, table_data, linker);
|
nvdimm acpi: build ACPI NFIT table
NFIT is defined in ACPI 6.0: 5.2.25 NVDIMM Firmware Interface Table (NFIT)
Currently, we only support PMEM mode. Each device has 3 structures:
- SPA structure, defines the PMEM region info
- MEM DEV structure, it has the @handle which is used to associate specified
ACPI NVDIMM device we will introduce in later patch.
Also we can happily ignored the memory device's interleave, the real
nvdimm hardware access is hidden behind host
- DCR structure, it defines vendor ID used to associate specified vendor
nvdimm driver. Since we only implement PMEM mode this time, Command
window and Data window are not needed
The NVDIMM functionality is controlled by the parameter, 'nvdimm', which
is introduced for the machine, there is a example to enable it:
-machine pc,nvdimm -m 8G,maxmem=100G,slots=100 -object \
memory-backend-file,id=mem1,share,mem-path=/tmp/nvdimm1,size=10G -device \
nvdimm,memdev=mem1,id=nv1
It is disabled on default
Reviewed-by: Stefan Hajnoczi <stefanha@redhat.com>
Signed-off-by: Xiao Guangrong <guangrong.xiao@linux.intel.com>
Reviewed-by: Michael S. Tsirkin <mst@redhat.com>
Signed-off-by: Michael S. Tsirkin <mst@redhat.com>
2015-12-02 08:20:58 +01:00
|
|
|
g_slist_free(device_list);
|
|
|
|
}
|