qemu-e2k/target-s390x/kvm.c

483 lines
11 KiB
C
Raw Normal View History

/*
* QEMU S390x KVM implementation
*
* Copyright (c) 2009 Alexander Graf <agraf@suse.de>
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, see <http://www.gnu.org/licenses/>.
*/
#include <sys/types.h>
#include <sys/ioctl.h>
#include <sys/mman.h>
#include <linux/kvm.h>
#include <asm/ptrace.h>
#include "qemu-common.h"
#include "qemu-timer.h"
#include "sysemu.h"
#include "kvm.h"
#include "cpu.h"
#include "device_tree.h"
/* #define DEBUG_KVM */
#ifdef DEBUG_KVM
#define dprintf(fmt, ...) \
do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0)
#else
#define dprintf(fmt, ...) \
do { } while (0)
#endif
#define IPA0_DIAG 0x8300
#define IPA0_SIGP 0xae00
#define IPA0_PRIV 0xb200
#define PRIV_SCLP_CALL 0x20
#define DIAG_KVM_HYPERCALL 0x500
#define DIAG_KVM_BREAKPOINT 0x501
#define ICPT_INSTRUCTION 0x04
#define ICPT_WAITPSW 0x1c
#define ICPT_SOFT_INTERCEPT 0x24
#define ICPT_CPU_STOP 0x28
#define ICPT_IO 0x40
#define SIGP_RESTART 0x06
#define SIGP_INITIAL_CPU_RESET 0x0b
#define SIGP_STORE_STATUS_ADDR 0x0e
#define SIGP_SET_ARCH 0x12
#define SCLP_CMDW_READ_SCP_INFO 0x00020001
#define SCLP_CMDW_READ_SCP_INFO_FORCED 0x00120001
const KVMCapabilityInfo kvm_arch_required_capabilities[] = {
KVM_CAP_LAST_INFO
};
int kvm_arch_init(KVMState *s)
{
return 0;
}
int kvm_arch_init_vcpu(CPUState *env)
{
int ret = 0;
if (kvm_vcpu_ioctl(env, KVM_S390_INITIAL_RESET, NULL) < 0) {
perror("cannot init reset vcpu");
}
return ret;
}
void kvm_arch_reset_vcpu(CPUState *env)
{
/* FIXME: add code to reset vcpu. */
}
KVM: Rework VCPU state writeback API This grand cleanup drops all reset and vmsave/load related synchronization points in favor of four(!) generic hooks: - cpu_synchronize_all_states in qemu_savevm_state_complete (initial sync from kernel before vmsave) - cpu_synchronize_all_post_init in qemu_loadvm_state (writeback after vmload) - cpu_synchronize_all_post_init in main after machine init - cpu_synchronize_all_post_reset in qemu_system_reset (writeback after system reset) These writeback points + the existing one of VCPU exec after cpu_synchronize_state map on three levels of writeback: - KVM_PUT_RUNTIME_STATE (during runtime, other VCPUs continue to run) - KVM_PUT_RESET_STATE (on synchronous system reset, all VCPUs stopped) - KVM_PUT_FULL_STATE (on init or vmload, all VCPUs stopped as well) This level is passed to the arch-specific VCPU state writing function that will decide which concrete substates need to be written. That way, no writer of load, save or reset functions that interact with in-kernel KVM states will ever have to worry about synchronization again. That also means that a lot of reasons for races, segfaults and deadlocks are eliminated. cpu_synchronize_state remains untouched, just as Anthony suggested. We continue to need it before reading or writing of VCPU states that are also tracked by in-kernel KVM subsystems. Consequently, this patch removes many cpu_synchronize_state calls that are now redundant, just like remaining explicit register syncs. Signed-off-by: Jan Kiszka <jan.kiszka@siemens.com> Signed-off-by: Marcelo Tosatti <mtosatti@redhat.com>
2010-03-01 19:10:30 +01:00
int kvm_arch_put_registers(CPUState *env, int level)
{
struct kvm_regs regs;
int ret;
int i;
ret = kvm_vcpu_ioctl(env, KVM_GET_REGS, &regs);
if (ret < 0) {
return ret;
}
for (i = 0; i < 16; i++) {
regs.gprs[i] = env->regs[i];
}
ret = kvm_vcpu_ioctl(env, KVM_SET_REGS, &regs);
if (ret < 0) {
return ret;
}
env->kvm_run->psw_addr = env->psw.addr;
env->kvm_run->psw_mask = env->psw.mask;
return ret;
}
int kvm_arch_get_registers(CPUState *env)
{
int ret;
struct kvm_regs regs;
int i;
ret = kvm_vcpu_ioctl(env, KVM_GET_REGS, &regs);
if (ret < 0) {
return ret;
}
for (i = 0; i < 16; i++) {
env->regs[i] = regs.gprs[i];
}
env->psw.addr = env->kvm_run->psw_addr;
env->psw.mask = env->kvm_run->psw_mask;
return 0;
}
int kvm_arch_insert_sw_breakpoint(CPUState *env, struct kvm_sw_breakpoint *bp)
{
static const uint8_t diag_501[] = {0x83, 0x24, 0x05, 0x01};
if (cpu_memory_rw_debug(env, bp->pc, (uint8_t *)&bp->saved_insn, 4, 0) ||
cpu_memory_rw_debug(env, bp->pc, (uint8_t *)diag_501, 4, 1)) {
return -EINVAL;
}
return 0;
}
int kvm_arch_remove_sw_breakpoint(CPUState *env, struct kvm_sw_breakpoint *bp)
{
uint8_t t[4];
static const uint8_t diag_501[] = {0x83, 0x24, 0x05, 0x01};
if (cpu_memory_rw_debug(env, bp->pc, t, 4, 0)) {
return -EINVAL;
} else if (memcmp(t, diag_501, 4)) {
return -EINVAL;
} else if (cpu_memory_rw_debug(env, bp->pc, (uint8_t *)&bp->saved_insn, 1, 1)) {
return -EINVAL;
}
return 0;
}
void kvm_arch_pre_run(CPUState *env, struct kvm_run *run)
{
}
void kvm_arch_post_run(CPUState *env, struct kvm_run *run)
{
}
int kvm_arch_process_async_events(CPUState *env)
{
return env->halted;
}
void kvm_s390_interrupt_internal(CPUState *env, int type, uint32_t parm,
uint64_t parm64, int vm)
{
struct kvm_s390_interrupt kvmint;
int r;
if (!env->kvm_state) {
return;
}
kvmint.type = type;
kvmint.parm = parm;
kvmint.parm64 = parm64;
if (vm) {
r = kvm_vm_ioctl(env->kvm_state, KVM_S390_INTERRUPT, &kvmint);
} else {
r = kvm_vcpu_ioctl(env, KVM_S390_INTERRUPT, &kvmint);
}
if (r < 0) {
fprintf(stderr, "KVM failed to inject interrupt\n");
exit(1);
}
}
void kvm_s390_virtio_irq(CPUState *env, int config_change, uint64_t token)
{
kvm_s390_interrupt_internal(env, KVM_S390_INT_VIRTIO, config_change,
token, 1);
}
void kvm_s390_interrupt(CPUState *env, int type, uint32_t code)
{
kvm_s390_interrupt_internal(env, type, code, 0, 0);
}
static void enter_pgmcheck(CPUState *env, uint16_t code)
{
kvm_s390_interrupt(env, KVM_S390_PROGRAM_INT, code);
}
static inline void setcc(CPUState *env, uint64_t cc)
{
env->kvm_run->psw_mask &= ~(3ull << 44);
env->kvm_run->psw_mask |= (cc & 3) << 44;
env->psw.mask &= ~(3ul << 44);
env->psw.mask |= (cc & 3) << 44;
}
static int kvm_sclp_service_call(CPUState *env, struct kvm_run *run,
uint16_t ipbh0)
{
uint32_t sccb;
uint64_t code;
int r = 0;
cpu_synchronize_state(env);
sccb = env->regs[ipbh0 & 0xf];
code = env->regs[(ipbh0 & 0xf0) >> 4];
r = sclp_service_call(env, sccb, code);
if (r) {
setcc(env, 3);
}
return 0;
}
static int handle_priv(CPUState *env, struct kvm_run *run, uint8_t ipa1)
{
int r = 0;
uint16_t ipbh0 = (run->s390_sieic.ipb & 0xffff0000) >> 16;
dprintf("KVM: PRIV: %d\n", ipa1);
switch (ipa1) {
case PRIV_SCLP_CALL:
r = kvm_sclp_service_call(env, run, ipbh0);
break;
default:
dprintf("KVM: unknown PRIV: 0x%x\n", ipa1);
r = -1;
break;
}
return r;
}
static int handle_hypercall(CPUState *env, struct kvm_run *run)
{
cpu_synchronize_state(env);
env->regs[2] = s390_virtio_hypercall(env, env->regs[2], env->regs[1]);
return 0;
}
static int handle_diag(CPUState *env, struct kvm_run *run, int ipb_code)
{
int r = 0;
switch (ipb_code) {
case DIAG_KVM_HYPERCALL:
r = handle_hypercall(env, run);
break;
case DIAG_KVM_BREAKPOINT:
sleep(10);
break;
default:
dprintf("KVM: unknown DIAG: 0x%x\n", ipb_code);
r = -1;
break;
}
return r;
}
static int s390_cpu_restart(CPUState *env)
{
kvm_s390_interrupt(env, KVM_S390_RESTART, 0);
s390_add_running_cpu(env);
qemu_cpu_kick(env);
dprintf("DONE: SIGP cpu restart: %p\n", env);
return 0;
}
static int s390_store_status(CPUState *env, uint32_t parameter)
{
/* XXX */
fprintf(stderr, "XXX SIGP store status\n");
return -1;
}
static int s390_cpu_initial_reset(CPUState *env)
{
int i;
if (kvm_vcpu_ioctl(env, KVM_S390_INITIAL_RESET, NULL) < 0) {
perror("cannot init reset vcpu");
}
/* Manually zero out all registers */
cpu_synchronize_state(env);
for (i = 0; i < 16; i++) {
env->regs[i] = 0;
}
dprintf("DONE: SIGP initial reset: %p\n", env);
return 0;
}
static int handle_sigp(CPUState *env, struct kvm_run *run, uint8_t ipa1)
{
uint8_t order_code;
uint32_t parameter;
uint16_t cpu_addr;
uint8_t t;
int r = -1;
CPUState *target_env;
cpu_synchronize_state(env);
/* get order code */
order_code = run->s390_sieic.ipb >> 28;
if (order_code > 0) {
order_code = env->regs[order_code];
}
order_code += (run->s390_sieic.ipb & 0x0fff0000) >> 16;
/* get parameters */
t = (ipa1 & 0xf0) >> 4;
if (!(t % 2)) {
t++;
}
parameter = env->regs[t] & 0x7ffffe00;
cpu_addr = env->regs[ipa1 & 0x0f];
target_env = s390_cpu_addr2state(cpu_addr);
if (!target_env) {
goto out;
}
switch (order_code) {
case SIGP_RESTART:
r = s390_cpu_restart(target_env);
break;
case SIGP_STORE_STATUS_ADDR:
r = s390_store_status(target_env, parameter);
break;
case SIGP_SET_ARCH:
/* make the caller panic */
return -1;
case SIGP_INITIAL_CPU_RESET:
r = s390_cpu_initial_reset(target_env);
break;
default:
fprintf(stderr, "KVM: unknown SIGP: 0x%x\n", order_code);
break;
}
out:
setcc(env, r ? 3 : 0);
return 0;
}
static int handle_instruction(CPUState *env, struct kvm_run *run)
{
unsigned int ipa0 = (run->s390_sieic.ipa & 0xff00);
uint8_t ipa1 = run->s390_sieic.ipa & 0x00ff;
int ipb_code = (run->s390_sieic.ipb & 0x0fff0000) >> 16;
int r = -1;
dprintf("handle_instruction 0x%x 0x%x\n", run->s390_sieic.ipa, run->s390_sieic.ipb);
switch (ipa0) {
case IPA0_PRIV:
r = handle_priv(env, run, ipa1);
break;
case IPA0_DIAG:
r = handle_diag(env, run, ipb_code);
break;
case IPA0_SIGP:
r = handle_sigp(env, run, ipa1);
break;
}
if (r < 0) {
enter_pgmcheck(env, 0x0001);
}
return 0;
}
static int handle_intercept(CPUState *env)
{
struct kvm_run *run = env->kvm_run;
int icpt_code = run->s390_sieic.icptcode;
int r = 0;
dprintf("intercept: 0x%x (at 0x%lx)\n", icpt_code,
(long)env->kvm_run->psw_addr);
switch (icpt_code) {
case ICPT_INSTRUCTION:
r = handle_instruction(env, run);
break;
case ICPT_WAITPSW:
case ICPT_CPU_STOP:
if (s390_del_running_cpu(env) == 0) {
qemu_system_shutdown_request();
}
r = EXCP_HALTED;
break;
case ICPT_SOFT_INTERCEPT:
fprintf(stderr, "KVM unimplemented icpt SOFT\n");
exit(1);
break;
case ICPT_IO:
fprintf(stderr, "KVM unimplemented icpt IO\n");
exit(1);
break;
default:
fprintf(stderr, "Unknown intercept code: %d\n", icpt_code);
exit(1);
break;
}
return r;
}
int kvm_arch_handle_exit(CPUState *env, struct kvm_run *run)
{
int ret = 0;
switch (run->exit_reason) {
case KVM_EXIT_S390_SIEIC:
ret = handle_intercept(env);
break;
case KVM_EXIT_S390_RESET:
fprintf(stderr, "RESET not implemented\n");
exit(1);
break;
default:
fprintf(stderr, "Unknown KVM exit: %d\n", run->exit_reason);
break;
}
if (ret == 0) {
ret = EXCP_INTERRUPT;
}
return ret;
}
bool kvm_arch_stop_on_emulation_error(CPUState *env)
{
return true;
}
int kvm_arch_on_sigbus_vcpu(CPUState *env, int code, void *addr)
{
return 1;
}
int kvm_arch_on_sigbus(int code, void *addr)
{
return 1;
}