qemu-e2k/linux-user/arm/nwfpe/double_cpdo.c

296 lines
6.4 KiB
C
Raw Normal View History

/*
NetWinder Floating Point Emulator
(c) Rebel.COM, 1998,1999
Direct questions, comments to Scott Bambrough <scottb@netwinder.org>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, see <http://www.gnu.org/licenses/>.
*/
#include "fpa11.h"
#include "fpu/softfloat.h"
#include "fpopcode.h"
float64 float64_exp(float64 Fm);
float64 float64_ln(float64 Fm);
float64 float64_sin(float64 rFm);
float64 float64_cos(float64 rFm);
float64 float64_arcsin(float64 rFm);
float64 float64_arctan(float64 rFm);
float64 float64_log(float64 rFm);
float64 float64_tan(float64 rFm);
float64 float64_arccos(float64 rFm);
float64 float64_pow(float64 rFn,float64 rFm);
float64 float64_pol(float64 rFn,float64 rFm);
unsigned int DoubleCPDO(const unsigned int opcode)
{
FPA11 *fpa11 = GET_FPA11();
float64 rFm, rFn = float64_zero;
unsigned int Fd, Fm, Fn, nRc = 1;
//printk("DoubleCPDO(0x%08x)\n",opcode);
Fm = getFm(opcode);
if (CONSTANT_FM(opcode))
{
rFm = getDoubleConstant(Fm);
}
else
{
switch (fpa11->fType[Fm])
{
case typeSingle:
rFm = float32_to_float64(fpa11->fpreg[Fm].fSingle, &fpa11->fp_status);
break;
case typeDouble:
rFm = fpa11->fpreg[Fm].fDouble;
break;
case typeExtended:
// !! patb
//printk("not implemented! why not?\n");
//!! ScottB
// should never get here, if extended involved
// then other operand should be promoted then
// ExtendedCPDO called.
break;
default: return 0;
}
}
if (!MONADIC_INSTRUCTION(opcode))
{
Fn = getFn(opcode);
switch (fpa11->fType[Fn])
{
case typeSingle:
rFn = float32_to_float64(fpa11->fpreg[Fn].fSingle, &fpa11->fp_status);
break;
case typeDouble:
rFn = fpa11->fpreg[Fn].fDouble;
break;
default: return 0;
}
}
Fd = getFd(opcode);
/* !! this switch isn't optimized; better (opcode & MASK_ARITHMETIC_OPCODE)>>24, sort of */
switch (opcode & MASK_ARITHMETIC_OPCODE)
{
/* dyadic opcodes */
case ADF_CODE:
fpa11->fpreg[Fd].fDouble = float64_add(rFn,rFm, &fpa11->fp_status);
break;
case MUF_CODE:
case FML_CODE:
fpa11->fpreg[Fd].fDouble = float64_mul(rFn,rFm, &fpa11->fp_status);
break;
case SUF_CODE:
fpa11->fpreg[Fd].fDouble = float64_sub(rFn,rFm, &fpa11->fp_status);
break;
case RSF_CODE:
fpa11->fpreg[Fd].fDouble = float64_sub(rFm,rFn, &fpa11->fp_status);
break;
case DVF_CODE:
case FDV_CODE:
fpa11->fpreg[Fd].fDouble = float64_div(rFn,rFm, &fpa11->fp_status);
break;
case RDF_CODE:
case FRD_CODE:
fpa11->fpreg[Fd].fDouble = float64_div(rFm,rFn, &fpa11->fp_status);
break;
#if 0
case POW_CODE:
fpa11->fpreg[Fd].fDouble = float64_pow(rFn,rFm);
break;
case RPW_CODE:
fpa11->fpreg[Fd].fDouble = float64_pow(rFm,rFn);
break;
#endif
case RMF_CODE:
fpa11->fpreg[Fd].fDouble = float64_rem(rFn,rFm, &fpa11->fp_status);
break;
#if 0
case POL_CODE:
fpa11->fpreg[Fd].fDouble = float64_pol(rFn,rFm);
break;
#endif
/* monadic opcodes */
case MVF_CODE:
fpa11->fpreg[Fd].fDouble = rFm;
break;
case MNF_CODE:
{
unsigned int *p = (unsigned int*)&rFm;
#ifdef HOST_WORDS_BIGENDIAN
p[0] ^= 0x80000000;
#else
p[1] ^= 0x80000000;
#endif
fpa11->fpreg[Fd].fDouble = rFm;
}
break;
case ABS_CODE:
{
unsigned int *p = (unsigned int*)&rFm;
#ifdef HOST_WORDS_BIGENDIAN
p[0] &= 0x7fffffff;
#else
p[1] &= 0x7fffffff;
#endif
fpa11->fpreg[Fd].fDouble = rFm;
}
break;
case RND_CODE:
case URD_CODE:
fpa11->fpreg[Fd].fDouble = float64_round_to_int(rFm, &fpa11->fp_status);
break;
case SQT_CODE:
fpa11->fpreg[Fd].fDouble = float64_sqrt(rFm, &fpa11->fp_status);
break;
#if 0
case LOG_CODE:
fpa11->fpreg[Fd].fDouble = float64_log(rFm);
break;
case LGN_CODE:
fpa11->fpreg[Fd].fDouble = float64_ln(rFm);
break;
case EXP_CODE:
fpa11->fpreg[Fd].fDouble = float64_exp(rFm);
break;
case SIN_CODE:
fpa11->fpreg[Fd].fDouble = float64_sin(rFm);
break;
case COS_CODE:
fpa11->fpreg[Fd].fDouble = float64_cos(rFm);
break;
case TAN_CODE:
fpa11->fpreg[Fd].fDouble = float64_tan(rFm);
break;
case ASN_CODE:
fpa11->fpreg[Fd].fDouble = float64_arcsin(rFm);
break;
case ACS_CODE:
fpa11->fpreg[Fd].fDouble = float64_arccos(rFm);
break;
case ATN_CODE:
fpa11->fpreg[Fd].fDouble = float64_arctan(rFm);
break;
#endif
case NRM_CODE:
break;
default:
{
nRc = 0;
}
}
if (0 != nRc) fpa11->fType[Fd] = typeDouble;
return nRc;
}
#if 0
float64 float64_exp(float64 rFm)
{
return rFm;
//series
}
float64 float64_ln(float64 rFm)
{
return rFm;
//series
}
float64 float64_sin(float64 rFm)
{
return rFm;
//series
}
float64 float64_cos(float64 rFm)
{
return rFm;
//series
}
#if 0
float64 float64_arcsin(float64 rFm)
{
//series
}
float64 float64_arctan(float64 rFm)
{
//series
}
#endif
float64 float64_log(float64 rFm)
{
return float64_div(float64_ln(rFm),getDoubleConstant(7));
}
float64 float64_tan(float64 rFm)
{
return float64_div(float64_sin(rFm),float64_cos(rFm));
}
float64 float64_arccos(float64 rFm)
{
return rFm;
//return float64_sub(halfPi,float64_arcsin(rFm));
}
float64 float64_pow(float64 rFn,float64 rFm)
{
return float64_exp(float64_mul(rFm,float64_ln(rFn)));
}
float64 float64_pol(float64 rFn,float64 rFm)
{
return float64_arctan(float64_div(rFn,rFm));
}
#endif