qemu-e2k/hw/sun4c_intctl.c

226 lines
5.7 KiB
C
Raw Normal View History

/*
* QEMU Sparc Sun4c interrupt controller emulation
*
* Based on slavio_intctl, copyright (c) 2003-2005 Fabrice Bellard
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include "hw.h"
#include "sun4m.h"
#include "console.h"
//#define DEBUG_IRQ_COUNT
//#define DEBUG_IRQ
#ifdef DEBUG_IRQ
#define DPRINTF(fmt, args...) \
do { printf("IRQ: " fmt , ##args); } while (0)
#else
#define DPRINTF(fmt, args...)
#endif
/*
* Registers of interrupt controller in sun4c.
*
*/
#define MAX_PILS 16
typedef struct Sun4c_INTCTLState {
#ifdef DEBUG_IRQ_COUNT
uint64_t irq_count;
#endif
qemu_irq *cpu_irqs;
const uint32_t *intbit_to_level;
uint32_t pil_out;
uint8_t reg;
uint8_t pending;
} Sun4c_INTCTLState;
#define INTCTL_MAXADDR 0
#define INTCTL_SIZE (INTCTL_MAXADDR + 1)
static void sun4c_check_interrupts(void *opaque);
static uint32_t sun4c_intctl_mem_readb(void *opaque, target_phys_addr_t addr)
{
Sun4c_INTCTLState *s = opaque;
uint32_t ret;
ret = s->reg;
DPRINTF("read reg 0x" TARGET_FMT_plx " = %x\n", addr, ret);
return ret;
}
static void sun4c_intctl_mem_writeb(void *opaque, target_phys_addr_t addr,
uint32_t val)
{
Sun4c_INTCTLState *s = opaque;
DPRINTF("write reg 0x" TARGET_FMT_plx " = %x\n", addr, val);
val &= 0xbf;
s->reg = val;
sun4c_check_interrupts(s);
}
static CPUReadMemoryFunc *sun4c_intctl_mem_read[3] = {
sun4c_intctl_mem_readb,
NULL,
NULL,
};
static CPUWriteMemoryFunc *sun4c_intctl_mem_write[3] = {
sun4c_intctl_mem_writeb,
NULL,
NULL,
};
void sun4c_pic_info(void *opaque)
{
Sun4c_INTCTLState *s = opaque;
term_printf("master: pending 0x%2.2x, enabled 0x%2.2x\n", s->pending,
s->reg);
}
void sun4c_irq_info(void *opaque)
{
#ifndef DEBUG_IRQ_COUNT
term_printf("irq statistic code not compiled.\n");
#else
Sun4c_INTCTLState *s = opaque;
int64_t count;
term_printf("IRQ statistics:\n");
count = s->irq_count[i];
if (count > 0)
term_printf("%2d: %" PRId64 "\n", i, count);
#endif
}
static const uint32_t intbit_to_level[] = { 0, 1, 4, 6, 8, 10, 0, 14, };
static void sun4c_check_interrupts(void *opaque)
{
Sun4c_INTCTLState *s = opaque;
uint32_t pil_pending;
unsigned int i;
DPRINTF("pending %x disabled %x\n", pending, s->intregm_disabled);
pil_pending = 0;
if (s->pending && !(s->reg & 0x80000000)) {
for (i = 0; i < 8; i++) {
if (s->pending & (1 << i))
pil_pending |= 1 << intbit_to_level[i];
}
}
for (i = 0; i < MAX_PILS; i++) {
if (pil_pending & (1 << i)) {
if (!(s->pil_out & (1 << i)))
qemu_irq_raise(s->cpu_irqs[i]);
} else {
if (s->pil_out & (1 << i))
qemu_irq_lower(s->cpu_irqs[i]);
}
}
s->pil_out = pil_pending;
}
/*
* "irq" here is the bit number in the system interrupt register
*/
static void sun4c_set_irq(void *opaque, int irq, int level)
{
Sun4c_INTCTLState *s = opaque;
uint32_t mask = 1 << irq;
uint32_t pil = intbit_to_level[irq];
DPRINTF("Set irq %d -> pil %d level %d\n", irq, pil,
level);
if (pil > 0) {
if (level) {
#ifdef DEBUG_IRQ_COUNT
s->irq_count[pil]++;
#endif
s->pending |= mask;
} else {
s->pending &= ~mask;
}
sun4c_check_interrupts(s);
}
}
static void sun4c_intctl_save(QEMUFile *f, void *opaque)
{
Sun4c_INTCTLState *s = opaque;
qemu_put_8s(f, &s->reg);
qemu_put_8s(f, &s->pending);
}
static int sun4c_intctl_load(QEMUFile *f, void *opaque, int version_id)
{
Sun4c_INTCTLState *s = opaque;
if (version_id != 1)
return -EINVAL;
qemu_get_8s(f, &s->reg);
qemu_get_8s(f, &s->pending);
sun4c_check_interrupts(s);
return 0;
}
static void sun4c_intctl_reset(void *opaque)
{
Sun4c_INTCTLState *s = opaque;
s->reg = 1;
s->pending = 0;
sun4c_check_interrupts(s);
}
void *sun4c_intctl_init(target_phys_addr_t addr, qemu_irq **irq,
qemu_irq *parent_irq)
{
int sun4c_intctl_io_memory;
Sun4c_INTCTLState *s;
s = qemu_mallocz(sizeof(Sun4c_INTCTLState));
if (!s)
return NULL;
sun4c_intctl_io_memory = cpu_register_io_memory(0, sun4c_intctl_mem_read,
sun4c_intctl_mem_write, s);
cpu_register_physical_memory(addr, INTCTL_SIZE, sun4c_intctl_io_memory);
s->cpu_irqs = parent_irq;
register_savevm("sun4c_intctl", addr, 1, sun4c_intctl_save,
sun4c_intctl_load, s);
qemu_register_reset(sun4c_intctl_reset, s);
*irq = qemu_allocate_irqs(sun4c_set_irq, s, 8);
sun4c_intctl_reset(s);
return s;
}