qemu-e2k/target/ppc/kvm_ppc.h

316 lines
7.0 KiB
C
Raw Normal View History

/*
* Copyright 2008 IBM Corporation.
* Authors: Hollis Blanchard <hollisb@us.ibm.com>
*
* This work is licensed under the GNU GPL license version 2 or later.
*
*/
#ifndef KVM_PPC_H
#define KVM_PPC_H
#define TYPE_HOST_POWERPC_CPU "host-" TYPE_POWERPC_CPU
#ifdef CONFIG_KVM
uint32_t kvmppc_get_tbfreq(void);
uint64_t kvmppc_get_clockfreq(void);
uint32_t kvmppc_get_vmx(void);
uint32_t kvmppc_get_dfp(void);
bool kvmppc_get_host_model(char **buf);
bool kvmppc_get_host_serial(char **buf);
int kvmppc_get_hasidle(CPUPPCState *env);
int kvmppc_get_hypercall(CPUPPCState *env, uint8_t *buf, int buf_len);
int kvmppc_set_interrupt(PowerPCCPU *cpu, int irq, int level);
void kvmppc_enable_logical_ci_hcalls(void);
void kvmppc_enable_set_mode_hcall(void);
void kvmppc_enable_clear_ref_mod_hcalls(void);
void kvmppc_set_papr(PowerPCCPU *cpu);
int kvmppc_set_compat(PowerPCCPU *cpu, uint32_t compat_pvr);
void kvmppc_set_mpic_proxy(PowerPCCPU *cpu, int mpic_proxy);
int kvmppc_smt_threads(void);
int kvmppc_clear_tsr_bits(PowerPCCPU *cpu, uint32_t tsr_bits);
int kvmppc_or_tsr_bits(PowerPCCPU *cpu, uint32_t tsr_bits);
int kvmppc_set_tcr(PowerPCCPU *cpu);
int kvmppc_booke_watchdog_enable(PowerPCCPU *cpu);
#ifndef CONFIG_USER_ONLY
off_t kvmppc_alloc_rma(void **rma);
bool kvmppc_spapr_use_multitce(void);
spapr_iommu: Make in-kernel TCE table optional POWER KVM supports an KVM_CAP_SPAPR_TCE capability which allows allocating TCE tables in the host kernel memory and handle H_PUT_TCE requests targeted to specific LIOBN (logical bus number) right in the host without switching to QEMU. At the moment this is used for emulated devices only and the handler only puts TCE to the table. If the in-kernel H_PUT_TCE handler finds a LIOBN and corresponding table, it will put a TCE to the table and complete hypercall execution. The user space will not be notified. Upcoming VFIO support is going to use the same sPAPRTCETable device class so KVM_CAP_SPAPR_TCE is going to be used as well. That means that TCE tables for VFIO are going to be allocated in the host as well. However VFIO operates with real IOMMU tables and simple copying of a TCE to the real hardware TCE table will not work as guest physical to host physical address translation is requited. So until the host kernel gets VFIO support for H_PUT_TCE, we better not to register VFIO's TCE in the host. This adds a place holder for KVM_CAP_SPAPR_TCE_VFIO capability. It is not in upstream yet and being discussed so now it is always false which means that in-kernel VFIO acceleration is not supported. This adds a bool @vfio_accel flag to the sPAPRTCETable device telling that sPAPRTCETable should not try allocating TCE table in the host kernel for VFIO. The flag is false now as at the moment there is no VFIO. This adds an vfio_accel parameter to spapr_tce_new_table(), the semantic is the same. Since there is only emulated PCI and VIO now, the flag is set to false. Upcoming VFIO support will set it to true. This is a preparation patch so no change in behaviour is expected Signed-off-by: Alexey Kardashevskiy <aik@ozlabs.ru> Signed-off-by: Alexander Graf <agraf@suse.de>
2014-06-10 07:39:21 +02:00
void *kvmppc_create_spapr_tce(uint32_t liobn, uint32_t window_size, int *pfd,
bool need_vfio);
int kvmppc_remove_spapr_tce(void *table, int pfd, uint32_t window_size);
int kvmppc_reset_htab(int shift_hint);
uint64_t kvmppc_rma_size(uint64_t current_size, unsigned int hash_shift);
#endif /* !CONFIG_USER_ONLY */
bool kvmppc_has_cap_epr(void);
int kvmppc_define_rtas_kernel_token(uint32_t token, const char *function);
bool kvmppc_has_cap_htab_fd(void);
int kvmppc_get_htab_fd(bool write);
int kvmppc_save_htab(QEMUFile *f, int fd, size_t bufsize, int64_t max_ns);
int kvmppc_load_htab_chunk(QEMUFile *f, int fd, uint32_t index,
uint16_t n_valid, uint16_t n_invalid);
target/ppc: Fix KVM-HV HPTE accessors When a 'pseries' guest is running with KVM-HV, the guest's hashed page table (HPT) is stored within the host kernel, so it is not directly accessible to qemu. Most of the time, qemu doesn't need to access it: we're using the hardware MMU, and KVM itself implements the guest hypercalls for manipulating the HPT. However, qemu does need access to the in-KVM HPT to implement get_phys_page_debug() for the benefit of the gdbstub, and maybe for other debug operations. To allow this, 7c43bca "target-ppc: Fix page table lookup with kvm enabled" added kvmppc_hash64_read_pteg() to target/ppc/kvm.c to read in a batch of HPTEs from the KVM table. Unfortunately, there are a couple of problems with this: First, the name of the function implies it always reads a whole PTEG from the HPT, but in fact in some cases it's used to grab individual HPTEs (which ends up pulling 8 HPTEs, not aligned to a PTEG from the kernel). Second, and more importantly, the code to read the HPTEs from KVM is simply wrong, in general. The data from the fd that KVM provides is designed mostly for compact migration rather than this sort of one-off access, and so needs some decoding for this purpose. The current code will work in some cases, but if there are invalid HPTEs then it will not get sane results. This patch rewrite the HPTE reading function to have a simpler interface (just read n HPTEs into a caller provided buffer), and to correctly decode the stream from the kernel. For consistency we also clean up the similar function for altering HPTEs within KVM (introduced in c138593 "target-ppc: Update ppc_hash64_store_hpte to support updating in-kernel htab"). Cc: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com> Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
2017-02-27 05:34:19 +01:00
void kvmppc_read_hptes(ppc_hash_pte64_t *hptes, hwaddr ptex, int n);
void kvmppc_write_hpte(hwaddr ptex, uint64_t pte0, uint64_t pte1);
bool kvmppc_has_cap_fixup_hcalls(void);
bool kvmppc_has_cap_htm(void);
int kvmppc_enable_hwrng(void);
int kvmppc_put_books_sregs(PowerPCCPU *cpu);
PowerPCCPUClass *kvm_ppc_get_host_cpu_class(void);
bool kvmppc_is_mem_backend_page_size_ok(char *obj_path);
#else
static inline uint32_t kvmppc_get_tbfreq(void)
{
return 0;
}
static inline bool kvmppc_get_host_model(char **buf)
{
return false;
}
static inline bool kvmppc_get_host_serial(char **buf)
{
return false;
}
static inline uint64_t kvmppc_get_clockfreq(void)
{
return 0;
}
static inline uint32_t kvmppc_get_vmx(void)
{
return 0;
}
static inline uint32_t kvmppc_get_dfp(void)
{
return 0;
}
static inline int kvmppc_get_hasidle(CPUPPCState *env)
{
return 0;
}
static inline int kvmppc_get_hypercall(CPUPPCState *env, uint8_t *buf, int buf_len)
{
return -1;
}
static inline int kvmppc_set_interrupt(PowerPCCPU *cpu, int irq, int level)
{
return -1;
}
static inline void kvmppc_enable_logical_ci_hcalls(void)
{
}
static inline void kvmppc_enable_set_mode_hcall(void)
{
}
static inline void kvmppc_enable_clear_ref_mod_hcalls(void)
{
}
static inline void kvmppc_set_papr(PowerPCCPU *cpu)
{
}
static inline int kvmppc_set_compat(PowerPCCPU *cpu, uint32_t compat_pvr)
{
return 0;
}
static inline void kvmppc_set_mpic_proxy(PowerPCCPU *cpu, int mpic_proxy)
{
}
static inline int kvmppc_smt_threads(void)
{
return 1;
}
static inline int kvmppc_or_tsr_bits(PowerPCCPU *cpu, uint32_t tsr_bits)
{
return 0;
}
static inline int kvmppc_clear_tsr_bits(PowerPCCPU *cpu, uint32_t tsr_bits)
{
return 0;
}
static inline int kvmppc_set_tcr(PowerPCCPU *cpu)
{
return 0;
}
static inline int kvmppc_booke_watchdog_enable(PowerPCCPU *cpu)
{
return -1;
}
#ifndef CONFIG_USER_ONLY
static inline off_t kvmppc_alloc_rma(void **rma)
{
return 0;
}
static inline bool kvmppc_spapr_use_multitce(void)
{
return false;
}
static inline void *kvmppc_create_spapr_tce(uint32_t liobn,
spapr_iommu: Make in-kernel TCE table optional POWER KVM supports an KVM_CAP_SPAPR_TCE capability which allows allocating TCE tables in the host kernel memory and handle H_PUT_TCE requests targeted to specific LIOBN (logical bus number) right in the host without switching to QEMU. At the moment this is used for emulated devices only and the handler only puts TCE to the table. If the in-kernel H_PUT_TCE handler finds a LIOBN and corresponding table, it will put a TCE to the table and complete hypercall execution. The user space will not be notified. Upcoming VFIO support is going to use the same sPAPRTCETable device class so KVM_CAP_SPAPR_TCE is going to be used as well. That means that TCE tables for VFIO are going to be allocated in the host as well. However VFIO operates with real IOMMU tables and simple copying of a TCE to the real hardware TCE table will not work as guest physical to host physical address translation is requited. So until the host kernel gets VFIO support for H_PUT_TCE, we better not to register VFIO's TCE in the host. This adds a place holder for KVM_CAP_SPAPR_TCE_VFIO capability. It is not in upstream yet and being discussed so now it is always false which means that in-kernel VFIO acceleration is not supported. This adds a bool @vfio_accel flag to the sPAPRTCETable device telling that sPAPRTCETable should not try allocating TCE table in the host kernel for VFIO. The flag is false now as at the moment there is no VFIO. This adds an vfio_accel parameter to spapr_tce_new_table(), the semantic is the same. Since there is only emulated PCI and VIO now, the flag is set to false. Upcoming VFIO support will set it to true. This is a preparation patch so no change in behaviour is expected Signed-off-by: Alexey Kardashevskiy <aik@ozlabs.ru> Signed-off-by: Alexander Graf <agraf@suse.de>
2014-06-10 07:39:21 +02:00
uint32_t window_size, int *fd,
bool need_vfio)
{
return NULL;
}
static inline int kvmppc_remove_spapr_tce(void *table, int pfd,
uint32_t nb_table)
{
return -1;
}
static inline int kvmppc_reset_htab(int shift_hint)
{
return 0;
}
static inline uint64_t kvmppc_rma_size(uint64_t current_size,
unsigned int hash_shift)
{
return ram_size;
}
static inline bool kvmppc_is_mem_backend_page_size_ok(char *obj_path)
{
return true;
}
#endif /* !CONFIG_USER_ONLY */
static inline bool kvmppc_has_cap_epr(void)
{
return false;
}
static inline int kvmppc_define_rtas_kernel_token(uint32_t token,
const char *function)
{
return -1;
}
static inline bool kvmppc_has_cap_htab_fd(void)
{
return false;
}
static inline int kvmppc_get_htab_fd(bool write)
{
return -1;
}
static inline int kvmppc_save_htab(QEMUFile *f, int fd, size_t bufsize,
int64_t max_ns)
{
abort();
}
static inline int kvmppc_load_htab_chunk(QEMUFile *f, int fd, uint32_t index,
uint16_t n_valid, uint16_t n_invalid)
{
abort();
}
target/ppc: Fix KVM-HV HPTE accessors When a 'pseries' guest is running with KVM-HV, the guest's hashed page table (HPT) is stored within the host kernel, so it is not directly accessible to qemu. Most of the time, qemu doesn't need to access it: we're using the hardware MMU, and KVM itself implements the guest hypercalls for manipulating the HPT. However, qemu does need access to the in-KVM HPT to implement get_phys_page_debug() for the benefit of the gdbstub, and maybe for other debug operations. To allow this, 7c43bca "target-ppc: Fix page table lookup with kvm enabled" added kvmppc_hash64_read_pteg() to target/ppc/kvm.c to read in a batch of HPTEs from the KVM table. Unfortunately, there are a couple of problems with this: First, the name of the function implies it always reads a whole PTEG from the HPT, but in fact in some cases it's used to grab individual HPTEs (which ends up pulling 8 HPTEs, not aligned to a PTEG from the kernel). Second, and more importantly, the code to read the HPTEs from KVM is simply wrong, in general. The data from the fd that KVM provides is designed mostly for compact migration rather than this sort of one-off access, and so needs some decoding for this purpose. The current code will work in some cases, but if there are invalid HPTEs then it will not get sane results. This patch rewrite the HPTE reading function to have a simpler interface (just read n HPTEs into a caller provided buffer), and to correctly decode the stream from the kernel. For consistency we also clean up the similar function for altering HPTEs within KVM (introduced in c138593 "target-ppc: Update ppc_hash64_store_hpte to support updating in-kernel htab"). Cc: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com> Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
2017-02-27 05:34:19 +01:00
static inline void kvmppc_read_hptes(ppc_hash_pte64_t *hptes,
hwaddr ptex, int n)
{
abort();
}
target/ppc: Fix KVM-HV HPTE accessors When a 'pseries' guest is running with KVM-HV, the guest's hashed page table (HPT) is stored within the host kernel, so it is not directly accessible to qemu. Most of the time, qemu doesn't need to access it: we're using the hardware MMU, and KVM itself implements the guest hypercalls for manipulating the HPT. However, qemu does need access to the in-KVM HPT to implement get_phys_page_debug() for the benefit of the gdbstub, and maybe for other debug operations. To allow this, 7c43bca "target-ppc: Fix page table lookup with kvm enabled" added kvmppc_hash64_read_pteg() to target/ppc/kvm.c to read in a batch of HPTEs from the KVM table. Unfortunately, there are a couple of problems with this: First, the name of the function implies it always reads a whole PTEG from the HPT, but in fact in some cases it's used to grab individual HPTEs (which ends up pulling 8 HPTEs, not aligned to a PTEG from the kernel). Second, and more importantly, the code to read the HPTEs from KVM is simply wrong, in general. The data from the fd that KVM provides is designed mostly for compact migration rather than this sort of one-off access, and so needs some decoding for this purpose. The current code will work in some cases, but if there are invalid HPTEs then it will not get sane results. This patch rewrite the HPTE reading function to have a simpler interface (just read n HPTEs into a caller provided buffer), and to correctly decode the stream from the kernel. For consistency we also clean up the similar function for altering HPTEs within KVM (introduced in c138593 "target-ppc: Update ppc_hash64_store_hpte to support updating in-kernel htab"). Cc: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com> Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
2017-02-27 05:34:19 +01:00
static inline void kvmppc_write_hpte(hwaddr ptex, uint64_t pte0, uint64_t pte1)
{
abort();
}
static inline bool kvmppc_has_cap_fixup_hcalls(void)
{
abort();
}
static inline bool kvmppc_has_cap_htm(void)
{
return false;
}
static inline int kvmppc_enable_hwrng(void)
{
return -1;
}
static inline int kvmppc_put_books_sregs(PowerPCCPU *cpu)
{
abort();
}
static inline PowerPCCPUClass *kvm_ppc_get_host_cpu_class(void)
{
return NULL;
}
#endif
#ifndef CONFIG_KVM
#define kvmppc_eieio() do { } while (0)
static inline void kvmppc_dcbst_range(PowerPCCPU *cpu, uint8_t *addr, int len)
{
}
static inline void kvmppc_icbi_range(PowerPCCPU *cpu, uint8_t *addr, int len)
{
}
#else /* CONFIG_KVM */
#define kvmppc_eieio() \
do { \
if (kvm_enabled()) { \
asm volatile("eieio" : : : "memory"); \
} \
} while (0)
/* Store data cache blocks back to memory */
static inline void kvmppc_dcbst_range(PowerPCCPU *cpu, uint8_t *addr, int len)
{
uint8_t *p;
for (p = addr; p < addr + len; p += cpu->env.dcache_line_size) {
asm volatile("dcbst 0,%0" : : "r"(p) : "memory");
}
}
/* Invalidate instruction cache blocks */
static inline void kvmppc_icbi_range(PowerPCCPU *cpu, uint8_t *addr, int len)
{
uint8_t *p;
for (p = addr; p < addr + len; p += cpu->env.icache_line_size) {
asm volatile("icbi 0,%0" : : "r"(p));
}
}
#endif /* CONFIG_KVM */
#endif /* KVM_PPC_H */