2013-03-05 01:34:41 +01:00
|
|
|
/*
|
|
|
|
* ARM implementation of KVM hooks
|
|
|
|
*
|
|
|
|
* Copyright Christoffer Dall 2009-2010
|
|
|
|
*
|
|
|
|
* This work is licensed under the terms of the GNU GPL, version 2 or later.
|
|
|
|
* See the COPYING file in the top-level directory.
|
|
|
|
*
|
|
|
|
*/
|
|
|
|
|
|
|
|
#include <stdio.h>
|
|
|
|
#include <sys/types.h>
|
|
|
|
#include <sys/ioctl.h>
|
|
|
|
#include <sys/mman.h>
|
|
|
|
|
|
|
|
#include <linux/kvm.h>
|
|
|
|
|
|
|
|
#include "qemu-common.h"
|
|
|
|
#include "qemu/timer.h"
|
|
|
|
#include "sysemu/sysemu.h"
|
|
|
|
#include "sysemu/kvm.h"
|
2013-03-05 01:34:42 +01:00
|
|
|
#include "kvm_arm.h"
|
2013-03-05 01:34:41 +01:00
|
|
|
#include "cpu.h"
|
2013-04-09 16:26:55 +02:00
|
|
|
#include "hw/arm/arm.h"
|
2013-03-05 01:34:41 +01:00
|
|
|
|
2013-06-25 19:16:07 +02:00
|
|
|
/* Check that cpu.h's idea of coprocessor fields matches KVM's */
|
|
|
|
#if (CP_REG_SIZE_SHIFT != KVM_REG_SIZE_SHIFT) || \
|
|
|
|
(CP_REG_SIZE_MASK != KVM_REG_SIZE_MASK) || \
|
|
|
|
(CP_REG_SIZE_U32 != KVM_REG_SIZE_U32) || \
|
|
|
|
(CP_REG_SIZE_U64 != KVM_REG_SIZE_U64) || \
|
|
|
|
(CP_REG_ARM != KVM_REG_ARM)
|
|
|
|
#error mismatch between cpu.h and KVM header definitions
|
|
|
|
#endif
|
|
|
|
|
2013-03-05 01:34:41 +01:00
|
|
|
const KVMCapabilityInfo kvm_arch_required_capabilities[] = {
|
|
|
|
KVM_CAP_LAST_INFO
|
|
|
|
};
|
|
|
|
|
|
|
|
int kvm_arch_init(KVMState *s)
|
|
|
|
{
|
|
|
|
/* For ARM interrupt delivery is always asynchronous,
|
|
|
|
* whether we are using an in-kernel VGIC or not.
|
|
|
|
*/
|
|
|
|
kvm_async_interrupts_allowed = true;
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
unsigned long kvm_arch_vcpu_id(CPUState *cpu)
|
|
|
|
{
|
|
|
|
return cpu->cpu_index;
|
|
|
|
}
|
|
|
|
|
2013-06-25 19:16:07 +02:00
|
|
|
static bool reg_syncs_via_tuple_list(uint64_t regidx)
|
|
|
|
{
|
|
|
|
/* Return true if the regidx is a register we should synchronize
|
|
|
|
* via the cpreg_tuples array (ie is not a core reg we sync by
|
|
|
|
* hand in kvm_arch_get/put_registers())
|
|
|
|
*/
|
|
|
|
switch (regidx & KVM_REG_ARM_COPROC_MASK) {
|
|
|
|
case KVM_REG_ARM_CORE:
|
|
|
|
case KVM_REG_ARM_VFP:
|
|
|
|
return false;
|
|
|
|
default:
|
|
|
|
return true;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
static int compare_u64(const void *a, const void *b)
|
|
|
|
{
|
|
|
|
return *(uint64_t *)a - *(uint64_t *)b;
|
|
|
|
}
|
|
|
|
|
2013-03-05 01:34:41 +01:00
|
|
|
int kvm_arch_init_vcpu(CPUState *cs)
|
|
|
|
{
|
|
|
|
struct kvm_vcpu_init init;
|
2013-06-25 19:16:07 +02:00
|
|
|
int i, ret, arraylen;
|
2013-03-05 01:34:41 +01:00
|
|
|
uint64_t v;
|
|
|
|
struct kvm_one_reg r;
|
2013-06-25 19:16:07 +02:00
|
|
|
struct kvm_reg_list rl;
|
|
|
|
struct kvm_reg_list *rlp;
|
|
|
|
ARMCPU *cpu = ARM_CPU(cs);
|
2013-03-05 01:34:41 +01:00
|
|
|
|
|
|
|
init.target = KVM_ARM_TARGET_CORTEX_A15;
|
|
|
|
memset(init.features, 0, sizeof(init.features));
|
2013-03-05 01:34:41 +01:00
|
|
|
ret = kvm_vcpu_ioctl(cs, KVM_ARM_VCPU_INIT, &init);
|
|
|
|
if (ret) {
|
|
|
|
return ret;
|
|
|
|
}
|
|
|
|
/* Query the kernel to make sure it supports 32 VFP
|
|
|
|
* registers: QEMU's "cortex-a15" CPU is always a
|
|
|
|
* VFP-D32 core. The simplest way to do this is just
|
|
|
|
* to attempt to read register d31.
|
|
|
|
*/
|
|
|
|
r.id = KVM_REG_ARM | KVM_REG_SIZE_U64 | KVM_REG_ARM_VFP | 31;
|
|
|
|
r.addr = (uintptr_t)(&v);
|
|
|
|
ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &r);
|
2013-05-03 19:47:22 +02:00
|
|
|
if (ret == -ENOENT) {
|
|
|
|
return -EINVAL;
|
2013-03-05 01:34:41 +01:00
|
|
|
}
|
2013-06-25 19:16:07 +02:00
|
|
|
|
|
|
|
/* Populate the cpreg list based on the kernel's idea
|
|
|
|
* of what registers exist (and throw away the TCG-created list).
|
|
|
|
*/
|
|
|
|
rl.n = 0;
|
|
|
|
ret = kvm_vcpu_ioctl(cs, KVM_GET_REG_LIST, &rl);
|
|
|
|
if (ret != -E2BIG) {
|
|
|
|
return ret;
|
|
|
|
}
|
|
|
|
rlp = g_malloc(sizeof(struct kvm_reg_list) + rl.n * sizeof(uint64_t));
|
|
|
|
rlp->n = rl.n;
|
|
|
|
ret = kvm_vcpu_ioctl(cs, KVM_GET_REG_LIST, rlp);
|
|
|
|
if (ret) {
|
|
|
|
goto out;
|
|
|
|
}
|
|
|
|
/* Sort the list we get back from the kernel, since cpreg_tuples
|
|
|
|
* must be in strictly ascending order.
|
|
|
|
*/
|
|
|
|
qsort(&rlp->reg, rlp->n, sizeof(rlp->reg[0]), compare_u64);
|
|
|
|
|
|
|
|
for (i = 0, arraylen = 0; i < rlp->n; i++) {
|
|
|
|
if (!reg_syncs_via_tuple_list(rlp->reg[i])) {
|
|
|
|
continue;
|
|
|
|
}
|
|
|
|
switch (rlp->reg[i] & KVM_REG_SIZE_MASK) {
|
|
|
|
case KVM_REG_SIZE_U32:
|
|
|
|
case KVM_REG_SIZE_U64:
|
|
|
|
break;
|
|
|
|
default:
|
|
|
|
fprintf(stderr, "Can't handle size of register in kernel list\n");
|
|
|
|
ret = -EINVAL;
|
|
|
|
goto out;
|
|
|
|
}
|
|
|
|
|
|
|
|
arraylen++;
|
|
|
|
}
|
|
|
|
|
|
|
|
cpu->cpreg_indexes = g_renew(uint64_t, cpu->cpreg_indexes, arraylen);
|
|
|
|
cpu->cpreg_values = g_renew(uint64_t, cpu->cpreg_values, arraylen);
|
|
|
|
cpu->cpreg_vmstate_indexes = g_renew(uint64_t, cpu->cpreg_vmstate_indexes,
|
|
|
|
arraylen);
|
|
|
|
cpu->cpreg_vmstate_values = g_renew(uint64_t, cpu->cpreg_vmstate_values,
|
|
|
|
arraylen);
|
|
|
|
cpu->cpreg_array_len = arraylen;
|
|
|
|
cpu->cpreg_vmstate_array_len = arraylen;
|
|
|
|
|
|
|
|
for (i = 0, arraylen = 0; i < rlp->n; i++) {
|
|
|
|
uint64_t regidx = rlp->reg[i];
|
|
|
|
if (!reg_syncs_via_tuple_list(regidx)) {
|
|
|
|
continue;
|
|
|
|
}
|
|
|
|
cpu->cpreg_indexes[arraylen] = regidx;
|
|
|
|
arraylen++;
|
|
|
|
}
|
|
|
|
assert(cpu->cpreg_array_len == arraylen);
|
|
|
|
|
|
|
|
if (!write_kvmstate_to_list(cpu)) {
|
|
|
|
/* Shouldn't happen unless kernel is inconsistent about
|
|
|
|
* what registers exist.
|
|
|
|
*/
|
|
|
|
fprintf(stderr, "Initial read of kernel register state failed\n");
|
|
|
|
ret = -EINVAL;
|
|
|
|
goto out;
|
|
|
|
}
|
|
|
|
|
2013-06-25 19:16:07 +02:00
|
|
|
/* Save a copy of the initial register values so that we can
|
|
|
|
* feed it back to the kernel on VCPU reset.
|
|
|
|
*/
|
|
|
|
cpu->cpreg_reset_values = g_memdup(cpu->cpreg_values,
|
|
|
|
cpu->cpreg_array_len *
|
|
|
|
sizeof(cpu->cpreg_values[0]));
|
|
|
|
|
2013-06-25 19:16:07 +02:00
|
|
|
out:
|
|
|
|
g_free(rlp);
|
2013-03-05 01:34:41 +01:00
|
|
|
return ret;
|
2013-03-05 01:34:41 +01:00
|
|
|
}
|
|
|
|
|
2013-03-05 01:34:42 +01:00
|
|
|
/* We track all the KVM devices which need their memory addresses
|
|
|
|
* passing to the kernel in a list of these structures.
|
|
|
|
* When board init is complete we run through the list and
|
|
|
|
* tell the kernel the base addresses of the memory regions.
|
|
|
|
* We use a MemoryListener to track mapping and unmapping of
|
|
|
|
* the regions during board creation, so the board models don't
|
|
|
|
* need to do anything special for the KVM case.
|
|
|
|
*/
|
|
|
|
typedef struct KVMDevice {
|
|
|
|
struct kvm_arm_device_addr kda;
|
|
|
|
MemoryRegion *mr;
|
|
|
|
QSLIST_ENTRY(KVMDevice) entries;
|
|
|
|
} KVMDevice;
|
|
|
|
|
|
|
|
static QSLIST_HEAD(kvm_devices_head, KVMDevice) kvm_devices_head;
|
|
|
|
|
|
|
|
static void kvm_arm_devlistener_add(MemoryListener *listener,
|
|
|
|
MemoryRegionSection *section)
|
|
|
|
{
|
|
|
|
KVMDevice *kd;
|
|
|
|
|
|
|
|
QSLIST_FOREACH(kd, &kvm_devices_head, entries) {
|
|
|
|
if (section->mr == kd->mr) {
|
|
|
|
kd->kda.addr = section->offset_within_address_space;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
static void kvm_arm_devlistener_del(MemoryListener *listener,
|
|
|
|
MemoryRegionSection *section)
|
|
|
|
{
|
|
|
|
KVMDevice *kd;
|
|
|
|
|
|
|
|
QSLIST_FOREACH(kd, &kvm_devices_head, entries) {
|
|
|
|
if (section->mr == kd->mr) {
|
|
|
|
kd->kda.addr = -1;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
static MemoryListener devlistener = {
|
|
|
|
.region_add = kvm_arm_devlistener_add,
|
|
|
|
.region_del = kvm_arm_devlistener_del,
|
|
|
|
};
|
|
|
|
|
|
|
|
static void kvm_arm_machine_init_done(Notifier *notifier, void *data)
|
|
|
|
{
|
|
|
|
KVMDevice *kd, *tkd;
|
|
|
|
|
|
|
|
memory_listener_unregister(&devlistener);
|
|
|
|
QSLIST_FOREACH_SAFE(kd, &kvm_devices_head, entries, tkd) {
|
|
|
|
if (kd->kda.addr != -1) {
|
|
|
|
if (kvm_vm_ioctl(kvm_state, KVM_ARM_SET_DEVICE_ADDR,
|
|
|
|
&kd->kda) < 0) {
|
|
|
|
fprintf(stderr, "KVM_ARM_SET_DEVICE_ADDRESS failed: %s\n",
|
|
|
|
strerror(errno));
|
|
|
|
abort();
|
|
|
|
}
|
|
|
|
}
|
2013-05-06 10:46:11 +02:00
|
|
|
memory_region_unref(kd->mr);
|
2013-03-05 01:34:42 +01:00
|
|
|
g_free(kd);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
static Notifier notify = {
|
|
|
|
.notify = kvm_arm_machine_init_done,
|
|
|
|
};
|
|
|
|
|
|
|
|
void kvm_arm_register_device(MemoryRegion *mr, uint64_t devid)
|
|
|
|
{
|
|
|
|
KVMDevice *kd;
|
|
|
|
|
|
|
|
if (!kvm_irqchip_in_kernel()) {
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (QSLIST_EMPTY(&kvm_devices_head)) {
|
|
|
|
memory_listener_register(&devlistener, NULL);
|
|
|
|
qemu_add_machine_init_done_notifier(¬ify);
|
|
|
|
}
|
|
|
|
kd = g_new0(KVMDevice, 1);
|
|
|
|
kd->mr = mr;
|
|
|
|
kd->kda.id = devid;
|
|
|
|
kd->kda.addr = -1;
|
|
|
|
QSLIST_INSERT_HEAD(&kvm_devices_head, kd, entries);
|
2013-05-06 10:46:11 +02:00
|
|
|
memory_region_ref(kd->mr);
|
2013-03-05 01:34:42 +01:00
|
|
|
}
|
|
|
|
|
2013-06-25 19:16:07 +02:00
|
|
|
bool write_kvmstate_to_list(ARMCPU *cpu)
|
|
|
|
{
|
|
|
|
CPUState *cs = CPU(cpu);
|
|
|
|
int i;
|
|
|
|
bool ok = true;
|
|
|
|
|
|
|
|
for (i = 0; i < cpu->cpreg_array_len; i++) {
|
|
|
|
struct kvm_one_reg r;
|
|
|
|
uint64_t regidx = cpu->cpreg_indexes[i];
|
|
|
|
uint32_t v32;
|
|
|
|
int ret;
|
|
|
|
|
|
|
|
r.id = regidx;
|
|
|
|
|
|
|
|
switch (regidx & KVM_REG_SIZE_MASK) {
|
|
|
|
case KVM_REG_SIZE_U32:
|
|
|
|
r.addr = (uintptr_t)&v32;
|
|
|
|
ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &r);
|
|
|
|
if (!ret) {
|
|
|
|
cpu->cpreg_values[i] = v32;
|
|
|
|
}
|
|
|
|
break;
|
|
|
|
case KVM_REG_SIZE_U64:
|
|
|
|
r.addr = (uintptr_t)(cpu->cpreg_values + i);
|
|
|
|
ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &r);
|
|
|
|
break;
|
|
|
|
default:
|
|
|
|
abort();
|
|
|
|
}
|
|
|
|
if (ret) {
|
|
|
|
ok = false;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
return ok;
|
|
|
|
}
|
|
|
|
|
|
|
|
bool write_list_to_kvmstate(ARMCPU *cpu)
|
|
|
|
{
|
|
|
|
CPUState *cs = CPU(cpu);
|
|
|
|
int i;
|
|
|
|
bool ok = true;
|
|
|
|
|
|
|
|
for (i = 0; i < cpu->cpreg_array_len; i++) {
|
|
|
|
struct kvm_one_reg r;
|
|
|
|
uint64_t regidx = cpu->cpreg_indexes[i];
|
|
|
|
uint32_t v32;
|
|
|
|
int ret;
|
|
|
|
|
|
|
|
r.id = regidx;
|
|
|
|
switch (regidx & KVM_REG_SIZE_MASK) {
|
|
|
|
case KVM_REG_SIZE_U32:
|
|
|
|
v32 = cpu->cpreg_values[i];
|
|
|
|
r.addr = (uintptr_t)&v32;
|
|
|
|
break;
|
|
|
|
case KVM_REG_SIZE_U64:
|
|
|
|
r.addr = (uintptr_t)(cpu->cpreg_values + i);
|
|
|
|
break;
|
|
|
|
default:
|
|
|
|
abort();
|
|
|
|
}
|
|
|
|
ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &r);
|
|
|
|
if (ret) {
|
|
|
|
/* We might fail for "unknown register" and also for
|
|
|
|
* "you tried to set a register which is constant with
|
|
|
|
* a different value from what it actually contains".
|
|
|
|
*/
|
|
|
|
ok = false;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
return ok;
|
|
|
|
}
|
|
|
|
|
2013-03-05 01:34:41 +01:00
|
|
|
typedef struct Reg {
|
|
|
|
uint64_t id;
|
|
|
|
int offset;
|
|
|
|
} Reg;
|
|
|
|
|
|
|
|
#define COREREG(KERNELNAME, QEMUFIELD) \
|
|
|
|
{ \
|
|
|
|
KVM_REG_ARM | KVM_REG_SIZE_U32 | \
|
|
|
|
KVM_REG_ARM_CORE | KVM_REG_ARM_CORE_REG(KERNELNAME), \
|
|
|
|
offsetof(CPUARMState, QEMUFIELD) \
|
|
|
|
}
|
|
|
|
|
2013-03-05 01:34:41 +01:00
|
|
|
#define VFPSYSREG(R) \
|
|
|
|
{ \
|
|
|
|
KVM_REG_ARM | KVM_REG_SIZE_U32 | KVM_REG_ARM_VFP | \
|
|
|
|
KVM_REG_ARM_VFP_##R, \
|
|
|
|
offsetof(CPUARMState, vfp.xregs[ARM_VFP_##R]) \
|
|
|
|
}
|
|
|
|
|
2013-03-05 01:34:41 +01:00
|
|
|
static const Reg regs[] = {
|
|
|
|
/* R0_usr .. R14_usr */
|
|
|
|
COREREG(usr_regs.uregs[0], regs[0]),
|
|
|
|
COREREG(usr_regs.uregs[1], regs[1]),
|
|
|
|
COREREG(usr_regs.uregs[2], regs[2]),
|
|
|
|
COREREG(usr_regs.uregs[3], regs[3]),
|
|
|
|
COREREG(usr_regs.uregs[4], regs[4]),
|
|
|
|
COREREG(usr_regs.uregs[5], regs[5]),
|
|
|
|
COREREG(usr_regs.uregs[6], regs[6]),
|
|
|
|
COREREG(usr_regs.uregs[7], regs[7]),
|
|
|
|
COREREG(usr_regs.uregs[8], usr_regs[0]),
|
|
|
|
COREREG(usr_regs.uregs[9], usr_regs[1]),
|
|
|
|
COREREG(usr_regs.uregs[10], usr_regs[2]),
|
|
|
|
COREREG(usr_regs.uregs[11], usr_regs[3]),
|
|
|
|
COREREG(usr_regs.uregs[12], usr_regs[4]),
|
|
|
|
COREREG(usr_regs.uregs[13], banked_r13[0]),
|
|
|
|
COREREG(usr_regs.uregs[14], banked_r14[0]),
|
|
|
|
/* R13, R14, SPSR for SVC, ABT, UND, IRQ banks */
|
|
|
|
COREREG(svc_regs[0], banked_r13[1]),
|
|
|
|
COREREG(svc_regs[1], banked_r14[1]),
|
|
|
|
COREREG(svc_regs[2], banked_spsr[1]),
|
|
|
|
COREREG(abt_regs[0], banked_r13[2]),
|
|
|
|
COREREG(abt_regs[1], banked_r14[2]),
|
|
|
|
COREREG(abt_regs[2], banked_spsr[2]),
|
|
|
|
COREREG(und_regs[0], banked_r13[3]),
|
|
|
|
COREREG(und_regs[1], banked_r14[3]),
|
|
|
|
COREREG(und_regs[2], banked_spsr[3]),
|
|
|
|
COREREG(irq_regs[0], banked_r13[4]),
|
|
|
|
COREREG(irq_regs[1], banked_r14[4]),
|
|
|
|
COREREG(irq_regs[2], banked_spsr[4]),
|
|
|
|
/* R8_fiq .. R14_fiq and SPSR_fiq */
|
|
|
|
COREREG(fiq_regs[0], fiq_regs[0]),
|
|
|
|
COREREG(fiq_regs[1], fiq_regs[1]),
|
|
|
|
COREREG(fiq_regs[2], fiq_regs[2]),
|
|
|
|
COREREG(fiq_regs[3], fiq_regs[3]),
|
|
|
|
COREREG(fiq_regs[4], fiq_regs[4]),
|
|
|
|
COREREG(fiq_regs[5], banked_r13[5]),
|
|
|
|
COREREG(fiq_regs[6], banked_r14[5]),
|
|
|
|
COREREG(fiq_regs[7], banked_spsr[5]),
|
|
|
|
/* R15 */
|
|
|
|
COREREG(usr_regs.uregs[15], regs[15]),
|
2013-03-05 01:34:41 +01:00
|
|
|
/* VFP system registers */
|
|
|
|
VFPSYSREG(FPSID),
|
|
|
|
VFPSYSREG(MVFR1),
|
|
|
|
VFPSYSREG(MVFR0),
|
|
|
|
VFPSYSREG(FPEXC),
|
|
|
|
VFPSYSREG(FPINST),
|
|
|
|
VFPSYSREG(FPINST2),
|
2013-03-05 01:34:41 +01:00
|
|
|
};
|
|
|
|
|
|
|
|
int kvm_arch_put_registers(CPUState *cs, int level)
|
|
|
|
{
|
|
|
|
ARMCPU *cpu = ARM_CPU(cs);
|
|
|
|
CPUARMState *env = &cpu->env;
|
|
|
|
struct kvm_one_reg r;
|
|
|
|
int mode, bn;
|
|
|
|
int ret, i;
|
2013-03-05 01:34:41 +01:00
|
|
|
uint32_t cpsr, fpscr;
|
2013-03-05 01:34:41 +01:00
|
|
|
|
|
|
|
/* Make sure the banked regs are properly set */
|
|
|
|
mode = env->uncached_cpsr & CPSR_M;
|
|
|
|
bn = bank_number(mode);
|
|
|
|
if (mode == ARM_CPU_MODE_FIQ) {
|
|
|
|
memcpy(env->fiq_regs, env->regs + 8, 5 * sizeof(uint32_t));
|
|
|
|
} else {
|
|
|
|
memcpy(env->usr_regs, env->regs + 8, 5 * sizeof(uint32_t));
|
|
|
|
}
|
|
|
|
env->banked_r13[bn] = env->regs[13];
|
|
|
|
env->banked_r14[bn] = env->regs[14];
|
|
|
|
env->banked_spsr[bn] = env->spsr;
|
|
|
|
|
|
|
|
/* Now we can safely copy stuff down to the kernel */
|
|
|
|
for (i = 0; i < ARRAY_SIZE(regs); i++) {
|
|
|
|
r.id = regs[i].id;
|
|
|
|
r.addr = (uintptr_t)(env) + regs[i].offset;
|
|
|
|
ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &r);
|
|
|
|
if (ret) {
|
|
|
|
return ret;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Special cases which aren't a single CPUARMState field */
|
|
|
|
cpsr = cpsr_read(env);
|
|
|
|
r.id = KVM_REG_ARM | KVM_REG_SIZE_U32 |
|
|
|
|
KVM_REG_ARM_CORE | KVM_REG_ARM_CORE_REG(usr_regs.ARM_cpsr);
|
|
|
|
r.addr = (uintptr_t)(&cpsr);
|
|
|
|
ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &r);
|
|
|
|
if (ret) {
|
|
|
|
return ret;
|
|
|
|
}
|
|
|
|
|
2013-03-05 01:34:41 +01:00
|
|
|
/* VFP registers */
|
|
|
|
r.id = KVM_REG_ARM | KVM_REG_SIZE_U64 | KVM_REG_ARM_VFP;
|
|
|
|
for (i = 0; i < 32; i++) {
|
|
|
|
r.addr = (uintptr_t)(&env->vfp.regs[i]);
|
|
|
|
ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &r);
|
|
|
|
if (ret) {
|
|
|
|
return ret;
|
|
|
|
}
|
|
|
|
r.id++;
|
|
|
|
}
|
|
|
|
|
|
|
|
r.id = KVM_REG_ARM | KVM_REG_SIZE_U32 | KVM_REG_ARM_VFP |
|
|
|
|
KVM_REG_ARM_VFP_FPSCR;
|
|
|
|
fpscr = vfp_get_fpscr(env);
|
|
|
|
r.addr = (uintptr_t)&fpscr;
|
|
|
|
ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &r);
|
2013-06-25 19:16:07 +02:00
|
|
|
if (ret) {
|
|
|
|
return ret;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Note that we do not call write_cpustate_to_list()
|
|
|
|
* here, so we are only writing the tuple list back to
|
|
|
|
* KVM. This is safe because nothing can change the
|
|
|
|
* CPUARMState cp15 fields (in particular gdb accesses cannot)
|
|
|
|
* and so there are no changes to sync. In fact syncing would
|
|
|
|
* be wrong at this point: for a constant register where TCG and
|
|
|
|
* KVM disagree about its value, the preceding write_list_to_cpustate()
|
|
|
|
* would not have had any effect on the CPUARMState value (since the
|
|
|
|
* register is read-only), and a write_cpustate_to_list() here would
|
|
|
|
* then try to write the TCG value back into KVM -- this would either
|
|
|
|
* fail or incorrectly change the value the guest sees.
|
|
|
|
*
|
|
|
|
* If we ever want to allow the user to modify cp15 registers via
|
|
|
|
* the gdb stub, we would need to be more clever here (for instance
|
|
|
|
* tracking the set of registers kvm_arch_get_registers() successfully
|
|
|
|
* managed to update the CPUARMState with, and only allowing those
|
|
|
|
* to be written back up into the kernel).
|
|
|
|
*/
|
|
|
|
if (!write_list_to_kvmstate(cpu)) {
|
|
|
|
return EINVAL;
|
|
|
|
}
|
2013-03-05 01:34:41 +01:00
|
|
|
|
|
|
|
return ret;
|
|
|
|
}
|
|
|
|
|
|
|
|
int kvm_arch_get_registers(CPUState *cs)
|
|
|
|
{
|
|
|
|
ARMCPU *cpu = ARM_CPU(cs);
|
|
|
|
CPUARMState *env = &cpu->env;
|
|
|
|
struct kvm_one_reg r;
|
|
|
|
int mode, bn;
|
|
|
|
int ret, i;
|
2013-03-05 01:34:41 +01:00
|
|
|
uint32_t cpsr, fpscr;
|
2013-03-05 01:34:41 +01:00
|
|
|
|
|
|
|
for (i = 0; i < ARRAY_SIZE(regs); i++) {
|
|
|
|
r.id = regs[i].id;
|
|
|
|
r.addr = (uintptr_t)(env) + regs[i].offset;
|
|
|
|
ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &r);
|
|
|
|
if (ret) {
|
|
|
|
return ret;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Special cases which aren't a single CPUARMState field */
|
|
|
|
r.id = KVM_REG_ARM | KVM_REG_SIZE_U32 |
|
|
|
|
KVM_REG_ARM_CORE | KVM_REG_ARM_CORE_REG(usr_regs.ARM_cpsr);
|
|
|
|
r.addr = (uintptr_t)(&cpsr);
|
|
|
|
ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &r);
|
|
|
|
if (ret) {
|
|
|
|
return ret;
|
|
|
|
}
|
|
|
|
cpsr_write(env, cpsr, 0xffffffff);
|
|
|
|
|
|
|
|
/* Make sure the current mode regs are properly set */
|
|
|
|
mode = env->uncached_cpsr & CPSR_M;
|
|
|
|
bn = bank_number(mode);
|
|
|
|
if (mode == ARM_CPU_MODE_FIQ) {
|
|
|
|
memcpy(env->regs + 8, env->fiq_regs, 5 * sizeof(uint32_t));
|
|
|
|
} else {
|
|
|
|
memcpy(env->regs + 8, env->usr_regs, 5 * sizeof(uint32_t));
|
|
|
|
}
|
|
|
|
env->regs[13] = env->banked_r13[bn];
|
|
|
|
env->regs[14] = env->banked_r14[bn];
|
|
|
|
env->spsr = env->banked_spsr[bn];
|
|
|
|
|
2013-03-05 01:34:41 +01:00
|
|
|
/* VFP registers */
|
|
|
|
r.id = KVM_REG_ARM | KVM_REG_SIZE_U64 | KVM_REG_ARM_VFP;
|
|
|
|
for (i = 0; i < 32; i++) {
|
|
|
|
r.addr = (uintptr_t)(&env->vfp.regs[i]);
|
|
|
|
ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &r);
|
|
|
|
if (ret) {
|
|
|
|
return ret;
|
|
|
|
}
|
|
|
|
r.id++;
|
|
|
|
}
|
|
|
|
|
|
|
|
r.id = KVM_REG_ARM | KVM_REG_SIZE_U32 | KVM_REG_ARM_VFP |
|
|
|
|
KVM_REG_ARM_VFP_FPSCR;
|
|
|
|
r.addr = (uintptr_t)&fpscr;
|
|
|
|
ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &r);
|
|
|
|
if (ret) {
|
|
|
|
return ret;
|
|
|
|
}
|
|
|
|
vfp_set_fpscr(env, fpscr);
|
|
|
|
|
2013-06-25 19:16:07 +02:00
|
|
|
if (!write_kvmstate_to_list(cpu)) {
|
|
|
|
return EINVAL;
|
|
|
|
}
|
|
|
|
/* Note that it's OK to have registers which aren't in CPUState,
|
|
|
|
* so we can ignore a failure return here.
|
|
|
|
*/
|
|
|
|
write_list_to_cpustate(cpu);
|
|
|
|
|
2013-03-05 01:34:41 +01:00
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
void kvm_arch_pre_run(CPUState *cs, struct kvm_run *run)
|
|
|
|
{
|
|
|
|
}
|
|
|
|
|
|
|
|
void kvm_arch_post_run(CPUState *cs, struct kvm_run *run)
|
|
|
|
{
|
|
|
|
}
|
|
|
|
|
|
|
|
int kvm_arch_handle_exit(CPUState *cs, struct kvm_run *run)
|
|
|
|
{
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
void kvm_arch_reset_vcpu(CPUState *cs)
|
|
|
|
{
|
2013-06-25 19:16:07 +02:00
|
|
|
/* Feed the kernel back its initial register state */
|
|
|
|
ARMCPU *cpu = ARM_CPU(cs);
|
|
|
|
|
|
|
|
memmove(cpu->cpreg_values, cpu->cpreg_reset_values,
|
|
|
|
cpu->cpreg_array_len * sizeof(cpu->cpreg_values[0]));
|
|
|
|
|
|
|
|
if (!write_list_to_kvmstate(cpu)) {
|
|
|
|
abort();
|
|
|
|
}
|
2013-03-05 01:34:41 +01:00
|
|
|
}
|
|
|
|
|
|
|
|
bool kvm_arch_stop_on_emulation_error(CPUState *cs)
|
|
|
|
{
|
|
|
|
return true;
|
|
|
|
}
|
|
|
|
|
|
|
|
int kvm_arch_process_async_events(CPUState *cs)
|
|
|
|
{
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
int kvm_arch_on_sigbus_vcpu(CPUState *cs, int code, void *addr)
|
|
|
|
{
|
|
|
|
return 1;
|
|
|
|
}
|
|
|
|
|
|
|
|
int kvm_arch_on_sigbus(int code, void *addr)
|
|
|
|
{
|
|
|
|
return 1;
|
|
|
|
}
|
|
|
|
|
|
|
|
void kvm_arch_update_guest_debug(CPUState *cs, struct kvm_guest_debug *dbg)
|
|
|
|
{
|
|
|
|
qemu_log_mask(LOG_UNIMP, "%s: not implemented\n", __func__);
|
|
|
|
}
|
|
|
|
|
|
|
|
int kvm_arch_insert_sw_breakpoint(CPUState *cs,
|
|
|
|
struct kvm_sw_breakpoint *bp)
|
|
|
|
{
|
|
|
|
qemu_log_mask(LOG_UNIMP, "%s: not implemented\n", __func__);
|
|
|
|
return -EINVAL;
|
|
|
|
}
|
|
|
|
|
|
|
|
int kvm_arch_insert_hw_breakpoint(target_ulong addr,
|
|
|
|
target_ulong len, int type)
|
|
|
|
{
|
|
|
|
qemu_log_mask(LOG_UNIMP, "%s: not implemented\n", __func__);
|
|
|
|
return -EINVAL;
|
|
|
|
}
|
|
|
|
|
|
|
|
int kvm_arch_remove_hw_breakpoint(target_ulong addr,
|
|
|
|
target_ulong len, int type)
|
|
|
|
{
|
|
|
|
qemu_log_mask(LOG_UNIMP, "%s: not implemented\n", __func__);
|
|
|
|
return -EINVAL;
|
|
|
|
}
|
|
|
|
|
|
|
|
int kvm_arch_remove_sw_breakpoint(CPUState *cs,
|
|
|
|
struct kvm_sw_breakpoint *bp)
|
|
|
|
{
|
|
|
|
qemu_log_mask(LOG_UNIMP, "%s: not implemented\n", __func__);
|
|
|
|
return -EINVAL;
|
|
|
|
}
|
|
|
|
|
|
|
|
void kvm_arch_remove_all_hw_breakpoints(void)
|
|
|
|
{
|
|
|
|
qemu_log_mask(LOG_UNIMP, "%s: not implemented\n", __func__);
|
|
|
|
}
|
2013-06-12 09:26:52 +02:00
|
|
|
|
|
|
|
void kvm_arch_init_irq_routing(KVMState *s)
|
|
|
|
{
|
|
|
|
}
|