qemu-e2k/hw/omap_gpio.c

793 lines
21 KiB
C
Raw Normal View History

/*
* TI OMAP processors GPIO emulation.
*
* Copyright (C) 2006-2008 Andrzej Zaborowski <balrog@zabor.org>
* Copyright (C) 2007-2009 Nokia Corporation
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License as
* published by the Free Software Foundation; either version 2 or
* (at your option) version 3 of the License.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License along
* with this program; if not, see <http://www.gnu.org/licenses/>.
*/
#include "hw.h"
#include "omap.h"
#include "sysbus.h"
struct omap_gpio_s {
qemu_irq irq;
qemu_irq handler[16];
uint16_t inputs;
uint16_t outputs;
uint16_t dir;
uint16_t edge;
uint16_t mask;
uint16_t ints;
uint16_t pins;
};
struct omap_gpif_s {
SysBusDevice busdev;
MemoryRegion iomem;
int mpu_model;
void *clk;
struct omap_gpio_s omap1;
};
/* General-Purpose I/O of OMAP1 */
static void omap_gpio_set(void *opaque, int line, int level)
{
struct omap_gpio_s *s = &((struct omap_gpif_s *) opaque)->omap1;
uint16_t prev = s->inputs;
if (level)
s->inputs |= 1 << line;
else
s->inputs &= ~(1 << line);
if (((s->edge & s->inputs & ~prev) | (~s->edge & ~s->inputs & prev)) &
(1 << line) & s->dir & ~s->mask) {
s->ints |= 1 << line;
qemu_irq_raise(s->irq);
}
}
static uint64_t omap_gpio_read(void *opaque, target_phys_addr_t addr,
unsigned size)
{
struct omap_gpio_s *s = (struct omap_gpio_s *) opaque;
int offset = addr & OMAP_MPUI_REG_MASK;
if (size != 2) {
return omap_badwidth_read16(opaque, addr);
}
switch (offset) {
case 0x00: /* DATA_INPUT */
return s->inputs & s->pins;
case 0x04: /* DATA_OUTPUT */
return s->outputs;
case 0x08: /* DIRECTION_CONTROL */
return s->dir;
case 0x0c: /* INTERRUPT_CONTROL */
return s->edge;
case 0x10: /* INTERRUPT_MASK */
return s->mask;
case 0x14: /* INTERRUPT_STATUS */
return s->ints;
case 0x18: /* PIN_CONTROL (not in OMAP310) */
OMAP_BAD_REG(addr);
return s->pins;
}
OMAP_BAD_REG(addr);
return 0;
}
static void omap_gpio_write(void *opaque, target_phys_addr_t addr,
uint64_t value, unsigned size)
{
struct omap_gpio_s *s = (struct omap_gpio_s *) opaque;
int offset = addr & OMAP_MPUI_REG_MASK;
uint16_t diff;
int ln;
if (size != 2) {
return omap_badwidth_write16(opaque, addr, value);
}
switch (offset) {
case 0x00: /* DATA_INPUT */
OMAP_RO_REG(addr);
return;
case 0x04: /* DATA_OUTPUT */
diff = (s->outputs ^ value) & ~s->dir;
s->outputs = value;
while ((ln = ffs(diff))) {
ln --;
if (s->handler[ln])
qemu_set_irq(s->handler[ln], (value >> ln) & 1);
diff &= ~(1 << ln);
}
break;
case 0x08: /* DIRECTION_CONTROL */
diff = s->outputs & (s->dir ^ value);
s->dir = value;
value = s->outputs & ~s->dir;
while ((ln = ffs(diff))) {
ln --;
if (s->handler[ln])
qemu_set_irq(s->handler[ln], (value >> ln) & 1);
diff &= ~(1 << ln);
}
break;
case 0x0c: /* INTERRUPT_CONTROL */
s->edge = value;
break;
case 0x10: /* INTERRUPT_MASK */
s->mask = value;
break;
case 0x14: /* INTERRUPT_STATUS */
s->ints &= ~value;
if (!s->ints)
qemu_irq_lower(s->irq);
break;
case 0x18: /* PIN_CONTROL (not in OMAP310 TRM) */
OMAP_BAD_REG(addr);
s->pins = value;
break;
default:
OMAP_BAD_REG(addr);
return;
}
}
/* *Some* sources say the memory region is 32-bit. */
static const MemoryRegionOps omap_gpio_ops = {
.read = omap_gpio_read,
.write = omap_gpio_write,
.endianness = DEVICE_NATIVE_ENDIAN,
};
static void omap_gpio_reset(struct omap_gpio_s *s)
{
s->inputs = 0;
s->outputs = ~0;
s->dir = ~0;
s->edge = ~0;
s->mask = ~0;
s->ints = 0;
s->pins = ~0;
}
struct omap2_gpio_s {
qemu_irq irq[2];
qemu_irq wkup;
qemu_irq *handler;
MemoryRegion iomem;
uint8_t revision;
uint8_t config[2];
uint32_t inputs;
uint32_t outputs;
uint32_t dir;
uint32_t level[2];
uint32_t edge[2];
uint32_t mask[2];
uint32_t wumask;
uint32_t ints[2];
uint32_t debounce;
uint8_t delay;
};
struct omap2_gpif_s {
SysBusDevice busdev;
MemoryRegion iomem;
int mpu_model;
void *iclk;
void *fclk[6];
int modulecount;
struct omap2_gpio_s *modules;
qemu_irq *handler;
int autoidle;
int gpo;
};
/* General-Purpose Interface of OMAP2/3 */
static inline void omap2_gpio_module_int_update(struct omap2_gpio_s *s,
int line)
{
qemu_set_irq(s->irq[line], s->ints[line] & s->mask[line]);
}
static void omap2_gpio_module_wake(struct omap2_gpio_s *s, int line)
{
if (!(s->config[0] & (1 << 2))) /* ENAWAKEUP */
return;
if (!(s->config[0] & (3 << 3))) /* Force Idle */
return;
if (!(s->wumask & (1 << line)))
return;
qemu_irq_raise(s->wkup);
}
static inline void omap2_gpio_module_out_update(struct omap2_gpio_s *s,
uint32_t diff)
{
int ln;
s->outputs ^= diff;
diff &= ~s->dir;
while ((ln = ffs(diff))) {
ln --;
qemu_set_irq(s->handler[ln], (s->outputs >> ln) & 1);
diff &= ~(1 << ln);
}
}
static void omap2_gpio_module_level_update(struct omap2_gpio_s *s, int line)
{
s->ints[line] |= s->dir &
((s->inputs & s->level[1]) | (~s->inputs & s->level[0]));
omap2_gpio_module_int_update(s, line);
}
static inline void omap2_gpio_module_int(struct omap2_gpio_s *s, int line)
{
s->ints[0] |= 1 << line;
omap2_gpio_module_int_update(s, 0);
s->ints[1] |= 1 << line;
omap2_gpio_module_int_update(s, 1);
omap2_gpio_module_wake(s, line);
}
static void omap2_gpio_set(void *opaque, int line, int level)
{
struct omap2_gpif_s *p = opaque;
struct omap2_gpio_s *s = &p->modules[line >> 5];
line &= 31;
if (level) {
if (s->dir & (1 << line) & ((~s->inputs & s->edge[0]) | s->level[1]))
omap2_gpio_module_int(s, line);
s->inputs |= 1 << line;
} else {
if (s->dir & (1 << line) & ((s->inputs & s->edge[1]) | s->level[0]))
omap2_gpio_module_int(s, line);
s->inputs &= ~(1 << line);
}
}
static void omap2_gpio_module_reset(struct omap2_gpio_s *s)
{
s->config[0] = 0;
s->config[1] = 2;
s->ints[0] = 0;
s->ints[1] = 0;
s->mask[0] = 0;
s->mask[1] = 0;
s->wumask = 0;
s->dir = ~0;
s->level[0] = 0;
s->level[1] = 0;
s->edge[0] = 0;
s->edge[1] = 0;
s->debounce = 0;
s->delay = 0;
}
static uint32_t omap2_gpio_module_read(void *opaque, target_phys_addr_t addr)
{
struct omap2_gpio_s *s = (struct omap2_gpio_s *) opaque;
switch (addr) {
case 0x00: /* GPIO_REVISION */
return s->revision;
case 0x10: /* GPIO_SYSCONFIG */
return s->config[0];
case 0x14: /* GPIO_SYSSTATUS */
return 0x01;
case 0x18: /* GPIO_IRQSTATUS1 */
return s->ints[0];
case 0x1c: /* GPIO_IRQENABLE1 */
case 0x60: /* GPIO_CLEARIRQENABLE1 */
case 0x64: /* GPIO_SETIRQENABLE1 */
return s->mask[0];
case 0x20: /* GPIO_WAKEUPENABLE */
case 0x80: /* GPIO_CLEARWKUENA */
case 0x84: /* GPIO_SETWKUENA */
return s->wumask;
case 0x28: /* GPIO_IRQSTATUS2 */
return s->ints[1];
case 0x2c: /* GPIO_IRQENABLE2 */
case 0x70: /* GPIO_CLEARIRQENABLE2 */
case 0x74: /* GPIO_SETIREQNEABLE2 */
return s->mask[1];
case 0x30: /* GPIO_CTRL */
return s->config[1];
case 0x34: /* GPIO_OE */
return s->dir;
case 0x38: /* GPIO_DATAIN */
return s->inputs;
case 0x3c: /* GPIO_DATAOUT */
case 0x90: /* GPIO_CLEARDATAOUT */
case 0x94: /* GPIO_SETDATAOUT */
return s->outputs;
case 0x40: /* GPIO_LEVELDETECT0 */
return s->level[0];
case 0x44: /* GPIO_LEVELDETECT1 */
return s->level[1];
case 0x48: /* GPIO_RISINGDETECT */
return s->edge[0];
case 0x4c: /* GPIO_FALLINGDETECT */
return s->edge[1];
case 0x50: /* GPIO_DEBOUNCENABLE */
return s->debounce;
case 0x54: /* GPIO_DEBOUNCINGTIME */
return s->delay;
}
OMAP_BAD_REG(addr);
return 0;
}
static void omap2_gpio_module_write(void *opaque, target_phys_addr_t addr,
uint32_t value)
{
struct omap2_gpio_s *s = (struct omap2_gpio_s *) opaque;
uint32_t diff;
int ln;
switch (addr) {
case 0x00: /* GPIO_REVISION */
case 0x14: /* GPIO_SYSSTATUS */
case 0x38: /* GPIO_DATAIN */
OMAP_RO_REG(addr);
break;
case 0x10: /* GPIO_SYSCONFIG */
if (((value >> 3) & 3) == 3)
fprintf(stderr, "%s: bad IDLEMODE value\n", __FUNCTION__);
if (value & 2)
omap2_gpio_module_reset(s);
s->config[0] = value & 0x1d;
break;
case 0x18: /* GPIO_IRQSTATUS1 */
if (s->ints[0] & value) {
s->ints[0] &= ~value;
omap2_gpio_module_level_update(s, 0);
}
break;
case 0x1c: /* GPIO_IRQENABLE1 */
s->mask[0] = value;
omap2_gpio_module_int_update(s, 0);
break;
case 0x20: /* GPIO_WAKEUPENABLE */
s->wumask = value;
break;
case 0x28: /* GPIO_IRQSTATUS2 */
if (s->ints[1] & value) {
s->ints[1] &= ~value;
omap2_gpio_module_level_update(s, 1);
}
break;
case 0x2c: /* GPIO_IRQENABLE2 */
s->mask[1] = value;
omap2_gpio_module_int_update(s, 1);
break;
case 0x30: /* GPIO_CTRL */
s->config[1] = value & 7;
break;
case 0x34: /* GPIO_OE */
diff = s->outputs & (s->dir ^ value);
s->dir = value;
value = s->outputs & ~s->dir;
while ((ln = ffs(diff))) {
diff &= ~(1 <<-- ln);
qemu_set_irq(s->handler[ln], (value >> ln) & 1);
}
omap2_gpio_module_level_update(s, 0);
omap2_gpio_module_level_update(s, 1);
break;
case 0x3c: /* GPIO_DATAOUT */
omap2_gpio_module_out_update(s, s->outputs ^ value);
break;
case 0x40: /* GPIO_LEVELDETECT0 */
s->level[0] = value;
omap2_gpio_module_level_update(s, 0);
omap2_gpio_module_level_update(s, 1);
break;
case 0x44: /* GPIO_LEVELDETECT1 */
s->level[1] = value;
omap2_gpio_module_level_update(s, 0);
omap2_gpio_module_level_update(s, 1);
break;
case 0x48: /* GPIO_RISINGDETECT */
s->edge[0] = value;
break;
case 0x4c: /* GPIO_FALLINGDETECT */
s->edge[1] = value;
break;
case 0x50: /* GPIO_DEBOUNCENABLE */
s->debounce = value;
break;
case 0x54: /* GPIO_DEBOUNCINGTIME */
s->delay = value;
break;
case 0x60: /* GPIO_CLEARIRQENABLE1 */
s->mask[0] &= ~value;
omap2_gpio_module_int_update(s, 0);
break;
case 0x64: /* GPIO_SETIRQENABLE1 */
s->mask[0] |= value;
omap2_gpio_module_int_update(s, 0);
break;
case 0x70: /* GPIO_CLEARIRQENABLE2 */
s->mask[1] &= ~value;
omap2_gpio_module_int_update(s, 1);
break;
case 0x74: /* GPIO_SETIREQNEABLE2 */
s->mask[1] |= value;
omap2_gpio_module_int_update(s, 1);
break;
case 0x80: /* GPIO_CLEARWKUENA */
s->wumask &= ~value;
break;
case 0x84: /* GPIO_SETWKUENA */
s->wumask |= value;
break;
case 0x90: /* GPIO_CLEARDATAOUT */
omap2_gpio_module_out_update(s, s->outputs & value);
break;
case 0x94: /* GPIO_SETDATAOUT */
omap2_gpio_module_out_update(s, ~s->outputs & value);
break;
default:
OMAP_BAD_REG(addr);
return;
}
}
static uint32_t omap2_gpio_module_readp(void *opaque, target_phys_addr_t addr)
{
return omap2_gpio_module_read(opaque, addr & ~3) >> ((addr & 3) << 3);
}
static void omap2_gpio_module_writep(void *opaque, target_phys_addr_t addr,
uint32_t value)
{
uint32_t cur = 0;
uint32_t mask = 0xffff;
switch (addr & ~3) {
case 0x00: /* GPIO_REVISION */
case 0x14: /* GPIO_SYSSTATUS */
case 0x38: /* GPIO_DATAIN */
OMAP_RO_REG(addr);
break;
case 0x10: /* GPIO_SYSCONFIG */
case 0x1c: /* GPIO_IRQENABLE1 */
case 0x20: /* GPIO_WAKEUPENABLE */
case 0x2c: /* GPIO_IRQENABLE2 */
case 0x30: /* GPIO_CTRL */
case 0x34: /* GPIO_OE */
case 0x3c: /* GPIO_DATAOUT */
case 0x40: /* GPIO_LEVELDETECT0 */
case 0x44: /* GPIO_LEVELDETECT1 */
case 0x48: /* GPIO_RISINGDETECT */
case 0x4c: /* GPIO_FALLINGDETECT */
case 0x50: /* GPIO_DEBOUNCENABLE */
case 0x54: /* GPIO_DEBOUNCINGTIME */
cur = omap2_gpio_module_read(opaque, addr & ~3) &
~(mask << ((addr & 3) << 3));
/* Fall through. */
case 0x18: /* GPIO_IRQSTATUS1 */
case 0x28: /* GPIO_IRQSTATUS2 */
case 0x60: /* GPIO_CLEARIRQENABLE1 */
case 0x64: /* GPIO_SETIRQENABLE1 */
case 0x70: /* GPIO_CLEARIRQENABLE2 */
case 0x74: /* GPIO_SETIREQNEABLE2 */
case 0x80: /* GPIO_CLEARWKUENA */
case 0x84: /* GPIO_SETWKUENA */
case 0x90: /* GPIO_CLEARDATAOUT */
case 0x94: /* GPIO_SETDATAOUT */
value <<= (addr & 3) << 3;
omap2_gpio_module_write(opaque, addr, cur | value);
break;
default:
OMAP_BAD_REG(addr);
return;
}
}
static const MemoryRegionOps omap2_gpio_module_ops = {
.old_mmio = {
.read = {
omap2_gpio_module_readp,
omap2_gpio_module_readp,
omap2_gpio_module_read,
},
.write = {
omap2_gpio_module_writep,
omap2_gpio_module_writep,
omap2_gpio_module_write,
},
},
.endianness = DEVICE_NATIVE_ENDIAN,
};
static void omap_gpif_reset(DeviceState *dev)
{
struct omap_gpif_s *s = FROM_SYSBUS(struct omap_gpif_s,
sysbus_from_qdev(dev));
omap_gpio_reset(&s->omap1);
}
static void omap2_gpif_reset(DeviceState *dev)
{
int i;
struct omap2_gpif_s *s = FROM_SYSBUS(struct omap2_gpif_s,
sysbus_from_qdev(dev));
for (i = 0; i < s->modulecount; i++) {
omap2_gpio_module_reset(&s->modules[i]);
}
s->autoidle = 0;
s->gpo = 0;
}
static uint64_t omap2_gpif_top_read(void *opaque, target_phys_addr_t addr,
unsigned size)
{
struct omap2_gpif_s *s = (struct omap2_gpif_s *) opaque;
switch (addr) {
case 0x00: /* IPGENERICOCPSPL_REVISION */
return 0x18;
case 0x10: /* IPGENERICOCPSPL_SYSCONFIG */
return s->autoidle;
case 0x14: /* IPGENERICOCPSPL_SYSSTATUS */
return 0x01;
case 0x18: /* IPGENERICOCPSPL_IRQSTATUS */
return 0x00;
case 0x40: /* IPGENERICOCPSPL_GPO */
return s->gpo;
case 0x50: /* IPGENERICOCPSPL_GPI */
return 0x00;
}
OMAP_BAD_REG(addr);
return 0;
}
static void omap2_gpif_top_write(void *opaque, target_phys_addr_t addr,
uint64_t value, unsigned size)
{
struct omap2_gpif_s *s = (struct omap2_gpif_s *) opaque;
switch (addr) {
case 0x00: /* IPGENERICOCPSPL_REVISION */
case 0x14: /* IPGENERICOCPSPL_SYSSTATUS */
case 0x18: /* IPGENERICOCPSPL_IRQSTATUS */
case 0x50: /* IPGENERICOCPSPL_GPI */
OMAP_RO_REG(addr);
break;
case 0x10: /* IPGENERICOCPSPL_SYSCONFIG */
if (value & (1 << 1)) /* SOFTRESET */
omap2_gpif_reset(&s->busdev.qdev);
s->autoidle = value & 1;
break;
case 0x40: /* IPGENERICOCPSPL_GPO */
s->gpo = value & 1;
break;
default:
OMAP_BAD_REG(addr);
return;
}
}
static const MemoryRegionOps omap2_gpif_top_ops = {
.read = omap2_gpif_top_read,
.write = omap2_gpif_top_write,
.endianness = DEVICE_NATIVE_ENDIAN,
};
static int omap_gpio_init(SysBusDevice *dev)
{
struct omap_gpif_s *s = FROM_SYSBUS(struct omap_gpif_s, dev);
if (!s->clk) {
hw_error("omap-gpio: clk not connected\n");
}
qdev_init_gpio_in(&dev->qdev, omap_gpio_set, 16);
qdev_init_gpio_out(&dev->qdev, s->omap1.handler, 16);
sysbus_init_irq(dev, &s->omap1.irq);
memory_region_init_io(&s->iomem, &omap_gpio_ops, &s->omap1,
"omap.gpio", 0x1000);
sysbus_init_mmio(dev, &s->iomem);
return 0;
}
static int omap2_gpio_init(SysBusDevice *dev)
{
int i;
struct omap2_gpif_s *s = FROM_SYSBUS(struct omap2_gpif_s, dev);
if (!s->iclk) {
hw_error("omap2-gpio: iclk not connected\n");
}
if (s->mpu_model < omap3430) {
s->modulecount = (s->mpu_model < omap2430) ? 4 : 5;
memory_region_init_io(&s->iomem, &omap2_gpif_top_ops, s,
"omap2.gpio", 0x1000);
sysbus_init_mmio(dev, &s->iomem);
} else {
s->modulecount = 6;
}
s->modules = g_malloc0(s->modulecount * sizeof(struct omap2_gpio_s));
s->handler = g_malloc0(s->modulecount * 32 * sizeof(qemu_irq));
qdev_init_gpio_in(&dev->qdev, omap2_gpio_set, s->modulecount * 32);
qdev_init_gpio_out(&dev->qdev, s->handler, s->modulecount * 32);
for (i = 0; i < s->modulecount; i++) {
struct omap2_gpio_s *m = &s->modules[i];
if (!s->fclk[i]) {
hw_error("omap2-gpio: fclk%d not connected\n", i);
}
m->revision = (s->mpu_model < omap3430) ? 0x18 : 0x25;
m->handler = &s->handler[i * 32];
sysbus_init_irq(dev, &m->irq[0]); /* mpu irq */
sysbus_init_irq(dev, &m->irq[1]); /* dsp irq */
sysbus_init_irq(dev, &m->wkup);
memory_region_init_io(&m->iomem, &omap2_gpio_module_ops, m,
"omap.gpio-module", 0x1000);
sysbus_init_mmio(dev, &m->iomem);
}
return 0;
}
/* Using qdev pointer properties for the clocks is not ideal.
* qdev should support a generic means of defining a 'port' with
* an arbitrary interface for connecting two devices. Then we
* could reframe the omap clock API in terms of clock ports,
* and get some type safety. For now the best qdev provides is
* passing an arbitrary pointer.
* (It's not possible to pass in the string which is the clock
* name, because this device does not have the necessary information
* (ie the struct omap_mpu_state_s*) to do the clockname to pointer
* translation.)
*/
static Property omap_gpio_properties[] = {
DEFINE_PROP_INT32("mpu_model", struct omap_gpif_s, mpu_model, 0),
DEFINE_PROP_PTR("clk", struct omap_gpif_s, clk),
DEFINE_PROP_END_OF_LIST(),
};
static void omap_gpio_class_init(ObjectClass *klass, void *data)
{
DeviceClass *dc = DEVICE_CLASS(klass);
SysBusDeviceClass *k = SYS_BUS_DEVICE_CLASS(klass);
k->init = omap_gpio_init;
dc->reset = omap_gpif_reset;
dc->props = omap_gpio_properties;
}
static TypeInfo omap_gpio_info = {
.name = "omap-gpio",
.parent = TYPE_SYS_BUS_DEVICE,
.instance_size = sizeof(struct omap_gpif_s),
.class_init = omap_gpio_class_init,
};
static Property omap2_gpio_properties[] = {
DEFINE_PROP_INT32("mpu_model", struct omap2_gpif_s, mpu_model, 0),
DEFINE_PROP_PTR("iclk", struct omap2_gpif_s, iclk),
DEFINE_PROP_PTR("fclk0", struct omap2_gpif_s, fclk[0]),
DEFINE_PROP_PTR("fclk1", struct omap2_gpif_s, fclk[1]),
DEFINE_PROP_PTR("fclk2", struct omap2_gpif_s, fclk[2]),
DEFINE_PROP_PTR("fclk3", struct omap2_gpif_s, fclk[3]),
DEFINE_PROP_PTR("fclk4", struct omap2_gpif_s, fclk[4]),
DEFINE_PROP_PTR("fclk5", struct omap2_gpif_s, fclk[5]),
DEFINE_PROP_END_OF_LIST(),
};
static void omap2_gpio_class_init(ObjectClass *klass, void *data)
{
DeviceClass *dc = DEVICE_CLASS(klass);
SysBusDeviceClass *k = SYS_BUS_DEVICE_CLASS(klass);
k->init = omap2_gpio_init;
dc->reset = omap2_gpif_reset;
dc->props = omap2_gpio_properties;
}
static TypeInfo omap2_gpio_info = {
.name = "omap2-gpio",
.parent = TYPE_SYS_BUS_DEVICE,
.instance_size = sizeof(struct omap2_gpif_s),
.class_init = omap2_gpio_class_init,
};
static void omap_gpio_register_device(void)
{
type_register_static(&omap_gpio_info);
type_register_static(&omap2_gpio_info);
}
device_init(omap_gpio_register_device)