qemu-e2k/hw/dma/xlnx_dpdma.c

787 lines
26 KiB
C
Raw Normal View History

/*
* xlnx_dpdma.c
*
* Copyright (C) 2015 : GreenSocs Ltd
* http://www.greensocs.com/ , email: info@greensocs.com
*
* Developed by :
* Frederic Konrad <fred.konrad@greensocs.com>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License along
* with this program; if not, see <http://www.gnu.org/licenses/>.
*
*/
#include "qemu/osdep.h"
#include "qemu/log.h"
#include "hw/dma/xlnx_dpdma.h"
#ifndef DEBUG_DPDMA
#define DEBUG_DPDMA 0
#endif
#define DPRINTF(fmt, ...) do { \
if (DEBUG_DPDMA) { \
qemu_log("xlnx_dpdma: " fmt , ## __VA_ARGS__); \
} \
maint: Fix macros with broken 'do/while(0); ' usage The point of writing a macro embedded in a 'do { ... } while (0)' loop (particularly if the macro has multiple statements or would otherwise end with an 'if' statement) is so that the macro can be used as a drop-in statement with the caller supplying the trailing ';'. Although our coding style frowns on brace-less 'if': if (cond) statement; else something else; that is the classic case where failure to use do/while(0) wrapping would cause the 'else' to pair with any embedded 'if' in the macro rather than the intended outer 'if'. But conversely, if the macro includes an embedded ';', then the same brace-less coding style would now have two statements, making the 'else' a syntax error rather than pairing with the outer 'if'. Thus, even though our coding style with required braces is not impacted, ending a macro with ';' makes our code harder to port to projects that use brace-less styles. The change should have no semantic impact. I was not able to fully compile-test all of the changes (as some of them are examples of the ugly bit-rotting debug print statements that are completely elided by default, and I didn't want to recompile with the necessary -D witnesses - cleaning those up is left as a bite-sized task for another day); I did, however, audit that for all files touched, all callers of the changed macros DID supply a trailing ';' at the callsite, and did not appear to be used as part of a brace-less conditional. Found mechanically via: $ git grep -B1 'while (0);' | grep -A1 \\\\ Signed-off-by: Eric Blake <eblake@redhat.com> Acked-by: Cornelia Huck <cohuck@redhat.com> Reviewed-by: Michael S. Tsirkin <mst@redhat.com> Acked-by: Dr. David Alan Gilbert <dgilbert@redhat.com> Message-Id: <20171201232433.25193-7-eblake@redhat.com> Reviewed-by: Juan Quintela <quintela@redhat.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2017-12-02 00:24:32 +01:00
} while (0)
/*
* Registers offset for DPDMA.
*/
#define DPDMA_ERR_CTRL (0x0000)
#define DPDMA_ISR (0x0004 >> 2)
#define DPDMA_IMR (0x0008 >> 2)
#define DPDMA_IEN (0x000C >> 2)
#define DPDMA_IDS (0x0010 >> 2)
#define DPDMA_EISR (0x0014 >> 2)
#define DPDMA_EIMR (0x0018 >> 2)
#define DPDMA_EIEN (0x001C >> 2)
#define DPDMA_EIDS (0x0020 >> 2)
#define DPDMA_CNTL (0x0100 >> 2)
#define DPDMA_GBL (0x0104 >> 2)
#define DPDMA_GBL_TRG_CH(n) (1 << n)
#define DPDMA_GBL_RTRG_CH(n) (1 << 6 << n)
#define DPDMA_ALC0_CNTL (0x0108 >> 2)
#define DPDMA_ALC0_STATUS (0x010C >> 2)
#define DPDMA_ALC0_MAX (0x0110 >> 2)
#define DPDMA_ALC0_MIN (0x0114 >> 2)
#define DPDMA_ALC0_ACC (0x0118 >> 2)
#define DPDMA_ALC0_ACC_TRAN (0x011C >> 2)
#define DPDMA_ALC1_CNTL (0x0120 >> 2)
#define DPDMA_ALC1_STATUS (0x0124 >> 2)
#define DPDMA_ALC1_MAX (0x0128 >> 2)
#define DPDMA_ALC1_MIN (0x012C >> 2)
#define DPDMA_ALC1_ACC (0x0130 >> 2)
#define DPDMA_ALC1_ACC_TRAN (0x0134 >> 2)
#define DPDMA_DSCR_STRT_ADDRE_CH(n) ((0x0200 + n * 0x100) >> 2)
#define DPDMA_DSCR_STRT_ADDR_CH(n) ((0x0204 + n * 0x100) >> 2)
#define DPDMA_DSCR_NEXT_ADDRE_CH(n) ((0x0208 + n * 0x100) >> 2)
#define DPDMA_DSCR_NEXT_ADDR_CH(n) ((0x020C + n * 0x100) >> 2)
#define DPDMA_PYLD_CUR_ADDRE_CH(n) ((0x0210 + n * 0x100) >> 2)
#define DPDMA_PYLD_CUR_ADDR_CH(n) ((0x0214 + n * 0x100) >> 2)
#define DPDMA_CNTL_CH(n) ((0x0218 + n * 0x100) >> 2)
#define DPDMA_CNTL_CH_EN (1)
#define DPDMA_CNTL_CH_PAUSED (1 << 1)
#define DPDMA_STATUS_CH(n) ((0x021C + n * 0x100) >> 2)
#define DPDMA_STATUS_BURST_TYPE (1 << 4)
#define DPDMA_STATUS_MODE (1 << 5)
#define DPDMA_STATUS_EN_CRC (1 << 6)
#define DPDMA_STATUS_LAST_DSCR (1 << 7)
#define DPDMA_STATUS_LDSCR_FRAME (1 << 8)
#define DPDMA_STATUS_IGNR_DONE (1 << 9)
#define DPDMA_STATUS_DSCR_DONE (1 << 10)
#define DPDMA_STATUS_EN_DSCR_UP (1 << 11)
#define DPDMA_STATUS_EN_DSCR_INTR (1 << 12)
#define DPDMA_STATUS_PREAMBLE_OFF (13)
#define DPDMA_VDO_CH(n) ((0x0220 + n * 0x100) >> 2)
#define DPDMA_PYLD_SZ_CH(n) ((0x0224 + n * 0x100) >> 2)
#define DPDMA_DSCR_ID_CH(n) ((0x0228 + n * 0x100) >> 2)
/*
* Descriptor control field.
*/
#define CONTROL_PREAMBLE_VALUE 0xA5
#define DSCR_CTRL_PREAMBLE 0xFF
#define DSCR_CTRL_EN_DSCR_DONE_INTR (1 << 8)
#define DSCR_CTRL_EN_DSCR_UPDATE (1 << 9)
#define DSCR_CTRL_IGNORE_DONE (1 << 10)
#define DSCR_CTRL_AXI_BURST_TYPE (1 << 11)
#define DSCR_CTRL_AXCACHE (0x0F << 12)
#define DSCR_CTRL_AXPROT (0x2 << 16)
#define DSCR_CTRL_DESCRIPTOR_MODE (1 << 18)
#define DSCR_CTRL_LAST_DESCRIPTOR (1 << 19)
#define DSCR_CTRL_ENABLE_CRC (1 << 20)
#define DSCR_CTRL_LAST_DESCRIPTOR_OF_FRAME (1 << 21)
/*
* Descriptor timestamp field.
*/
#define STATUS_DONE (1 << 31)
#define DPDMA_FRAG_MAX_SZ (4096)
enum DPDMABurstType {
DPDMA_INCR = 0,
DPDMA_FIXED = 1
};
enum DPDMAMode {
DPDMA_CONTIGOUS = 0,
DPDMA_FRAGMENTED = 1
};
struct DPDMADescriptor {
uint32_t control;
uint32_t descriptor_id;
/* transfer size in byte. */
uint32_t xfer_size;
uint32_t line_size_stride;
uint32_t timestamp_lsb;
uint32_t timestamp_msb;
/* contains extension for both descriptor and source. */
uint32_t address_extension;
uint32_t next_descriptor;
uint32_t source_address;
uint32_t address_extension_23;
uint32_t address_extension_45;
uint32_t source_address2;
uint32_t source_address3;
uint32_t source_address4;
uint32_t source_address5;
uint32_t crc;
};
typedef enum DPDMABurstType DPDMABurstType;
typedef enum DPDMAMode DPDMAMode;
typedef struct DPDMADescriptor DPDMADescriptor;
static bool xlnx_dpdma_desc_is_last(DPDMADescriptor *desc)
{
return ((desc->control & DSCR_CTRL_LAST_DESCRIPTOR) != 0);
}
static bool xlnx_dpdma_desc_is_last_of_frame(DPDMADescriptor *desc)
{
return ((desc->control & DSCR_CTRL_LAST_DESCRIPTOR_OF_FRAME) != 0);
}
static uint64_t xlnx_dpdma_desc_get_source_address(DPDMADescriptor *desc,
uint8_t frag)
{
uint64_t addr = 0;
assert(frag < 5);
switch (frag) {
case 0:
addr = desc->source_address
+ (extract32(desc->address_extension, 16, 12) << 20);
break;
case 1:
addr = desc->source_address2
+ (extract32(desc->address_extension_23, 0, 12) << 8);
break;
case 2:
addr = desc->source_address3
+ (extract32(desc->address_extension_23, 16, 12) << 20);
break;
case 3:
addr = desc->source_address4
+ (extract32(desc->address_extension_45, 0, 12) << 8);
break;
case 4:
addr = desc->source_address5
+ (extract32(desc->address_extension_45, 16, 12) << 20);
break;
default:
addr = 0;
break;
}
return addr;
}
static uint32_t xlnx_dpdma_desc_get_transfer_size(DPDMADescriptor *desc)
{
return desc->xfer_size;
}
static uint32_t xlnx_dpdma_desc_get_line_size(DPDMADescriptor *desc)
{
return extract32(desc->line_size_stride, 0, 18);
}
static uint32_t xlnx_dpdma_desc_get_line_stride(DPDMADescriptor *desc)
{
return extract32(desc->line_size_stride, 18, 14) * 16;
}
static inline bool xlnx_dpdma_desc_crc_enabled(DPDMADescriptor *desc)
{
return (desc->control & DSCR_CTRL_ENABLE_CRC) != 0;
}
static inline bool xlnx_dpdma_desc_check_crc(DPDMADescriptor *desc)
{
uint32_t *p = (uint32_t *)desc;
uint32_t crc = 0;
uint8_t i;
/*
* CRC is calculated on the whole descriptor except the last 32bits word
* using 32bits addition.
*/
for (i = 0; i < 15; i++) {
crc += p[i];
}
return crc == desc->crc;
}
static inline bool xlnx_dpdma_desc_completion_interrupt(DPDMADescriptor *desc)
{
return (desc->control & DSCR_CTRL_EN_DSCR_DONE_INTR) != 0;
}
static inline bool xlnx_dpdma_desc_is_valid(DPDMADescriptor *desc)
{
return (desc->control & DSCR_CTRL_PREAMBLE) == CONTROL_PREAMBLE_VALUE;
}
static inline bool xlnx_dpdma_desc_is_contiguous(DPDMADescriptor *desc)
{
return (desc->control & DSCR_CTRL_DESCRIPTOR_MODE) == 0;
}
static inline bool xlnx_dpdma_desc_update_enabled(DPDMADescriptor *desc)
{
return (desc->control & DSCR_CTRL_EN_DSCR_UPDATE) != 0;
}
static inline void xlnx_dpdma_desc_set_done(DPDMADescriptor *desc)
{
desc->timestamp_msb |= STATUS_DONE;
}
static inline bool xlnx_dpdma_desc_is_already_done(DPDMADescriptor *desc)
{
return (desc->timestamp_msb & STATUS_DONE) != 0;
}
static inline bool xlnx_dpdma_desc_ignore_done_bit(DPDMADescriptor *desc)
{
return (desc->control & DSCR_CTRL_IGNORE_DONE) != 0;
}
static const VMStateDescription vmstate_xlnx_dpdma = {
.name = TYPE_XLNX_DPDMA,
.version_id = 1,
.fields = (VMStateField[]) {
VMSTATE_UINT32_ARRAY(registers, XlnxDPDMAState,
XLNX_DPDMA_REG_ARRAY_SIZE),
VMSTATE_BOOL_ARRAY(operation_finished, XlnxDPDMAState, 6),
VMSTATE_END_OF_LIST()
}
};
static void xlnx_dpdma_update_irq(XlnxDPDMAState *s)
{
bool flags;
flags = ((s->registers[DPDMA_ISR] & (~s->registers[DPDMA_IMR]))
|| (s->registers[DPDMA_EISR] & (~s->registers[DPDMA_EIMR])));
qemu_set_irq(s->irq, flags);
}
static uint64_t xlnx_dpdma_descriptor_start_address(XlnxDPDMAState *s,
uint8_t channel)
{
return (s->registers[DPDMA_DSCR_STRT_ADDRE_CH(channel)] << 16)
+ s->registers[DPDMA_DSCR_STRT_ADDR_CH(channel)];
}
static uint64_t xlnx_dpdma_descriptor_next_address(XlnxDPDMAState *s,
uint8_t channel)
{
return ((uint64_t)s->registers[DPDMA_DSCR_NEXT_ADDRE_CH(channel)] << 32)
+ s->registers[DPDMA_DSCR_NEXT_ADDR_CH(channel)];
}
static bool xlnx_dpdma_is_channel_enabled(XlnxDPDMAState *s,
uint8_t channel)
{
return (s->registers[DPDMA_CNTL_CH(channel)] & DPDMA_CNTL_CH_EN) != 0;
}
static bool xlnx_dpdma_is_channel_paused(XlnxDPDMAState *s,
uint8_t channel)
{
return (s->registers[DPDMA_CNTL_CH(channel)] & DPDMA_CNTL_CH_PAUSED) != 0;
}
static inline bool xlnx_dpdma_is_channel_retriggered(XlnxDPDMAState *s,
uint8_t channel)
{
/* Clear the retriggered bit after reading it. */
bool channel_is_retriggered = s->registers[DPDMA_GBL]
& DPDMA_GBL_RTRG_CH(channel);
s->registers[DPDMA_GBL] &= ~DPDMA_GBL_RTRG_CH(channel);
return channel_is_retriggered;
}
static inline bool xlnx_dpdma_is_channel_triggered(XlnxDPDMAState *s,
uint8_t channel)
{
return s->registers[DPDMA_GBL] & DPDMA_GBL_TRG_CH(channel);
}
static void xlnx_dpdma_update_desc_info(XlnxDPDMAState *s, uint8_t channel,
DPDMADescriptor *desc)
{
s->registers[DPDMA_DSCR_NEXT_ADDRE_CH(channel)] =
extract32(desc->address_extension, 0, 16);
s->registers[DPDMA_DSCR_NEXT_ADDR_CH(channel)] = desc->next_descriptor;
s->registers[DPDMA_PYLD_CUR_ADDRE_CH(channel)] =
extract32(desc->address_extension, 16, 16);
s->registers[DPDMA_PYLD_CUR_ADDR_CH(channel)] = desc->source_address;
s->registers[DPDMA_VDO_CH(channel)] =
extract32(desc->line_size_stride, 18, 14)
+ (extract32(desc->line_size_stride, 0, 18)
<< 14);
s->registers[DPDMA_PYLD_SZ_CH(channel)] = desc->xfer_size;
s->registers[DPDMA_DSCR_ID_CH(channel)] = desc->descriptor_id;
/* Compute the status register with the descriptor information. */
s->registers[DPDMA_STATUS_CH(channel)] =
extract32(desc->control, 0, 8) << 13;
if ((desc->control & DSCR_CTRL_EN_DSCR_DONE_INTR) != 0) {
s->registers[DPDMA_STATUS_CH(channel)] |= DPDMA_STATUS_EN_DSCR_INTR;
}
if ((desc->control & DSCR_CTRL_EN_DSCR_UPDATE) != 0) {
s->registers[DPDMA_STATUS_CH(channel)] |= DPDMA_STATUS_EN_DSCR_UP;
}
if ((desc->timestamp_msb & STATUS_DONE) != 0) {
s->registers[DPDMA_STATUS_CH(channel)] |= DPDMA_STATUS_DSCR_DONE;
}
if ((desc->control & DSCR_CTRL_IGNORE_DONE) != 0) {
s->registers[DPDMA_STATUS_CH(channel)] |= DPDMA_STATUS_IGNR_DONE;
}
if ((desc->control & DSCR_CTRL_LAST_DESCRIPTOR_OF_FRAME) != 0) {
s->registers[DPDMA_STATUS_CH(channel)] |= DPDMA_STATUS_LDSCR_FRAME;
}
if ((desc->control & DSCR_CTRL_LAST_DESCRIPTOR) != 0) {
s->registers[DPDMA_STATUS_CH(channel)] |= DPDMA_STATUS_LAST_DSCR;
}
if ((desc->control & DSCR_CTRL_ENABLE_CRC) != 0) {
s->registers[DPDMA_STATUS_CH(channel)] |= DPDMA_STATUS_EN_CRC;
}
if ((desc->control & DSCR_CTRL_DESCRIPTOR_MODE) != 0) {
s->registers[DPDMA_STATUS_CH(channel)] |= DPDMA_STATUS_MODE;
}
if ((desc->control & DSCR_CTRL_AXI_BURST_TYPE) != 0) {
s->registers[DPDMA_STATUS_CH(channel)] |= DPDMA_STATUS_BURST_TYPE;
}
}
static void xlnx_dpdma_dump_descriptor(DPDMADescriptor *desc)
{
if (DEBUG_DPDMA) {
qemu_log("DUMP DESCRIPTOR:\n");
qemu_hexdump((char *)desc, stdout, "", sizeof(DPDMADescriptor));
}
}
static uint64_t xlnx_dpdma_read(void *opaque, hwaddr offset,
unsigned size)
{
XlnxDPDMAState *s = XLNX_DPDMA(opaque);
DPRINTF("read @%" HWADDR_PRIx "\n", offset);
offset = offset >> 2;
switch (offset) {
/*
* Trying to read a write only register.
*/
case DPDMA_GBL:
return 0;
default:
assert(offset <= (0xFFC >> 2));
return s->registers[offset];
}
return 0;
}
static void xlnx_dpdma_write(void *opaque, hwaddr offset,
uint64_t value, unsigned size)
{
XlnxDPDMAState *s = XLNX_DPDMA(opaque);
DPRINTF("write @%" HWADDR_PRIx " = %" PRIx64 "\n", offset, value);
offset = offset >> 2;
switch (offset) {
case DPDMA_ISR:
s->registers[DPDMA_ISR] &= ~value;
xlnx_dpdma_update_irq(s);
break;
case DPDMA_IEN:
s->registers[DPDMA_IMR] &= ~value;
break;
case DPDMA_IDS:
s->registers[DPDMA_IMR] |= value;
break;
case DPDMA_EISR:
s->registers[DPDMA_EISR] &= ~value;
xlnx_dpdma_update_irq(s);
break;
case DPDMA_EIEN:
s->registers[DPDMA_EIMR] &= ~value;
break;
case DPDMA_EIDS:
s->registers[DPDMA_EIMR] |= value;
break;
case DPDMA_IMR:
case DPDMA_EIMR:
case DPDMA_DSCR_NEXT_ADDRE_CH(0):
case DPDMA_DSCR_NEXT_ADDRE_CH(1):
case DPDMA_DSCR_NEXT_ADDRE_CH(2):
case DPDMA_DSCR_NEXT_ADDRE_CH(3):
case DPDMA_DSCR_NEXT_ADDRE_CH(4):
case DPDMA_DSCR_NEXT_ADDRE_CH(5):
case DPDMA_DSCR_NEXT_ADDR_CH(0):
case DPDMA_DSCR_NEXT_ADDR_CH(1):
case DPDMA_DSCR_NEXT_ADDR_CH(2):
case DPDMA_DSCR_NEXT_ADDR_CH(3):
case DPDMA_DSCR_NEXT_ADDR_CH(4):
case DPDMA_DSCR_NEXT_ADDR_CH(5):
case DPDMA_PYLD_CUR_ADDRE_CH(0):
case DPDMA_PYLD_CUR_ADDRE_CH(1):
case DPDMA_PYLD_CUR_ADDRE_CH(2):
case DPDMA_PYLD_CUR_ADDRE_CH(3):
case DPDMA_PYLD_CUR_ADDRE_CH(4):
case DPDMA_PYLD_CUR_ADDRE_CH(5):
case DPDMA_PYLD_CUR_ADDR_CH(0):
case DPDMA_PYLD_CUR_ADDR_CH(1):
case DPDMA_PYLD_CUR_ADDR_CH(2):
case DPDMA_PYLD_CUR_ADDR_CH(3):
case DPDMA_PYLD_CUR_ADDR_CH(4):
case DPDMA_PYLD_CUR_ADDR_CH(5):
case DPDMA_STATUS_CH(0):
case DPDMA_STATUS_CH(1):
case DPDMA_STATUS_CH(2):
case DPDMA_STATUS_CH(3):
case DPDMA_STATUS_CH(4):
case DPDMA_STATUS_CH(5):
case DPDMA_VDO_CH(0):
case DPDMA_VDO_CH(1):
case DPDMA_VDO_CH(2):
case DPDMA_VDO_CH(3):
case DPDMA_VDO_CH(4):
case DPDMA_VDO_CH(5):
case DPDMA_PYLD_SZ_CH(0):
case DPDMA_PYLD_SZ_CH(1):
case DPDMA_PYLD_SZ_CH(2):
case DPDMA_PYLD_SZ_CH(3):
case DPDMA_PYLD_SZ_CH(4):
case DPDMA_PYLD_SZ_CH(5):
case DPDMA_DSCR_ID_CH(0):
case DPDMA_DSCR_ID_CH(1):
case DPDMA_DSCR_ID_CH(2):
case DPDMA_DSCR_ID_CH(3):
case DPDMA_DSCR_ID_CH(4):
case DPDMA_DSCR_ID_CH(5):
/*
* Trying to write to a read only register..
*/
break;
case DPDMA_GBL:
/*
* This is a write only register so it's read as zero in the read
* callback.
* We store the value anyway so we can know if the channel is
* enabled.
*/
s->registers[offset] |= value & 0x00000FFF;
break;
case DPDMA_DSCR_STRT_ADDRE_CH(0):
case DPDMA_DSCR_STRT_ADDRE_CH(1):
case DPDMA_DSCR_STRT_ADDRE_CH(2):
case DPDMA_DSCR_STRT_ADDRE_CH(3):
case DPDMA_DSCR_STRT_ADDRE_CH(4):
case DPDMA_DSCR_STRT_ADDRE_CH(5):
value &= 0x0000FFFF;
s->registers[offset] = value;
break;
case DPDMA_CNTL_CH(0):
s->registers[DPDMA_GBL] &= ~DPDMA_GBL_TRG_CH(0);
value &= 0x3FFFFFFF;
s->registers[offset] = value;
break;
case DPDMA_CNTL_CH(1):
s->registers[DPDMA_GBL] &= ~DPDMA_GBL_TRG_CH(1);
value &= 0x3FFFFFFF;
s->registers[offset] = value;
break;
case DPDMA_CNTL_CH(2):
s->registers[DPDMA_GBL] &= ~DPDMA_GBL_TRG_CH(2);
value &= 0x3FFFFFFF;
s->registers[offset] = value;
break;
case DPDMA_CNTL_CH(3):
s->registers[DPDMA_GBL] &= ~DPDMA_GBL_TRG_CH(3);
value &= 0x3FFFFFFF;
s->registers[offset] = value;
break;
case DPDMA_CNTL_CH(4):
s->registers[DPDMA_GBL] &= ~DPDMA_GBL_TRG_CH(4);
value &= 0x3FFFFFFF;
s->registers[offset] = value;
break;
case DPDMA_CNTL_CH(5):
s->registers[DPDMA_GBL] &= ~DPDMA_GBL_TRG_CH(5);
value &= 0x3FFFFFFF;
s->registers[offset] = value;
break;
default:
assert(offset <= (0xFFC >> 2));
s->registers[offset] = value;
break;
}
}
static const MemoryRegionOps dma_ops = {
.read = xlnx_dpdma_read,
.write = xlnx_dpdma_write,
.endianness = DEVICE_NATIVE_ENDIAN,
.valid = {
.min_access_size = 4,
.max_access_size = 4,
},
.impl = {
.min_access_size = 4,
.max_access_size = 4,
},
};
static void xlnx_dpdma_init(Object *obj)
{
SysBusDevice *sbd = SYS_BUS_DEVICE(obj);
XlnxDPDMAState *s = XLNX_DPDMA(obj);
memory_region_init_io(&s->iomem, obj, &dma_ops, s,
TYPE_XLNX_DPDMA, 0x1000);
sysbus_init_mmio(sbd, &s->iomem);
sysbus_init_irq(sbd, &s->irq);
}
static void xlnx_dpdma_reset(DeviceState *dev)
{
XlnxDPDMAState *s = XLNX_DPDMA(dev);
size_t i;
memset(s->registers, 0, sizeof(s->registers));
s->registers[DPDMA_IMR] = 0x07FFFFFF;
s->registers[DPDMA_EIMR] = 0xFFFFFFFF;
s->registers[DPDMA_ALC0_MIN] = 0x0000FFFF;
s->registers[DPDMA_ALC1_MIN] = 0x0000FFFF;
for (i = 0; i < 6; i++) {
s->data[i] = NULL;
s->operation_finished[i] = true;
}
}
static void xlnx_dpdma_class_init(ObjectClass *oc, void *data)
{
DeviceClass *dc = DEVICE_CLASS(oc);
dc->vmsd = &vmstate_xlnx_dpdma;
dc->reset = xlnx_dpdma_reset;
}
static const TypeInfo xlnx_dpdma_info = {
.name = TYPE_XLNX_DPDMA,
.parent = TYPE_SYS_BUS_DEVICE,
.instance_size = sizeof(XlnxDPDMAState),
.instance_init = xlnx_dpdma_init,
.class_init = xlnx_dpdma_class_init,
};
static void xlnx_dpdma_register_types(void)
{
type_register_static(&xlnx_dpdma_info);
}
size_t xlnx_dpdma_start_operation(XlnxDPDMAState *s, uint8_t channel,
bool one_desc)
{
uint64_t desc_addr;
uint64_t source_addr[6];
DPDMADescriptor desc;
bool done = false;
size_t ptr = 0;
assert(channel <= 5);
DPRINTF("start dpdma channel 0x%" PRIX8 "\n", channel);
if (!xlnx_dpdma_is_channel_triggered(s, channel)) {
DPRINTF("Channel isn't triggered..\n");
return 0;
}
if (!xlnx_dpdma_is_channel_enabled(s, channel)) {
DPRINTF("Channel isn't enabled..\n");
return 0;
}
if (xlnx_dpdma_is_channel_paused(s, channel)) {
DPRINTF("Channel is paused..\n");
return 0;
}
do {
if ((s->operation_finished[channel])
|| xlnx_dpdma_is_channel_retriggered(s, channel)) {
desc_addr = xlnx_dpdma_descriptor_start_address(s, channel);
s->operation_finished[channel] = false;
} else {
desc_addr = xlnx_dpdma_descriptor_next_address(s, channel);
}
if (dma_memory_read(&address_space_memory, desc_addr, &desc,
sizeof(DPDMADescriptor))) {
s->registers[DPDMA_EISR] |= ((1 << 1) << channel);
xlnx_dpdma_update_irq(s);
s->operation_finished[channel] = true;
DPRINTF("Can't get the descriptor.\n");
break;
}
xlnx_dpdma_update_desc_info(s, channel, &desc);
#ifdef DEBUG_DPDMA
xlnx_dpdma_dump_descriptor(&desc);
#endif
DPRINTF("location of the descriptor: %" PRIx64 "\n", desc_addr);
if (!xlnx_dpdma_desc_is_valid(&desc)) {
s->registers[DPDMA_EISR] |= ((1 << 7) << channel);
xlnx_dpdma_update_irq(s);
s->operation_finished[channel] = true;
DPRINTF("Invalid descriptor..\n");
break;
}
if (xlnx_dpdma_desc_crc_enabled(&desc)
&& !xlnx_dpdma_desc_check_crc(&desc)) {
s->registers[DPDMA_EISR] |= ((1 << 13) << channel);
xlnx_dpdma_update_irq(s);
s->operation_finished[channel] = true;
DPRINTF("Bad CRC for descriptor..\n");
break;
}
if (xlnx_dpdma_desc_is_already_done(&desc)
&& !xlnx_dpdma_desc_ignore_done_bit(&desc)) {
/* We are trying to process an already processed descriptor. */
s->registers[DPDMA_EISR] |= ((1 << 25) << channel);
xlnx_dpdma_update_irq(s);
s->operation_finished[channel] = true;
DPRINTF("Already processed descriptor..\n");
break;
}
done = xlnx_dpdma_desc_is_last(&desc)
|| xlnx_dpdma_desc_is_last_of_frame(&desc);
s->operation_finished[channel] = done;
if (s->data[channel]) {
int64_t transfer_len = xlnx_dpdma_desc_get_transfer_size(&desc);
uint32_t line_size = xlnx_dpdma_desc_get_line_size(&desc);
uint32_t line_stride = xlnx_dpdma_desc_get_line_stride(&desc);
if (xlnx_dpdma_desc_is_contiguous(&desc)) {
source_addr[0] = xlnx_dpdma_desc_get_source_address(&desc, 0);
while (transfer_len != 0) {
if (dma_memory_read(&address_space_memory,
source_addr[0],
&s->data[channel][ptr],
line_size)) {
s->registers[DPDMA_ISR] |= ((1 << 12) << channel);
xlnx_dpdma_update_irq(s);
DPRINTF("Can't get data.\n");
break;
}
ptr += line_size;
transfer_len -= line_size;
source_addr[0] += line_stride;
}
} else {
DPRINTF("Source address:\n");
int frag;
for (frag = 0; frag < 5; frag++) {
source_addr[frag] =
xlnx_dpdma_desc_get_source_address(&desc, frag);
DPRINTF("Fragment %u: %" PRIx64 "\n", frag + 1,
source_addr[frag]);
}
frag = 0;
while ((transfer_len < 0) && (frag < 5)) {
size_t fragment_len = DPDMA_FRAG_MAX_SZ
- (source_addr[frag] % DPDMA_FRAG_MAX_SZ);
if (dma_memory_read(&address_space_memory,
source_addr[frag],
&(s->data[channel][ptr]),
fragment_len)) {
s->registers[DPDMA_ISR] |= ((1 << 12) << channel);
xlnx_dpdma_update_irq(s);
DPRINTF("Can't get data.\n");
break;
}
ptr += fragment_len;
transfer_len -= fragment_len;
frag += 1;
}
}
}
if (xlnx_dpdma_desc_update_enabled(&desc)) {
/* The descriptor need to be updated when it's completed. */
DPRINTF("update the descriptor with the done flag set.\n");
xlnx_dpdma_desc_set_done(&desc);
dma_memory_write(&address_space_memory, desc_addr, &desc,
sizeof(DPDMADescriptor));
}
if (xlnx_dpdma_desc_completion_interrupt(&desc)) {
DPRINTF("completion interrupt enabled!\n");
s->registers[DPDMA_ISR] |= (1 << channel);
xlnx_dpdma_update_irq(s);
}
} while (!done && !one_desc);
return ptr;
}
void xlnx_dpdma_set_host_data_location(XlnxDPDMAState *s, uint8_t channel,
void *p)
{
if (!s) {
qemu_log_mask(LOG_UNIMP, "DPDMA client not attached to valid DPDMA"
" instance\n");
return;
}
assert(channel <= 5);
s->data[channel] = p;
}
void xlnx_dpdma_trigger_vsync_irq(XlnxDPDMAState *s)
{
s->registers[DPDMA_ISR] |= (1 << 27);
xlnx_dpdma_update_irq(s);
}
type_init(xlnx_dpdma_register_types)