qemu-e2k/hw/misc/cbus.c

619 lines
15 KiB
C
Raw Normal View History

/*
* CBUS three-pin bus and the Retu / Betty / Tahvo / Vilma / Avilma /
* Hinku / Vinku / Ahne / Pihi chips used in various Nokia platforms.
* Based on reverse-engineering of a linux driver.
*
* Copyright (C) 2008 Nokia Corporation
* Written by Andrzej Zaborowski <andrew@openedhand.com>
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License as
* published by the Free Software Foundation; either version 2 or
* (at your option) version 3 of the License.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License along
* with this program; if not, see <http://www.gnu.org/licenses/>.
*/
#include "qemu-common.h"
#include "hw/irq.h"
#include "hw/devices.h"
#include "sysemu/sysemu.h"
//#define DEBUG
typedef struct {
void *opaque;
void (*io)(void *opaque, int rw, int reg, uint16_t *val);
int addr;
} CBusSlave;
typedef struct {
CBus cbus;
int sel;
int dat;
int clk;
int bit;
int dir;
uint16_t val;
qemu_irq dat_out;
int addr;
int reg;
int rw;
enum {
cbus_address,
cbus_value,
} cycle;
CBusSlave *slave[8];
} CBusPriv;
static void cbus_io(CBusPriv *s)
{
if (s->slave[s->addr])
s->slave[s->addr]->io(s->slave[s->addr]->opaque,
s->rw, s->reg, &s->val);
else
hw_error("%s: bad slave address %i\n", __FUNCTION__, s->addr);
}
static void cbus_cycle(CBusPriv *s)
{
switch (s->cycle) {
case cbus_address:
s->addr = (s->val >> 6) & 7;
s->rw = (s->val >> 5) & 1;
s->reg = (s->val >> 0) & 0x1f;
s->cycle = cbus_value;
s->bit = 15;
s->dir = !s->rw;
s->val = 0;
if (s->rw)
cbus_io(s);
break;
case cbus_value:
if (!s->rw)
cbus_io(s);
s->cycle = cbus_address;
s->bit = 8;
s->dir = 1;
s->val = 0;
break;
}
}
static void cbus_clk(void *opaque, int line, int level)
{
CBusPriv *s = (CBusPriv *) opaque;
if (!s->sel && level && !s->clk) {
if (s->dir)
s->val |= s->dat << (s->bit --);
else
qemu_set_irq(s->dat_out, (s->val >> (s->bit --)) & 1);
if (s->bit < 0)
cbus_cycle(s);
}
s->clk = level;
}
static void cbus_dat(void *opaque, int line, int level)
{
CBusPriv *s = (CBusPriv *) opaque;
s->dat = level;
}
static void cbus_sel(void *opaque, int line, int level)
{
CBusPriv *s = (CBusPriv *) opaque;
if (!level) {
s->dir = 1;
s->bit = 8;
s->val = 0;
}
s->sel = level;
}
CBus *cbus_init(qemu_irq dat)
{
CBusPriv *s = (CBusPriv *) g_malloc0(sizeof(*s));
s->dat_out = dat;
s->cbus.clk = qemu_allocate_irq(cbus_clk, s, 0);
s->cbus.dat = qemu_allocate_irq(cbus_dat, s, 0);
s->cbus.sel = qemu_allocate_irq(cbus_sel, s, 0);
s->sel = 1;
s->clk = 0;
s->dat = 0;
return &s->cbus;
}
void cbus_attach(CBus *bus, void *slave_opaque)
{
CBusSlave *slave = (CBusSlave *) slave_opaque;
CBusPriv *s = (CBusPriv *) bus;
s->slave[slave->addr] = slave;
}
/* Retu/Vilma */
typedef struct {
uint16_t irqst;
uint16_t irqen;
uint16_t cc[2];
int channel;
uint16_t result[16];
uint16_t sample;
uint16_t status;
struct {
uint16_t cal;
} rtc;
int is_vilma;
qemu_irq irq;
CBusSlave cbus;
} CBusRetu;
static void retu_interrupt_update(CBusRetu *s)
{
qemu_set_irq(s->irq, s->irqst & ~s->irqen);
}
#define RETU_REG_ASICR 0x00 /* (RO) ASIC ID & revision */
#define RETU_REG_IDR 0x01 /* (T) Interrupt ID */
#define RETU_REG_IMR 0x02 /* (RW) Interrupt mask */
#define RETU_REG_RTCDSR 0x03 /* (RW) RTC seconds register */
#define RETU_REG_RTCHMR 0x04 /* (RO) RTC hours and minutes reg */
#define RETU_REG_RTCHMAR 0x05 /* (RW) RTC hours and minutes set reg */
#define RETU_REG_RTCCALR 0x06 /* (RW) RTC calibration register */
#define RETU_REG_ADCR 0x08 /* (RW) ADC result register */
#define RETU_REG_ADCSCR 0x09 /* (RW) ADC sample control register */
#define RETU_REG_AFCR 0x0a /* (RW) AFC register */
#define RETU_REG_ANTIFR 0x0b /* (RW) AntiF register */
#define RETU_REG_CALIBR 0x0c /* (RW) CalibR register*/
#define RETU_REG_CCR1 0x0d /* (RW) Common control register 1 */
#define RETU_REG_CCR2 0x0e /* (RW) Common control register 2 */
#define RETU_REG_RCTRL_CLR 0x0f /* (T) Regulator clear register */
#define RETU_REG_RCTRL_SET 0x10 /* (T) Regulator set register */
#define RETU_REG_TXCR 0x11 /* (RW) TxC register */
#define RETU_REG_STATUS 0x16 /* (RO) Status register */
#define RETU_REG_WATCHDOG 0x17 /* (RW) Watchdog register */
#define RETU_REG_AUDTXR 0x18 /* (RW) Audio Codec Tx register */
#define RETU_REG_AUDPAR 0x19 /* (RW) AudioPA register */
#define RETU_REG_AUDRXR1 0x1a /* (RW) Audio receive register 1 */
#define RETU_REG_AUDRXR2 0x1b /* (RW) Audio receive register 2 */
#define RETU_REG_SGR1 0x1c /* (RW) */
#define RETU_REG_SCR1 0x1d /* (RW) */
#define RETU_REG_SGR2 0x1e /* (RW) */
#define RETU_REG_SCR2 0x1f /* (RW) */
/* Retu Interrupt sources */
enum {
retu_int_pwr = 0, /* Power button */
retu_int_char = 1, /* Charger */
retu_int_rtcs = 2, /* Seconds */
retu_int_rtcm = 3, /* Minutes */
retu_int_rtcd = 4, /* Days */
retu_int_rtca = 5, /* Alarm */
retu_int_hook = 6, /* Hook */
retu_int_head = 7, /* Headset */
retu_int_adcs = 8, /* ADC sample */
};
/* Retu ADC channel wiring */
enum {
retu_adc_bsi = 1, /* BSI */
retu_adc_batt_temp = 2, /* Battery temperature */
retu_adc_chg_volt = 3, /* Charger voltage */
retu_adc_head_det = 4, /* Headset detection */
retu_adc_hook_det = 5, /* Hook detection */
retu_adc_rf_gp = 6, /* RF GP */
retu_adc_tx_det = 7, /* Wideband Tx detection */
retu_adc_batt_volt = 8, /* Battery voltage */
retu_adc_sens = 10, /* Light sensor */
retu_adc_sens_temp = 11, /* Light sensor temperature */
retu_adc_bbatt_volt = 12, /* Backup battery voltage */
retu_adc_self_temp = 13, /* RETU temperature */
};
static inline uint16_t retu_read(CBusRetu *s, int reg)
{
#ifdef DEBUG
printf("RETU read at %02x\n", reg);
#endif
switch (reg) {
case RETU_REG_ASICR:
return 0x0215 | (s->is_vilma << 7);
case RETU_REG_IDR: /* TODO: Or is this ffs(s->irqst)? */
return s->irqst;
case RETU_REG_IMR:
return s->irqen;
case RETU_REG_RTCDSR:
case RETU_REG_RTCHMR:
case RETU_REG_RTCHMAR:
/* TODO */
return 0x0000;
case RETU_REG_RTCCALR:
return s->rtc.cal;
case RETU_REG_ADCR:
return (s->channel << 10) | s->result[s->channel];
case RETU_REG_ADCSCR:
return s->sample;
case RETU_REG_AFCR:
case RETU_REG_ANTIFR:
case RETU_REG_CALIBR:
/* TODO */
return 0x0000;
case RETU_REG_CCR1:
return s->cc[0];
case RETU_REG_CCR2:
return s->cc[1];
case RETU_REG_RCTRL_CLR:
case RETU_REG_RCTRL_SET:
case RETU_REG_TXCR:
/* TODO */
return 0x0000;
case RETU_REG_STATUS:
return s->status;
case RETU_REG_WATCHDOG:
case RETU_REG_AUDTXR:
case RETU_REG_AUDPAR:
case RETU_REG_AUDRXR1:
case RETU_REG_AUDRXR2:
case RETU_REG_SGR1:
case RETU_REG_SCR1:
case RETU_REG_SGR2:
case RETU_REG_SCR2:
/* TODO */
return 0x0000;
default:
hw_error("%s: bad register %02x\n", __FUNCTION__, reg);
}
}
static inline void retu_write(CBusRetu *s, int reg, uint16_t val)
{
#ifdef DEBUG
printf("RETU write of %04x at %02x\n", val, reg);
#endif
switch (reg) {
case RETU_REG_IDR:
s->irqst ^= val;
retu_interrupt_update(s);
break;
case RETU_REG_IMR:
s->irqen = val;
retu_interrupt_update(s);
break;
case RETU_REG_RTCDSR:
case RETU_REG_RTCHMAR:
/* TODO */
break;
case RETU_REG_RTCCALR:
s->rtc.cal = val;
break;
case RETU_REG_ADCR:
s->channel = (val >> 10) & 0xf;
s->irqst |= 1 << retu_int_adcs;
retu_interrupt_update(s);
break;
case RETU_REG_ADCSCR:
s->sample &= ~val;
break;
case RETU_REG_AFCR:
case RETU_REG_ANTIFR:
case RETU_REG_CALIBR:
case RETU_REG_CCR1:
s->cc[0] = val;
break;
case RETU_REG_CCR2:
s->cc[1] = val;
break;
case RETU_REG_RCTRL_CLR:
case RETU_REG_RCTRL_SET:
/* TODO */
break;
case RETU_REG_WATCHDOG:
if (val == 0 && (s->cc[0] & 2))
qemu_system_shutdown_request();
break;
case RETU_REG_TXCR:
case RETU_REG_AUDTXR:
case RETU_REG_AUDPAR:
case RETU_REG_AUDRXR1:
case RETU_REG_AUDRXR2:
case RETU_REG_SGR1:
case RETU_REG_SCR1:
case RETU_REG_SGR2:
case RETU_REG_SCR2:
/* TODO */
break;
default:
hw_error("%s: bad register %02x\n", __FUNCTION__, reg);
}
}
static void retu_io(void *opaque, int rw, int reg, uint16_t *val)
{
CBusRetu *s = (CBusRetu *) opaque;
if (rw)
*val = retu_read(s, reg);
else
retu_write(s, reg, *val);
}
void *retu_init(qemu_irq irq, int vilma)
{
CBusRetu *s = (CBusRetu *) g_malloc0(sizeof(*s));
s->irq = irq;
s->irqen = 0xffff;
s->irqst = 0x0000;
s->status = 0x0020;
s->is_vilma = !!vilma;
s->rtc.cal = 0x01;
s->result[retu_adc_bsi] = 0x3c2;
s->result[retu_adc_batt_temp] = 0x0fc;
s->result[retu_adc_chg_volt] = 0x165;
s->result[retu_adc_head_det] = 123;
s->result[retu_adc_hook_det] = 1023;
s->result[retu_adc_rf_gp] = 0x11;
s->result[retu_adc_tx_det] = 0x11;
s->result[retu_adc_batt_volt] = 0x250;
s->result[retu_adc_sens] = 2;
s->result[retu_adc_sens_temp] = 0x11;
s->result[retu_adc_bbatt_volt] = 0x3d0;
s->result[retu_adc_self_temp] = 0x330;
s->cbus.opaque = s;
s->cbus.io = retu_io;
s->cbus.addr = 1;
return &s->cbus;
}
void retu_key_event(void *retu, int state)
{
CBusSlave *slave = (CBusSlave *) retu;
CBusRetu *s = (CBusRetu *) slave->opaque;
s->irqst |= 1 << retu_int_pwr;
retu_interrupt_update(s);
if (state)
s->status &= ~(1 << 5);
else
s->status |= 1 << 5;
}
#if 0
static void retu_head_event(void *retu, int state)
{
CBusSlave *slave = (CBusSlave *) retu;
CBusRetu *s = (CBusRetu *) slave->opaque;
if ((s->cc[0] & 0x500) == 0x500) { /* TODO: Which bits? */
/* TODO: reissue the interrupt every 100ms or so. */
s->irqst |= 1 << retu_int_head;
retu_interrupt_update(s);
}
if (state)
s->result[retu_adc_head_det] = 50;
else
s->result[retu_adc_head_det] = 123;
}
static void retu_hook_event(void *retu, int state)
{
CBusSlave *slave = (CBusSlave *) retu;
CBusRetu *s = (CBusRetu *) slave->opaque;
if ((s->cc[0] & 0x500) == 0x500) {
/* TODO: reissue the interrupt every 100ms or so. */
s->irqst |= 1 << retu_int_hook;
retu_interrupt_update(s);
}
if (state)
s->result[retu_adc_hook_det] = 50;
else
s->result[retu_adc_hook_det] = 123;
}
#endif
/* Tahvo/Betty */
typedef struct {
uint16_t irqst;
uint16_t irqen;
uint8_t charger;
uint8_t backlight;
uint16_t usbr;
uint16_t power;
int is_betty;
qemu_irq irq;
CBusSlave cbus;
} CBusTahvo;
static void tahvo_interrupt_update(CBusTahvo *s)
{
qemu_set_irq(s->irq, s->irqst & ~s->irqen);
}
#define TAHVO_REG_ASICR 0x00 /* (RO) ASIC ID & revision */
#define TAHVO_REG_IDR 0x01 /* (T) Interrupt ID */
#define TAHVO_REG_IDSR 0x02 /* (RO) Interrupt status */
#define TAHVO_REG_IMR 0x03 /* (RW) Interrupt mask */
#define TAHVO_REG_CHAPWMR 0x04 /* (RW) Charger PWM */
#define TAHVO_REG_LEDPWMR 0x05 /* (RW) LED PWM */
#define TAHVO_REG_USBR 0x06 /* (RW) USB control */
#define TAHVO_REG_RCR 0x07 /* (RW) Some kind of power management */
#define TAHVO_REG_CCR1 0x08 /* (RW) Common control register 1 */
#define TAHVO_REG_CCR2 0x09 /* (RW) Common control register 2 */
#define TAHVO_REG_TESTR1 0x0a /* (RW) Test register 1 */
#define TAHVO_REG_TESTR2 0x0b /* (RW) Test register 2 */
#define TAHVO_REG_NOPR 0x0c /* (RW) Number of periods */
#define TAHVO_REG_FRR 0x0d /* (RO) FR */
static inline uint16_t tahvo_read(CBusTahvo *s, int reg)
{
#ifdef DEBUG
printf("TAHVO read at %02x\n", reg);
#endif
switch (reg) {
case TAHVO_REG_ASICR:
return 0x0021 | (s->is_betty ? 0x0b00 : 0x0300); /* 22 in N810 */
case TAHVO_REG_IDR:
case TAHVO_REG_IDSR: /* XXX: what does this do? */
return s->irqst;
case TAHVO_REG_IMR:
return s->irqen;
case TAHVO_REG_CHAPWMR:
return s->charger;
case TAHVO_REG_LEDPWMR:
return s->backlight;
case TAHVO_REG_USBR:
return s->usbr;
case TAHVO_REG_RCR:
return s->power;
case TAHVO_REG_CCR1:
case TAHVO_REG_CCR2:
case TAHVO_REG_TESTR1:
case TAHVO_REG_TESTR2:
case TAHVO_REG_NOPR:
case TAHVO_REG_FRR:
return 0x0000;
default:
hw_error("%s: bad register %02x\n", __FUNCTION__, reg);
}
}
static inline void tahvo_write(CBusTahvo *s, int reg, uint16_t val)
{
#ifdef DEBUG
printf("TAHVO write of %04x at %02x\n", val, reg);
#endif
switch (reg) {
case TAHVO_REG_IDR:
s->irqst ^= val;
tahvo_interrupt_update(s);
break;
case TAHVO_REG_IMR:
s->irqen = val;
tahvo_interrupt_update(s);
break;
case TAHVO_REG_CHAPWMR:
s->charger = val;
break;
case TAHVO_REG_LEDPWMR:
if (s->backlight != (val & 0x7f)) {
s->backlight = val & 0x7f;
printf("%s: LCD backlight now at %i / 127\n",
__FUNCTION__, s->backlight);
}
break;
case TAHVO_REG_USBR:
s->usbr = val;
break;
case TAHVO_REG_RCR:
s->power = val;
break;
case TAHVO_REG_CCR1:
case TAHVO_REG_CCR2:
case TAHVO_REG_TESTR1:
case TAHVO_REG_TESTR2:
case TAHVO_REG_NOPR:
case TAHVO_REG_FRR:
break;
default:
hw_error("%s: bad register %02x\n", __FUNCTION__, reg);
}
}
static void tahvo_io(void *opaque, int rw, int reg, uint16_t *val)
{
CBusTahvo *s = (CBusTahvo *) opaque;
if (rw)
*val = tahvo_read(s, reg);
else
tahvo_write(s, reg, *val);
}
void *tahvo_init(qemu_irq irq, int betty)
{
CBusTahvo *s = (CBusTahvo *) g_malloc0(sizeof(*s));
s->irq = irq;
s->irqen = 0xffff;
s->irqst = 0x0000;
s->is_betty = !!betty;
s->cbus.opaque = s;
s->cbus.io = tahvo_io;
s->cbus.addr = 2;
return &s->cbus;
}