qemu-e2k/tcg/tcg-op-vec.c

390 lines
11 KiB
C
Raw Normal View History

/*
* Tiny Code Generator for QEMU
*
* Copyright (c) 2018 Linaro, Inc.
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, see <http://www.gnu.org/licenses/>.
*/
#include "qemu/osdep.h"
#include "qemu-common.h"
#include "cpu.h"
#include "exec/exec-all.h"
#include "tcg.h"
#include "tcg-op.h"
#include "tcg-mo.h"
/* Reduce the number of ifdefs below. This assumes that all uses of
TCGV_HIGH and TCGV_LOW are properly protected by a conditional that
the compiler can eliminate. */
#if TCG_TARGET_REG_BITS == 64
extern TCGv_i32 TCGV_LOW_link_error(TCGv_i64);
extern TCGv_i32 TCGV_HIGH_link_error(TCGv_i64);
#define TCGV_LOW TCGV_LOW_link_error
#define TCGV_HIGH TCGV_HIGH_link_error
#endif
void vec_gen_2(TCGOpcode opc, TCGType type, unsigned vece, TCGArg r, TCGArg a)
{
TCGOp *op = tcg_emit_op(opc);
TCGOP_VECL(op) = type - TCG_TYPE_V64;
TCGOP_VECE(op) = vece;
op->args[0] = r;
op->args[1] = a;
}
void vec_gen_3(TCGOpcode opc, TCGType type, unsigned vece,
TCGArg r, TCGArg a, TCGArg b)
{
TCGOp *op = tcg_emit_op(opc);
TCGOP_VECL(op) = type - TCG_TYPE_V64;
TCGOP_VECE(op) = vece;
op->args[0] = r;
op->args[1] = a;
op->args[2] = b;
}
void vec_gen_4(TCGOpcode opc, TCGType type, unsigned vece,
TCGArg r, TCGArg a, TCGArg b, TCGArg c)
{
TCGOp *op = tcg_emit_op(opc);
TCGOP_VECL(op) = type - TCG_TYPE_V64;
TCGOP_VECE(op) = vece;
op->args[0] = r;
op->args[1] = a;
op->args[2] = b;
op->args[3] = c;
}
static void vec_gen_op2(TCGOpcode opc, unsigned vece, TCGv_vec r, TCGv_vec a)
{
TCGTemp *rt = tcgv_vec_temp(r);
TCGTemp *at = tcgv_vec_temp(a);
TCGType type = rt->base_type;
/* Must enough inputs for the output. */
tcg_debug_assert(at->base_type >= type);
vec_gen_2(opc, type, vece, temp_arg(rt), temp_arg(at));
}
static void vec_gen_op3(TCGOpcode opc, unsigned vece,
TCGv_vec r, TCGv_vec a, TCGv_vec b)
{
TCGTemp *rt = tcgv_vec_temp(r);
TCGTemp *at = tcgv_vec_temp(a);
TCGTemp *bt = tcgv_vec_temp(b);
TCGType type = rt->base_type;
/* Must enough inputs for the output. */
tcg_debug_assert(at->base_type >= type);
tcg_debug_assert(bt->base_type >= type);
vec_gen_3(opc, type, vece, temp_arg(rt), temp_arg(at), temp_arg(bt));
}
void tcg_gen_mov_vec(TCGv_vec r, TCGv_vec a)
{
if (r != a) {
vec_gen_op2(INDEX_op_mov_vec, 0, r, a);
}
}
#define MO_REG (TCG_TARGET_REG_BITS == 64 ? MO_64 : MO_32)
static void do_dupi_vec(TCGv_vec r, unsigned vece, TCGArg a)
{
TCGTemp *rt = tcgv_vec_temp(r);
vec_gen_2(INDEX_op_dupi_vec, rt->base_type, vece, temp_arg(rt), a);
}
TCGv_vec tcg_const_zeros_vec(TCGType type)
{
TCGv_vec ret = tcg_temp_new_vec(type);
do_dupi_vec(ret, MO_REG, 0);
return ret;
}
TCGv_vec tcg_const_ones_vec(TCGType type)
{
TCGv_vec ret = tcg_temp_new_vec(type);
do_dupi_vec(ret, MO_REG, -1);
return ret;
}
TCGv_vec tcg_const_zeros_vec_matching(TCGv_vec m)
{
TCGTemp *t = tcgv_vec_temp(m);
return tcg_const_zeros_vec(t->base_type);
}
TCGv_vec tcg_const_ones_vec_matching(TCGv_vec m)
{
TCGTemp *t = tcgv_vec_temp(m);
return tcg_const_ones_vec(t->base_type);
}
void tcg_gen_dup64i_vec(TCGv_vec r, uint64_t a)
{
if (TCG_TARGET_REG_BITS == 32 && a == deposit64(a, 32, 32, a)) {
do_dupi_vec(r, MO_32, a);
} else if (TCG_TARGET_REG_BITS == 64 || a == (uint64_t)(int32_t)a) {
do_dupi_vec(r, MO_64, a);
} else {
TCGv_i64 c = tcg_const_i64(a);
tcg_gen_dup_i64_vec(MO_64, r, c);
tcg_temp_free_i64(c);
}
}
void tcg_gen_dup32i_vec(TCGv_vec r, uint32_t a)
{
do_dupi_vec(r, MO_REG, dup_const(MO_32, a));
}
void tcg_gen_dup16i_vec(TCGv_vec r, uint32_t a)
{
do_dupi_vec(r, MO_REG, dup_const(MO_16, a));
}
void tcg_gen_dup8i_vec(TCGv_vec r, uint32_t a)
{
do_dupi_vec(r, MO_REG, dup_const(MO_8, a));
}
void tcg_gen_dupi_vec(unsigned vece, TCGv_vec r, uint64_t a)
{
do_dupi_vec(r, MO_REG, dup_const(vece, a));
}
void tcg_gen_dup_i64_vec(unsigned vece, TCGv_vec r, TCGv_i64 a)
{
TCGArg ri = tcgv_vec_arg(r);
TCGTemp *rt = arg_temp(ri);
TCGType type = rt->base_type;
if (TCG_TARGET_REG_BITS == 64) {
TCGArg ai = tcgv_i64_arg(a);
vec_gen_2(INDEX_op_dup_vec, type, vece, ri, ai);
} else if (vece == MO_64) {
TCGArg al = tcgv_i32_arg(TCGV_LOW(a));
TCGArg ah = tcgv_i32_arg(TCGV_HIGH(a));
vec_gen_3(INDEX_op_dup2_vec, type, MO_64, ri, al, ah);
} else {
TCGArg ai = tcgv_i32_arg(TCGV_LOW(a));
vec_gen_2(INDEX_op_dup_vec, type, vece, ri, ai);
}
}
void tcg_gen_dup_i32_vec(unsigned vece, TCGv_vec r, TCGv_i32 a)
{
TCGArg ri = tcgv_vec_arg(r);
TCGArg ai = tcgv_i32_arg(a);
TCGTemp *rt = arg_temp(ri);
TCGType type = rt->base_type;
vec_gen_2(INDEX_op_dup_vec, type, vece, ri, ai);
}
static void vec_gen_ldst(TCGOpcode opc, TCGv_vec r, TCGv_ptr b, TCGArg o)
{
TCGArg ri = tcgv_vec_arg(r);
TCGArg bi = tcgv_ptr_arg(b);
TCGTemp *rt = arg_temp(ri);
TCGType type = rt->base_type;
vec_gen_3(opc, type, 0, ri, bi, o);
}
void tcg_gen_ld_vec(TCGv_vec r, TCGv_ptr b, TCGArg o)
{
vec_gen_ldst(INDEX_op_ld_vec, r, b, o);
}
void tcg_gen_st_vec(TCGv_vec r, TCGv_ptr b, TCGArg o)
{
vec_gen_ldst(INDEX_op_st_vec, r, b, o);
}
void tcg_gen_stl_vec(TCGv_vec r, TCGv_ptr b, TCGArg o, TCGType low_type)
{
TCGArg ri = tcgv_vec_arg(r);
TCGArg bi = tcgv_ptr_arg(b);
TCGTemp *rt = arg_temp(ri);
TCGType type = rt->base_type;
tcg_debug_assert(low_type >= TCG_TYPE_V64);
tcg_debug_assert(low_type <= type);
vec_gen_3(INDEX_op_st_vec, low_type, 0, ri, bi, o);
}
void tcg_gen_add_vec(unsigned vece, TCGv_vec r, TCGv_vec a, TCGv_vec b)
{
vec_gen_op3(INDEX_op_add_vec, vece, r, a, b);
}
void tcg_gen_sub_vec(unsigned vece, TCGv_vec r, TCGv_vec a, TCGv_vec b)
{
vec_gen_op3(INDEX_op_sub_vec, vece, r, a, b);
}
void tcg_gen_and_vec(unsigned vece, TCGv_vec r, TCGv_vec a, TCGv_vec b)
{
vec_gen_op3(INDEX_op_and_vec, 0, r, a, b);
}
void tcg_gen_or_vec(unsigned vece, TCGv_vec r, TCGv_vec a, TCGv_vec b)
{
vec_gen_op3(INDEX_op_or_vec, 0, r, a, b);
}
void tcg_gen_xor_vec(unsigned vece, TCGv_vec r, TCGv_vec a, TCGv_vec b)
{
vec_gen_op3(INDEX_op_xor_vec, 0, r, a, b);
}
void tcg_gen_andc_vec(unsigned vece, TCGv_vec r, TCGv_vec a, TCGv_vec b)
{
if (TCG_TARGET_HAS_andc_vec) {
vec_gen_op3(INDEX_op_andc_vec, 0, r, a, b);
} else {
TCGv_vec t = tcg_temp_new_vec_matching(r);
tcg_gen_not_vec(0, t, b);
tcg_gen_and_vec(0, r, a, t);
tcg_temp_free_vec(t);
}
}
void tcg_gen_orc_vec(unsigned vece, TCGv_vec r, TCGv_vec a, TCGv_vec b)
{
if (TCG_TARGET_HAS_orc_vec) {
vec_gen_op3(INDEX_op_orc_vec, 0, r, a, b);
} else {
TCGv_vec t = tcg_temp_new_vec_matching(r);
tcg_gen_not_vec(0, t, b);
tcg_gen_or_vec(0, r, a, t);
tcg_temp_free_vec(t);
}
}
void tcg_gen_not_vec(unsigned vece, TCGv_vec r, TCGv_vec a)
{
if (TCG_TARGET_HAS_not_vec) {
vec_gen_op2(INDEX_op_not_vec, 0, r, a);
} else {
TCGv_vec t = tcg_const_ones_vec_matching(r);
tcg_gen_xor_vec(0, r, a, t);
tcg_temp_free_vec(t);
}
}
void tcg_gen_neg_vec(unsigned vece, TCGv_vec r, TCGv_vec a)
{
if (TCG_TARGET_HAS_neg_vec) {
vec_gen_op2(INDEX_op_neg_vec, vece, r, a);
} else {
TCGv_vec t = tcg_const_zeros_vec_matching(r);
tcg_gen_sub_vec(vece, r, t, a);
tcg_temp_free_vec(t);
}
}
static void do_shifti(TCGOpcode opc, unsigned vece,
TCGv_vec r, TCGv_vec a, int64_t i)
{
TCGTemp *rt = tcgv_vec_temp(r);
TCGTemp *at = tcgv_vec_temp(a);
TCGArg ri = temp_arg(rt);
TCGArg ai = temp_arg(at);
TCGType type = rt->base_type;
int can;
tcg_debug_assert(at->base_type == type);
tcg_debug_assert(i >= 0 && i < (8 << vece));
if (i == 0) {
tcg_gen_mov_vec(r, a);
return;
}
can = tcg_can_emit_vec_op(opc, type, vece);
if (can > 0) {
vec_gen_3(opc, type, vece, ri, ai, i);
} else {
/* We leave the choice of expansion via scalar or vector shift
to the target. Often, but not always, dupi can feed a vector
shift easier than a scalar. */
tcg_debug_assert(can < 0);
tcg_expand_vec_op(opc, type, vece, ri, ai, i);
}
}
void tcg_gen_shli_vec(unsigned vece, TCGv_vec r, TCGv_vec a, int64_t i)
{
do_shifti(INDEX_op_shli_vec, vece, r, a, i);
}
void tcg_gen_shri_vec(unsigned vece, TCGv_vec r, TCGv_vec a, int64_t i)
{
do_shifti(INDEX_op_shri_vec, vece, r, a, i);
}
void tcg_gen_sari_vec(unsigned vece, TCGv_vec r, TCGv_vec a, int64_t i)
{
do_shifti(INDEX_op_sari_vec, vece, r, a, i);
}
void tcg_gen_cmp_vec(TCGCond cond, unsigned vece,
TCGv_vec r, TCGv_vec a, TCGv_vec b)
{
TCGTemp *rt = tcgv_vec_temp(r);
TCGTemp *at = tcgv_vec_temp(a);
TCGTemp *bt = tcgv_vec_temp(b);
TCGArg ri = temp_arg(rt);
TCGArg ai = temp_arg(at);
TCGArg bi = temp_arg(bt);
TCGType type = rt->base_type;
int can;
tcg_debug_assert(at->base_type == type);
tcg_debug_assert(bt->base_type == type);
can = tcg_can_emit_vec_op(INDEX_op_cmp_vec, type, vece);
if (can > 0) {
vec_gen_4(INDEX_op_cmp_vec, type, vece, ri, ai, bi, cond);
} else {
tcg_debug_assert(can < 0);
tcg_expand_vec_op(INDEX_op_cmp_vec, type, vece, ri, ai, bi, cond);
}
}
void tcg_gen_mul_vec(unsigned vece, TCGv_vec r, TCGv_vec a, TCGv_vec b)
{
TCGTemp *rt = tcgv_vec_temp(r);
TCGTemp *at = tcgv_vec_temp(a);
TCGTemp *bt = tcgv_vec_temp(b);
TCGArg ri = temp_arg(rt);
TCGArg ai = temp_arg(at);
TCGArg bi = temp_arg(bt);
TCGType type = rt->base_type;
int can;
tcg_debug_assert(at->base_type == type);
tcg_debug_assert(bt->base_type == type);
can = tcg_can_emit_vec_op(INDEX_op_mul_vec, type, vece);
if (can > 0) {
vec_gen_3(INDEX_op_mul_vec, type, vece, ri, ai, bi);
} else {
tcg_debug_assert(can < 0);
tcg_expand_vec_op(INDEX_op_mul_vec, type, vece, ri, ai, bi);
}
}