qemu-e2k/hw/m25p80.c

654 lines
19 KiB
C
Raw Normal View History

/*
* ST M25P80 emulator. Emulate all SPI flash devices based on the m25p80 command
* set. Known devices table current as of Jun/2012 and taken from linux.
* See drivers/mtd/devices/m25p80.c.
*
* Copyright (C) 2011 Edgar E. Iglesias <edgar.iglesias@gmail.com>
* Copyright (C) 2012 Peter A. G. Crosthwaite <peter.crosthwaite@petalogix.com>
* Copyright (C) 2012 PetaLogix
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License as
* published by the Free Software Foundation; either version 2 or
* (at your option) a later version of the License.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License along
* with this program; if not, see <http://www.gnu.org/licenses/>.
*/
#include "hw.h"
#include "sysemu/blockdev.h"
#include "ssi.h"
#include "devices.h"
#ifdef M25P80_ERR_DEBUG
#define DB_PRINT(...) do { \
fprintf(stderr, ": %s: ", __func__); \
fprintf(stderr, ## __VA_ARGS__); \
} while (0);
#else
#define DB_PRINT(...)
#endif
/* Fields for FlashPartInfo->flags */
/* erase capabilities */
#define ER_4K 1
#define ER_32K 2
/* set to allow the page program command to write 0s back to 1. Useful for
* modelling EEPROM with SPI flash command set
*/
#define WR_1 0x100
typedef struct FlashPartInfo {
const char *part_name;
/* jedec code. (jedec >> 16) & 0xff is the 1st byte, >> 8 the 2nd etc */
uint32_t jedec;
/* extended jedec code */
uint16_t ext_jedec;
/* there is confusion between manufacturers as to what a sector is. In this
* device model, a "sector" is the size that is erased by the ERASE_SECTOR
* command (opcode 0xd8).
*/
uint32_t sector_size;
uint32_t n_sectors;
uint32_t page_size;
uint8_t flags;
} FlashPartInfo;
/* adapted from linux */
#define INFO(_part_name, _jedec, _ext_jedec, _sector_size, _n_sectors, _flags)\
.part_name = (_part_name),\
.jedec = (_jedec),\
.ext_jedec = (_ext_jedec),\
.sector_size = (_sector_size),\
.n_sectors = (_n_sectors),\
.page_size = 256,\
.flags = (_flags),\
#define JEDEC_NUMONYX 0x20
#define JEDEC_WINBOND 0xEF
#define JEDEC_SPANSION 0x01
static const FlashPartInfo known_devices[] = {
/* Atmel -- some are (confusingly) marketed as "DataFlash" */
{ INFO("at25fs010", 0x1f6601, 0, 32 << 10, 4, ER_4K) },
{ INFO("at25fs040", 0x1f6604, 0, 64 << 10, 8, ER_4K) },
{ INFO("at25df041a", 0x1f4401, 0, 64 << 10, 8, ER_4K) },
{ INFO("at25df321a", 0x1f4701, 0, 64 << 10, 64, ER_4K) },
{ INFO("at25df641", 0x1f4800, 0, 64 << 10, 128, ER_4K) },
{ INFO("at26f004", 0x1f0400, 0, 64 << 10, 8, ER_4K) },
{ INFO("at26df081a", 0x1f4501, 0, 64 << 10, 16, ER_4K) },
{ INFO("at26df161a", 0x1f4601, 0, 64 << 10, 32, ER_4K) },
{ INFO("at26df321", 0x1f4700, 0, 64 << 10, 64, ER_4K) },
/* EON -- en25xxx */
{ INFO("en25f32", 0x1c3116, 0, 64 << 10, 64, ER_4K) },
{ INFO("en25p32", 0x1c2016, 0, 64 << 10, 64, 0) },
{ INFO("en25q32b", 0x1c3016, 0, 64 << 10, 64, 0) },
{ INFO("en25p64", 0x1c2017, 0, 64 << 10, 128, 0) },
/* Intel/Numonyx -- xxxs33b */
{ INFO("160s33b", 0x898911, 0, 64 << 10, 32, 0) },
{ INFO("320s33b", 0x898912, 0, 64 << 10, 64, 0) },
{ INFO("640s33b", 0x898913, 0, 64 << 10, 128, 0) },
/* Macronix */
{ INFO("mx25l4005a", 0xc22013, 0, 64 << 10, 8, ER_4K) },
{ INFO("mx25l8005", 0xc22014, 0, 64 << 10, 16, 0) },
{ INFO("mx25l1606e", 0xc22015, 0, 64 << 10, 32, ER_4K) },
{ INFO("mx25l3205d", 0xc22016, 0, 64 << 10, 64, 0) },
{ INFO("mx25l6405d", 0xc22017, 0, 64 << 10, 128, 0) },
{ INFO("mx25l12805d", 0xc22018, 0, 64 << 10, 256, 0) },
{ INFO("mx25l12855e", 0xc22618, 0, 64 << 10, 256, 0) },
{ INFO("mx25l25635e", 0xc22019, 0, 64 << 10, 512, 0) },
{ INFO("mx25l25655e", 0xc22619, 0, 64 << 10, 512, 0) },
/* Spansion -- single (large) sector size only, at least
* for the chips listed here (without boot sectors).
*/
{ INFO("s25sl004a", 0x010212, 0, 64 << 10, 8, 0) },
{ INFO("s25sl008a", 0x010213, 0, 64 << 10, 16, 0) },
{ INFO("s25sl016a", 0x010214, 0, 64 << 10, 32, 0) },
{ INFO("s25sl032a", 0x010215, 0, 64 << 10, 64, 0) },
{ INFO("s25sl032p", 0x010215, 0x4d00, 64 << 10, 64, ER_4K) },
{ INFO("s25sl064a", 0x010216, 0, 64 << 10, 128, 0) },
{ INFO("s25fl256s0", 0x010219, 0x4d00, 256 << 10, 128, 0) },
{ INFO("s25fl256s1", 0x010219, 0x4d01, 64 << 10, 512, 0) },
{ INFO("s25fl512s", 0x010220, 0x4d00, 256 << 10, 256, 0) },
{ INFO("s70fl01gs", 0x010221, 0x4d00, 256 << 10, 256, 0) },
{ INFO("s25sl12800", 0x012018, 0x0300, 256 << 10, 64, 0) },
{ INFO("s25sl12801", 0x012018, 0x0301, 64 << 10, 256, 0) },
{ INFO("s25fl129p0", 0x012018, 0x4d00, 256 << 10, 64, 0) },
{ INFO("s25fl129p1", 0x012018, 0x4d01, 64 << 10, 256, 0) },
{ INFO("s25fl016k", 0xef4015, 0, 64 << 10, 32, ER_4K | ER_32K) },
{ INFO("s25fl064k", 0xef4017, 0, 64 << 10, 128, ER_4K | ER_32K) },
/* SST -- large erase sizes are "overlays", "sectors" are 4<< 10 */
{ INFO("sst25vf040b", 0xbf258d, 0, 64 << 10, 8, ER_4K) },
{ INFO("sst25vf080b", 0xbf258e, 0, 64 << 10, 16, ER_4K) },
{ INFO("sst25vf016b", 0xbf2541, 0, 64 << 10, 32, ER_4K) },
{ INFO("sst25vf032b", 0xbf254a, 0, 64 << 10, 64, ER_4K) },
{ INFO("sst25wf512", 0xbf2501, 0, 64 << 10, 1, ER_4K) },
{ INFO("sst25wf010", 0xbf2502, 0, 64 << 10, 2, ER_4K) },
{ INFO("sst25wf020", 0xbf2503, 0, 64 << 10, 4, ER_4K) },
{ INFO("sst25wf040", 0xbf2504, 0, 64 << 10, 8, ER_4K) },
/* ST Microelectronics -- newer production may have feature updates */
{ INFO("m25p05", 0x202010, 0, 32 << 10, 2, 0) },
{ INFO("m25p10", 0x202011, 0, 32 << 10, 4, 0) },
{ INFO("m25p20", 0x202012, 0, 64 << 10, 4, 0) },
{ INFO("m25p40", 0x202013, 0, 64 << 10, 8, 0) },
{ INFO("m25p80", 0x202014, 0, 64 << 10, 16, 0) },
{ INFO("m25p16", 0x202015, 0, 64 << 10, 32, 0) },
{ INFO("m25p32", 0x202016, 0, 64 << 10, 64, 0) },
{ INFO("m25p64", 0x202017, 0, 64 << 10, 128, 0) },
{ INFO("m25p128", 0x202018, 0, 256 << 10, 64, 0) },
{ INFO("m45pe10", 0x204011, 0, 64 << 10, 2, 0) },
{ INFO("m45pe80", 0x204014, 0, 64 << 10, 16, 0) },
{ INFO("m45pe16", 0x204015, 0, 64 << 10, 32, 0) },
{ INFO("m25pe80", 0x208014, 0, 64 << 10, 16, 0) },
{ INFO("m25pe16", 0x208015, 0, 64 << 10, 32, ER_4K) },
{ INFO("m25px32", 0x207116, 0, 64 << 10, 64, ER_4K) },
{ INFO("m25px32-s0", 0x207316, 0, 64 << 10, 64, ER_4K) },
{ INFO("m25px32-s1", 0x206316, 0, 64 << 10, 64, ER_4K) },
{ INFO("m25px64", 0x207117, 0, 64 << 10, 128, 0) },
/* Winbond -- w25x "blocks" are 64k, "sectors" are 4KiB */
{ INFO("w25x10", 0xef3011, 0, 64 << 10, 2, ER_4K) },
{ INFO("w25x20", 0xef3012, 0, 64 << 10, 4, ER_4K) },
{ INFO("w25x40", 0xef3013, 0, 64 << 10, 8, ER_4K) },
{ INFO("w25x80", 0xef3014, 0, 64 << 10, 16, ER_4K) },
{ INFO("w25x16", 0xef3015, 0, 64 << 10, 32, ER_4K) },
{ INFO("w25x32", 0xef3016, 0, 64 << 10, 64, ER_4K) },
{ INFO("w25q32", 0xef4016, 0, 64 << 10, 64, ER_4K) },
{ INFO("w25x64", 0xef3017, 0, 64 << 10, 128, ER_4K) },
{ INFO("w25q64", 0xef4017, 0, 64 << 10, 128, ER_4K) },
/* Numonyx -- n25q128 */
{ INFO("n25q128", 0x20ba18, 0, 64 << 10, 256, 0) },
{ },
};
typedef enum {
NOP = 0,
WRDI = 0x4,
RDSR = 0x5,
WREN = 0x6,
JEDEC_READ = 0x9f,
BULK_ERASE = 0xc7,
READ = 0x3,
FAST_READ = 0xb,
DOR = 0x3b,
QOR = 0x6b,
DIOR = 0xbb,
QIOR = 0xeb,
PP = 0x2,
DPP = 0xa2,
QPP = 0x32,
ERASE_4K = 0x20,
ERASE_32K = 0x52,
ERASE_SECTOR = 0xd8,
} FlashCMD;
typedef enum {
STATE_IDLE,
STATE_PAGE_PROGRAM,
STATE_READ,
STATE_COLLECTING_DATA,
STATE_READING_DATA,
} CMDState;
typedef struct Flash {
SSISlave ssidev;
uint32_t r;
BlockDriverState *bdrv;
uint8_t *storage;
uint32_t size;
int page_size;
uint8_t state;
uint8_t data[16];
uint32_t len;
uint32_t pos;
uint8_t needed_bytes;
uint8_t cmd_in_progress;
uint64_t cur_addr;
bool write_enable;
int64_t dirty_page;
char *part_name;
const FlashPartInfo *pi;
} Flash;
static void bdrv_sync_complete(void *opaque, int ret)
{
/* do nothing. Masters do not directly interact with the backing store,
* only the working copy so no mutexing required.
*/
}
static void flash_sync_page(Flash *s, int page)
{
if (s->bdrv) {
int bdrv_sector, nb_sectors;
QEMUIOVector iov;
bdrv_sector = (page * s->pi->page_size) / BDRV_SECTOR_SIZE;
nb_sectors = DIV_ROUND_UP(s->pi->page_size, BDRV_SECTOR_SIZE);
qemu_iovec_init(&iov, 1);
qemu_iovec_add(&iov, s->storage + bdrv_sector * BDRV_SECTOR_SIZE,
nb_sectors * BDRV_SECTOR_SIZE);
bdrv_aio_writev(s->bdrv, bdrv_sector, &iov, nb_sectors,
bdrv_sync_complete, NULL);
}
}
static inline void flash_sync_area(Flash *s, int64_t off, int64_t len)
{
int64_t start, end, nb_sectors;
QEMUIOVector iov;
if (!s->bdrv) {
return;
}
assert(!(len % BDRV_SECTOR_SIZE));
start = off / BDRV_SECTOR_SIZE;
end = (off + len) / BDRV_SECTOR_SIZE;
nb_sectors = end - start;
qemu_iovec_init(&iov, 1);
qemu_iovec_add(&iov, s->storage + (start * BDRV_SECTOR_SIZE),
nb_sectors * BDRV_SECTOR_SIZE);
bdrv_aio_writev(s->bdrv, start, &iov, nb_sectors, bdrv_sync_complete, NULL);
}
static void flash_erase(Flash *s, int offset, FlashCMD cmd)
{
uint32_t len;
uint8_t capa_to_assert = 0;
switch (cmd) {
case ERASE_4K:
len = 4 << 10;
capa_to_assert = ER_4K;
break;
case ERASE_32K:
len = 32 << 10;
capa_to_assert = ER_32K;
break;
case ERASE_SECTOR:
len = s->pi->sector_size;
break;
case BULK_ERASE:
len = s->size;
break;
default:
abort();
}
DB_PRINT("offset = %#x, len = %d\n", offset, len);
if ((s->pi->flags & capa_to_assert) != capa_to_assert) {
hw_error("m25p80: %dk erase size not supported by device\n", len);
}
if (!s->write_enable) {
DB_PRINT("erase with write protect!\n");
return;
}
memset(s->storage + offset, 0xff, len);
flash_sync_area(s, offset, len);
}
static inline void flash_sync_dirty(Flash *s, int64_t newpage)
{
if (s->dirty_page >= 0 && s->dirty_page != newpage) {
flash_sync_page(s, s->dirty_page);
s->dirty_page = newpage;
}
}
static inline
void flash_write8(Flash *s, uint64_t addr, uint8_t data)
{
int64_t page = addr / s->pi->page_size;
uint8_t prev = s->storage[s->cur_addr];
if (!s->write_enable) {
DB_PRINT("write with write protect!\n");
}
if ((prev ^ data) & data) {
DB_PRINT("programming zero to one! addr=%lx %x -> %x\n",
addr, prev, data);
}
if (s->pi->flags & WR_1) {
s->storage[s->cur_addr] = data;
} else {
s->storage[s->cur_addr] &= data;
}
flash_sync_dirty(s, page);
s->dirty_page = page;
}
static void complete_collecting_data(Flash *s)
{
s->cur_addr = s->data[0] << 16;
s->cur_addr |= s->data[1] << 8;
s->cur_addr |= s->data[2];
s->state = STATE_IDLE;
switch (s->cmd_in_progress) {
case DPP:
case QPP:
case PP:
s->state = STATE_PAGE_PROGRAM;
break;
case READ:
case FAST_READ:
case DOR:
case QOR:
case DIOR:
case QIOR:
s->state = STATE_READ;
break;
case ERASE_4K:
case ERASE_32K:
case ERASE_SECTOR:
flash_erase(s, s->cur_addr, s->cmd_in_progress);
break;
default:
break;
}
}
static void decode_new_cmd(Flash *s, uint32_t value)
{
s->cmd_in_progress = value;
DB_PRINT("decoded new command:%x\n", value);
switch (value) {
case ERASE_4K:
case ERASE_32K:
case ERASE_SECTOR:
case READ:
case DPP:
case QPP:
case PP:
s->needed_bytes = 3;
s->pos = 0;
s->len = 0;
s->state = STATE_COLLECTING_DATA;
break;
case FAST_READ:
case DOR:
case QOR:
s->needed_bytes = 4;
s->pos = 0;
s->len = 0;
s->state = STATE_COLLECTING_DATA;
break;
case DIOR:
switch ((s->pi->jedec >> 16) & 0xFF) {
case JEDEC_WINBOND:
case JEDEC_SPANSION:
s->needed_bytes = 4;
break;
case JEDEC_NUMONYX:
default:
s->needed_bytes = 5;
}
s->pos = 0;
s->len = 0;
s->state = STATE_COLLECTING_DATA;
break;
case QIOR:
switch ((s->pi->jedec >> 16) & 0xFF) {
case JEDEC_WINBOND:
case JEDEC_SPANSION:
s->needed_bytes = 6;
break;
case JEDEC_NUMONYX:
default:
s->needed_bytes = 8;
}
s->pos = 0;
s->len = 0;
s->state = STATE_COLLECTING_DATA;
break;
case WRDI:
s->write_enable = false;
break;
case WREN:
s->write_enable = true;
break;
case RDSR:
s->data[0] = (!!s->write_enable) << 1;
s->pos = 0;
s->len = 1;
s->state = STATE_READING_DATA;
break;
case JEDEC_READ:
DB_PRINT("populated jedec code\n");
s->data[0] = (s->pi->jedec >> 16) & 0xff;
s->data[1] = (s->pi->jedec >> 8) & 0xff;
s->data[2] = s->pi->jedec & 0xff;
if (s->pi->ext_jedec) {
s->data[3] = (s->pi->ext_jedec >> 8) & 0xff;
s->data[4] = s->pi->ext_jedec & 0xff;
s->len = 5;
} else {
s->len = 3;
}
s->pos = 0;
s->state = STATE_READING_DATA;
break;
case BULK_ERASE:
if (s->write_enable) {
DB_PRINT("chip erase\n");
flash_erase(s, 0, BULK_ERASE);
} else {
DB_PRINT("chip erase with write protect!\n");
}
break;
case NOP:
break;
default:
DB_PRINT("Unknown cmd %x\n", value);
break;
}
}
static int m25p80_cs(SSISlave *ss, bool select)
{
Flash *s = FROM_SSI_SLAVE(Flash, ss);
if (select) {
s->len = 0;
s->pos = 0;
s->state = STATE_IDLE;
flash_sync_dirty(s, -1);
}
DB_PRINT("%sselect\n", select ? "de" : "");
return 0;
}
static uint32_t m25p80_transfer8(SSISlave *ss, uint32_t tx)
{
Flash *s = FROM_SSI_SLAVE(Flash, ss);
uint32_t r = 0;
switch (s->state) {
case STATE_PAGE_PROGRAM:
DB_PRINT("page program cur_addr=%lx data=%x\n", s->cur_addr,
(uint8_t)tx);
flash_write8(s, s->cur_addr, (uint8_t)tx);
s->cur_addr++;
break;
case STATE_READ:
r = s->storage[s->cur_addr];
DB_PRINT("READ 0x%lx=%x\n", s->cur_addr, r);
s->cur_addr = (s->cur_addr + 1) % s->size;
break;
case STATE_COLLECTING_DATA:
s->data[s->len] = (uint8_t)tx;
s->len++;
if (s->len == s->needed_bytes) {
complete_collecting_data(s);
}
break;
case STATE_READING_DATA:
r = s->data[s->pos];
s->pos++;
if (s->pos == s->len) {
s->pos = 0;
s->state = STATE_IDLE;
}
break;
default:
case STATE_IDLE:
decode_new_cmd(s, (uint8_t)tx);
break;
}
return r;
}
static int m25p80_init(SSISlave *ss)
{
DriveInfo *dinfo;
Flash *s = FROM_SSI_SLAVE(Flash, ss);
const FlashPartInfo *i;
if (!s->part_name) { /* default to actual m25p80 if no partname given */
s->part_name = (char *)"m25p80";
}
i = known_devices;
for (i = known_devices;; i++) {
assert(i);
if (!i->part_name) {
fprintf(stderr, "Unknown SPI flash part: \"%s\"\n", s->part_name);
return 1;
} else if (!strcmp(i->part_name, s->part_name)) {
s->pi = i;
break;
}
}
s->size = s->pi->sector_size * s->pi->n_sectors;
s->dirty_page = -1;
s->storage = qemu_blockalign(s->bdrv, s->size);
dinfo = drive_get_next(IF_MTD);
if (dinfo && dinfo->bdrv) {
DB_PRINT("Binding to IF_MTD drive\n");
s->bdrv = dinfo->bdrv;
/* FIXME: Move to late init */
if (bdrv_read(s->bdrv, 0, s->storage, DIV_ROUND_UP(s->size,
BDRV_SECTOR_SIZE))) {
fprintf(stderr, "Failed to initialize SPI flash!\n");
return 1;
}
} else {
memset(s->storage, 0xFF, s->size);
}
return 0;
}
static void m25p80_pre_save(void *opaque)
{
flash_sync_dirty((Flash *)opaque, -1);
}
static const VMStateDescription vmstate_m25p80 = {
.name = "xilinx_spi",
.version_id = 1,
.minimum_version_id = 1,
.minimum_version_id_old = 1,
.pre_save = m25p80_pre_save,
.fields = (VMStateField[]) {
VMSTATE_UINT8(state, Flash),
VMSTATE_UINT8_ARRAY(data, Flash, 16),
VMSTATE_UINT32(len, Flash),
VMSTATE_UINT32(pos, Flash),
VMSTATE_UINT8(needed_bytes, Flash),
VMSTATE_UINT8(cmd_in_progress, Flash),
VMSTATE_UINT64(cur_addr, Flash),
VMSTATE_BOOL(write_enable, Flash),
VMSTATE_END_OF_LIST()
}
};
static Property m25p80_properties[] = {
DEFINE_PROP_STRING("partname", Flash, part_name),
DEFINE_PROP_END_OF_LIST(),
};
static void m25p80_class_init(ObjectClass *klass, void *data)
{
DeviceClass *dc = DEVICE_CLASS(klass);
SSISlaveClass *k = SSI_SLAVE_CLASS(klass);
k->init = m25p80_init;
k->transfer = m25p80_transfer8;
k->set_cs = m25p80_cs;
k->cs_polarity = SSI_CS_LOW;
dc->props = m25p80_properties;
dc->vmsd = &vmstate_m25p80;
}
static const TypeInfo m25p80_info = {
.name = "m25p80",
.parent = TYPE_SSI_SLAVE,
.instance_size = sizeof(Flash),
.class_init = m25p80_class_init,
};
static void m25p80_register_types(void)
{
type_register_static(&m25p80_info);
}
type_init(m25p80_register_types)