qemu-e2k/hw/sparc64/sparc64.c

382 lines
11 KiB
C
Raw Normal View History

/*
* QEMU Sun4u/Sun4v System Emulator common routines
*
* Copyright (c) 2005 Fabrice Bellard
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include "qemu/osdep.h"
#include "cpu.h"
#include "hw/char/serial.h"
#include "hw/sparc/sparc64.h"
#include "qemu/timer.h"
//#define DEBUG_IRQ
//#define DEBUG_TIMER
#ifdef DEBUG_IRQ
#define CPUIRQ_DPRINTF(fmt, ...) \
do { printf("CPUIRQ: " fmt , ## __VA_ARGS__); } while (0)
#else
#define CPUIRQ_DPRINTF(fmt, ...)
#endif
#ifdef DEBUG_TIMER
#define TIMER_DPRINTF(fmt, ...) \
do { printf("TIMER: " fmt , ## __VA_ARGS__); } while (0)
#else
#define TIMER_DPRINTF(fmt, ...)
#endif
#define TICK_MAX 0x7fffffffffffffffULL
void cpu_check_irqs(CPUSPARCState *env)
{
CPUState *cs;
uint32_t pil = env->pil_in |
(env->softint & ~(SOFTINT_TIMER | SOFTINT_STIMER));
/* We should be holding the BQL before we mess with IRQs */
g_assert(qemu_mutex_iothread_locked());
/* TT_IVEC has a higher priority (16) than TT_EXTINT (31..17) */
if (env->ivec_status & 0x20) {
return;
}
cs = CPU(sparc_env_get_cpu(env));
/* check if TM or SM in SOFTINT are set
setting these also causes interrupt 14 */
if (env->softint & (SOFTINT_TIMER | SOFTINT_STIMER)) {
pil |= 1 << 14;
}
/* The bit corresponding to psrpil is (1<< psrpil), the next bit
is (2 << psrpil). */
if (pil < (2 << env->psrpil)) {
if (cs->interrupt_request & CPU_INTERRUPT_HARD) {
CPUIRQ_DPRINTF("Reset CPU IRQ (current interrupt %x)\n",
env->interrupt_index);
env->interrupt_index = 0;
cpu_reset_interrupt(cs, CPU_INTERRUPT_HARD);
}
return;
}
if (cpu_interrupts_enabled(env)) {
unsigned int i;
for (i = 15; i > env->psrpil; i--) {
if (pil & (1 << i)) {
int old_interrupt = env->interrupt_index;
int new_interrupt = TT_EXTINT | i;
if (unlikely(env->tl > 0 && cpu_tsptr(env)->tt > new_interrupt
&& ((cpu_tsptr(env)->tt & 0x1f0) == TT_EXTINT))) {
CPUIRQ_DPRINTF("Not setting CPU IRQ: TL=%d "
"current %x >= pending %x\n",
env->tl, cpu_tsptr(env)->tt, new_interrupt);
} else if (old_interrupt != new_interrupt) {
env->interrupt_index = new_interrupt;
CPUIRQ_DPRINTF("Set CPU IRQ %d old=%x new=%x\n", i,
old_interrupt, new_interrupt);
cpu_interrupt(cs, CPU_INTERRUPT_HARD);
}
break;
}
}
} else if (cs->interrupt_request & CPU_INTERRUPT_HARD) {
CPUIRQ_DPRINTF("Interrupts disabled, pil=%08x pil_in=%08x softint=%08x "
"current interrupt %x\n",
pil, env->pil_in, env->softint, env->interrupt_index);
env->interrupt_index = 0;
cpu_reset_interrupt(cs, CPU_INTERRUPT_HARD);
}
}
static void cpu_kick_irq(SPARCCPU *cpu)
{
CPUState *cs = CPU(cpu);
CPUSPARCState *env = &cpu->env;
cs->halted = 0;
cpu_check_irqs(env);
qemu_cpu_kick(cs);
}
void sparc64_cpu_set_ivec_irq(void *opaque, int irq, int level)
{
SPARCCPU *cpu = opaque;
CPUSPARCState *env = &cpu->env;
CPUState *cs;
if (level) {
if (!(env->ivec_status & 0x20)) {
CPUIRQ_DPRINTF("Raise IVEC IRQ %d\n", irq);
cs = CPU(cpu);
cs->halted = 0;
env->interrupt_index = TT_IVEC;
env->ivec_status |= 0x20;
env->ivec_data[0] = (0x1f << 6) | irq;
env->ivec_data[1] = 0;
env->ivec_data[2] = 0;
cpu_interrupt(cs, CPU_INTERRUPT_HARD);
}
} else {
if (env->ivec_status & 0x20) {
CPUIRQ_DPRINTF("Lower IVEC IRQ %d\n", irq);
cs = CPU(cpu);
env->ivec_status &= ~0x20;
cpu_reset_interrupt(cs, CPU_INTERRUPT_HARD);
}
}
}
typedef struct ResetData {
SPARCCPU *cpu;
uint64_t prom_addr;
} ResetData;
static CPUTimer *cpu_timer_create(const char *name, SPARCCPU *cpu,
QEMUBHFunc *cb, uint32_t frequency,
uint64_t disabled_mask, uint64_t npt_mask)
{
CPUTimer *timer = g_malloc0(sizeof(CPUTimer));
timer->name = name;
timer->frequency = frequency;
timer->disabled_mask = disabled_mask;
timer->npt_mask = npt_mask;
timer->disabled = 1;
timer->npt = 1;
timer->clock_offset = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
timer->qtimer = timer_new_ns(QEMU_CLOCK_VIRTUAL, cb, cpu);
return timer;
}
static void cpu_timer_reset(CPUTimer *timer)
{
timer->disabled = 1;
timer->clock_offset = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
timer_del(timer->qtimer);
}
static void main_cpu_reset(void *opaque)
{
ResetData *s = (ResetData *)opaque;
CPUSPARCState *env = &s->cpu->env;
static unsigned int nr_resets;
cpu_reset(CPU(s->cpu));
cpu_timer_reset(env->tick);
cpu_timer_reset(env->stick);
cpu_timer_reset(env->hstick);
env->gregs[1] = 0; /* Memory start */
env->gregs[2] = ram_size; /* Memory size */
env->gregs[3] = 0; /* Machine description XXX */
if (nr_resets++ == 0) {
/* Power on reset */
env->pc = s->prom_addr + 0x20ULL;
} else {
env->pc = s->prom_addr + 0x40ULL;
}
env->npc = env->pc + 4;
}
static void tick_irq(void *opaque)
{
SPARCCPU *cpu = opaque;
CPUSPARCState *env = &cpu->env;
CPUTimer *timer = env->tick;
if (timer->disabled) {
CPUIRQ_DPRINTF("tick_irq: softint disabled\n");
return;
} else {
CPUIRQ_DPRINTF("tick: fire\n");
}
env->softint |= SOFTINT_TIMER;
cpu_kick_irq(cpu);
}
static void stick_irq(void *opaque)
{
SPARCCPU *cpu = opaque;
CPUSPARCState *env = &cpu->env;
CPUTimer *timer = env->stick;
if (timer->disabled) {
CPUIRQ_DPRINTF("stick_irq: softint disabled\n");
return;
} else {
CPUIRQ_DPRINTF("stick: fire\n");
}
env->softint |= SOFTINT_STIMER;
cpu_kick_irq(cpu);
}
static void hstick_irq(void *opaque)
{
SPARCCPU *cpu = opaque;
CPUSPARCState *env = &cpu->env;
CPUTimer *timer = env->hstick;
if (timer->disabled) {
CPUIRQ_DPRINTF("hstick_irq: softint disabled\n");
return;
} else {
CPUIRQ_DPRINTF("hstick: fire\n");
}
env->softint |= SOFTINT_STIMER;
cpu_kick_irq(cpu);
}
static int64_t cpu_to_timer_ticks(int64_t cpu_ticks, uint32_t frequency)
{
return muldiv64(cpu_ticks, NANOSECONDS_PER_SECOND, frequency);
}
static uint64_t timer_to_cpu_ticks(int64_t timer_ticks, uint32_t frequency)
{
return muldiv64(timer_ticks, frequency, NANOSECONDS_PER_SECOND);
}
void cpu_tick_set_count(CPUTimer *timer, uint64_t count)
{
uint64_t real_count = count & ~timer->npt_mask;
uint64_t npt_bit = count & timer->npt_mask;
int64_t vm_clock_offset = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) -
cpu_to_timer_ticks(real_count, timer->frequency);
TIMER_DPRINTF("%s set_count count=0x%016lx (npt %s) p=%p\n",
timer->name, real_count,
timer->npt ? "disabled" : "enabled", timer);
timer->npt = npt_bit ? 1 : 0;
timer->clock_offset = vm_clock_offset;
}
uint64_t cpu_tick_get_count(CPUTimer *timer)
{
uint64_t real_count = timer_to_cpu_ticks(
qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) - timer->clock_offset,
timer->frequency);
TIMER_DPRINTF("%s get_count count=0x%016lx (npt %s) p=%p\n",
timer->name, real_count,
timer->npt ? "disabled" : "enabled", timer);
if (timer->npt) {
real_count |= timer->npt_mask;
}
return real_count;
}
void cpu_tick_set_limit(CPUTimer *timer, uint64_t limit)
{
int64_t now = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
uint64_t real_limit = limit & ~timer->disabled_mask;
timer->disabled = (limit & timer->disabled_mask) ? 1 : 0;
int64_t expires = cpu_to_timer_ticks(real_limit, timer->frequency) +
timer->clock_offset;
if (expires < now) {
expires = now + 1;
}
TIMER_DPRINTF("%s set_limit limit=0x%016lx (%s) p=%p "
"called with limit=0x%016lx at 0x%016lx (delta=0x%016lx)\n",
timer->name, real_limit,
timer->disabled ? "disabled" : "enabled",
timer, limit,
timer_to_cpu_ticks(now - timer->clock_offset,
timer->frequency),
timer_to_cpu_ticks(expires - now, timer->frequency));
if (!real_limit) {
TIMER_DPRINTF("%s set_limit limit=ZERO - not starting timer\n",
timer->name);
timer_del(timer->qtimer);
} else if (timer->disabled) {
timer_del(timer->qtimer);
} else {
timer_mod(timer->qtimer, expires);
}
}
SPARCCPU *sparc64_cpu_devinit(const char *cpu_model,
const char *default_cpu_model, uint64_t prom_addr)
{
SPARCCPU *cpu;
CPUSPARCState *env;
ResetData *reset_info;
uint32_t tick_frequency = 100 * 1000000;
uint32_t stick_frequency = 100 * 1000000;
uint32_t hstick_frequency = 100 * 1000000;
if (cpu_model == NULL) {
cpu_model = default_cpu_model;
}
cpu = SPARC_CPU(cpu_generic_init(TYPE_SPARC_CPU, cpu_model));
if (cpu == NULL) {
fprintf(stderr, "Unable to find Sparc CPU definition\n");
exit(1);
}
env = &cpu->env;
env->tick = cpu_timer_create("tick", cpu, tick_irq,
tick_frequency, TICK_INT_DIS,
TICK_NPT_MASK);
env->stick = cpu_timer_create("stick", cpu, stick_irq,
stick_frequency, TICK_INT_DIS,
TICK_NPT_MASK);
env->hstick = cpu_timer_create("hstick", cpu, hstick_irq,
hstick_frequency, TICK_INT_DIS,
TICK_NPT_MASK);
reset_info = g_malloc0(sizeof(ResetData));
reset_info->cpu = cpu;
reset_info->prom_addr = prom_addr;
qemu_register_reset(main_cpu_reset, reset_info);
return cpu;
}