qemu-e2k/target-alpha/helper.c

530 lines
14 KiB
C
Raw Normal View History

/*
* Alpha emulation cpu helpers for qemu.
*
* Copyright (c) 2007 Jocelyn Mayer
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, see <http://www.gnu.org/licenses/>.
*/
#include <stdint.h>
#include <stdlib.h>
#include <stdio.h>
#include "cpu.h"
#include "fpu/softfloat.h"
#include "helper.h"
uint64_t cpu_alpha_load_fpcr (CPUAlphaState *env)
{
uint64_t r = 0;
uint8_t t;
t = env->fpcr_exc_status;
if (t) {
r = FPCR_SUM;
if (t & float_flag_invalid) {
r |= FPCR_INV;
}
if (t & float_flag_divbyzero) {
r |= FPCR_DZE;
}
if (t & float_flag_overflow) {
r |= FPCR_OVF;
}
if (t & float_flag_underflow) {
r |= FPCR_UNF;
}
if (t & float_flag_inexact) {
r |= FPCR_INE;
}
}
t = env->fpcr_exc_mask;
if (t & float_flag_invalid) {
r |= FPCR_INVD;
}
if (t & float_flag_divbyzero) {
r |= FPCR_DZED;
}
if (t & float_flag_overflow) {
r |= FPCR_OVFD;
}
if (t & float_flag_underflow) {
r |= FPCR_UNFD;
}
if (t & float_flag_inexact) {
r |= FPCR_INED;
}
switch (env->fpcr_dyn_round) {
case float_round_nearest_even:
r |= FPCR_DYN_NORMAL;
break;
case float_round_down:
r |= FPCR_DYN_MINUS;
break;
case float_round_up:
r |= FPCR_DYN_PLUS;
break;
case float_round_to_zero:
r |= FPCR_DYN_CHOPPED;
break;
}
if (env->fp_status.flush_inputs_to_zero) {
r |= FPCR_DNZ;
}
if (env->fpcr_dnod) {
r |= FPCR_DNOD;
}
if (env->fpcr_undz) {
r |= FPCR_UNDZ;
}
return r;
}
void cpu_alpha_store_fpcr (CPUAlphaState *env, uint64_t val)
{
uint8_t t;
t = 0;
if (val & FPCR_INV) {
t |= float_flag_invalid;
}
if (val & FPCR_DZE) {
t |= float_flag_divbyzero;
}
if (val & FPCR_OVF) {
t |= float_flag_overflow;
}
if (val & FPCR_UNF) {
t |= float_flag_underflow;
}
if (val & FPCR_INE) {
t |= float_flag_inexact;
}
env->fpcr_exc_status = t;
t = 0;
if (val & FPCR_INVD) {
t |= float_flag_invalid;
}
if (val & FPCR_DZED) {
t |= float_flag_divbyzero;
}
if (val & FPCR_OVFD) {
t |= float_flag_overflow;
}
if (val & FPCR_UNFD) {
t |= float_flag_underflow;
}
if (val & FPCR_INED) {
t |= float_flag_inexact;
}
env->fpcr_exc_mask = t;
switch (val & FPCR_DYN_MASK) {
case FPCR_DYN_CHOPPED:
t = float_round_to_zero;
break;
case FPCR_DYN_MINUS:
t = float_round_down;
break;
case FPCR_DYN_NORMAL:
t = float_round_nearest_even;
break;
case FPCR_DYN_PLUS:
t = float_round_up;
break;
}
env->fpcr_dyn_round = t;
env->fpcr_dnod = (val & FPCR_DNOD) != 0;
env->fpcr_undz = (val & FPCR_UNDZ) != 0;
env->fpcr_flush_to_zero = env->fpcr_dnod & env->fpcr_undz;
env->fp_status.flush_inputs_to_zero = (val & FPCR_DNZ) != 0;
}
uint64_t helper_load_fpcr(CPUAlphaState *env)
{
return cpu_alpha_load_fpcr(env);
}
void helper_store_fpcr(CPUAlphaState *env, uint64_t val)
{
cpu_alpha_store_fpcr(env, val);
}
#if defined(CONFIG_USER_ONLY)
int cpu_alpha_handle_mmu_fault(CPUAlphaState *env, target_ulong address,
int rw, int mmu_idx)
{
env->exception_index = EXCP_MMFAULT;
env->trap_arg0 = address;
return 1;
}
#else
void swap_shadow_regs(CPUAlphaState *env)
{
uint64_t i0, i1, i2, i3, i4, i5, i6, i7;
i0 = env->ir[8];
i1 = env->ir[9];
i2 = env->ir[10];
i3 = env->ir[11];
i4 = env->ir[12];
i5 = env->ir[13];
i6 = env->ir[14];
i7 = env->ir[25];
env->ir[8] = env->shadow[0];
env->ir[9] = env->shadow[1];
env->ir[10] = env->shadow[2];
env->ir[11] = env->shadow[3];
env->ir[12] = env->shadow[4];
env->ir[13] = env->shadow[5];
env->ir[14] = env->shadow[6];
env->ir[25] = env->shadow[7];
env->shadow[0] = i0;
env->shadow[1] = i1;
env->shadow[2] = i2;
env->shadow[3] = i3;
env->shadow[4] = i4;
env->shadow[5] = i5;
env->shadow[6] = i6;
env->shadow[7] = i7;
}
/* Returns the OSF/1 entMM failure indication, or -1 on success. */
static int get_physical_address(CPUAlphaState *env, target_ulong addr,
int prot_need, int mmu_idx,
target_ulong *pphys, int *pprot)
{
target_long saddr = addr;
target_ulong phys = 0;
target_ulong L1pte, L2pte, L3pte;
target_ulong pt, index;
int prot = 0;
int ret = MM_K_ACV;
/* Ensure that the virtual address is properly sign-extended from
the last implemented virtual address bit. */
if (saddr >> TARGET_VIRT_ADDR_SPACE_BITS != saddr >> 63) {
goto exit;
}
/* Translate the superpage. */
/* ??? When we do more than emulate Unix PALcode, we'll need to
determine which KSEG is actually active. */
if (saddr < 0 && ((saddr >> 41) & 3) == 2) {
/* User-space cannot access KSEG addresses. */
if (mmu_idx != MMU_KERNEL_IDX) {
goto exit;
}
/* For the benefit of the Typhoon chipset, move bit 40 to bit 43.
We would not do this if the 48-bit KSEG is enabled. */
phys = saddr & ((1ull << 40) - 1);
phys |= (saddr & (1ull << 40)) << 3;
prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
ret = -1;
goto exit;
}
/* Interpret the page table exactly like PALcode does. */
pt = env->ptbr;
/* L1 page table read. */
index = (addr >> (TARGET_PAGE_BITS + 20)) & 0x3ff;
L1pte = ldq_phys(pt + index*8);
if (unlikely((L1pte & PTE_VALID) == 0)) {
ret = MM_K_TNV;
goto exit;
}
if (unlikely((L1pte & PTE_KRE) == 0)) {
goto exit;
}
pt = L1pte >> 32 << TARGET_PAGE_BITS;
/* L2 page table read. */
index = (addr >> (TARGET_PAGE_BITS + 10)) & 0x3ff;
L2pte = ldq_phys(pt + index*8);
if (unlikely((L2pte & PTE_VALID) == 0)) {
ret = MM_K_TNV;
goto exit;
}
if (unlikely((L2pte & PTE_KRE) == 0)) {
goto exit;
}
pt = L2pte >> 32 << TARGET_PAGE_BITS;
/* L3 page table read. */
index = (addr >> TARGET_PAGE_BITS) & 0x3ff;
L3pte = ldq_phys(pt + index*8);
phys = L3pte >> 32 << TARGET_PAGE_BITS;
if (unlikely((L3pte & PTE_VALID) == 0)) {
ret = MM_K_TNV;
goto exit;
}
#if PAGE_READ != 1 || PAGE_WRITE != 2 || PAGE_EXEC != 4
# error page bits out of date
#endif
/* Check access violations. */
if (L3pte & (PTE_KRE << mmu_idx)) {
prot |= PAGE_READ | PAGE_EXEC;
}
if (L3pte & (PTE_KWE << mmu_idx)) {
prot |= PAGE_WRITE;
}
if (unlikely((prot & prot_need) == 0 && prot_need)) {
goto exit;
}
/* Check fault-on-operation violations. */
prot &= ~(L3pte >> 1);
ret = -1;
if (unlikely((prot & prot_need) == 0)) {
ret = (prot_need & PAGE_EXEC ? MM_K_FOE :
prot_need & PAGE_WRITE ? MM_K_FOW :
prot_need & PAGE_READ ? MM_K_FOR : -1);
}
exit:
*pphys = phys;
*pprot = prot;
return ret;
}
hwaddr alpha_cpu_get_phys_page_debug(CPUState *cs, vaddr addr)
{
AlphaCPU *cpu = ALPHA_CPU(cs);
target_ulong phys;
int prot, fail;
fail = get_physical_address(&cpu->env, addr, 0, 0, &phys, &prot);
return (fail >= 0 ? -1 : phys);
}
int cpu_alpha_handle_mmu_fault(CPUAlphaState *env, target_ulong addr, int rw,
int mmu_idx)
{
target_ulong phys;
int prot, fail;
fail = get_physical_address(env, addr, 1 << rw, mmu_idx, &phys, &prot);
if (unlikely(fail >= 0)) {
env->exception_index = EXCP_MMFAULT;
env->trap_arg0 = addr;
env->trap_arg1 = fail;
env->trap_arg2 = (rw == 2 ? -1 : rw);
return 1;
}
tlb_set_page(env, addr & TARGET_PAGE_MASK, phys & TARGET_PAGE_MASK,
prot, mmu_idx, TARGET_PAGE_SIZE);
return 0;
}
#endif /* USER_ONLY */
void alpha_cpu_do_interrupt(CPUState *cs)
{
AlphaCPU *cpu = ALPHA_CPU(cs);
CPUAlphaState *env = &cpu->env;
int i = env->exception_index;
if (qemu_loglevel_mask(CPU_LOG_INT)) {
static int count;
const char *name = "<unknown>";
switch (i) {
case EXCP_RESET:
name = "reset";
break;
case EXCP_MCHK:
name = "mchk";
break;
case EXCP_SMP_INTERRUPT:
name = "smp_interrupt";
break;
case EXCP_CLK_INTERRUPT:
name = "clk_interrupt";
break;
case EXCP_DEV_INTERRUPT:
name = "dev_interrupt";
break;
case EXCP_MMFAULT:
name = "mmfault";
break;
case EXCP_UNALIGN:
name = "unalign";
break;
case EXCP_OPCDEC:
name = "opcdec";
break;
case EXCP_ARITH:
name = "arith";
break;
case EXCP_FEN:
name = "fen";
break;
case EXCP_CALL_PAL:
name = "call_pal";
break;
case EXCP_STL_C:
name = "stl_c";
break;
case EXCP_STQ_C:
name = "stq_c";
break;
}
qemu_log("INT %6d: %s(%#x) pc=%016" PRIx64 " sp=%016" PRIx64 "\n",
++count, name, env->error_code, env->pc, env->ir[IR_SP]);
}
env->exception_index = -1;
#if !defined(CONFIG_USER_ONLY)
switch (i) {
case EXCP_RESET:
i = 0x0000;
break;
case EXCP_MCHK:
i = 0x0080;
break;
case EXCP_SMP_INTERRUPT:
i = 0x0100;
break;
case EXCP_CLK_INTERRUPT:
i = 0x0180;
break;
case EXCP_DEV_INTERRUPT:
i = 0x0200;
break;
case EXCP_MMFAULT:
i = 0x0280;
break;
case EXCP_UNALIGN:
i = 0x0300;
break;
case EXCP_OPCDEC:
i = 0x0380;
break;
case EXCP_ARITH:
i = 0x0400;
break;
case EXCP_FEN:
i = 0x0480;
break;
case EXCP_CALL_PAL:
i = env->error_code;
/* There are 64 entry points for both privileged and unprivileged,
with bit 0x80 indicating unprivileged. Each entry point gets
64 bytes to do its job. */
if (i & 0x80) {
i = 0x2000 + (i - 0x80) * 64;
} else {
i = 0x1000 + i * 64;
}
break;
default:
cpu_abort(env, "Unhandled CPU exception");
}
/* Remember where the exception happened. Emulate real hardware in
that the low bit of the PC indicates PALmode. */
env->exc_addr = env->pc | env->pal_mode;
/* Continue execution at the PALcode entry point. */
env->pc = env->palbr + i;
/* Switch to PALmode. */
if (!env->pal_mode) {
env->pal_mode = 1;
swap_shadow_regs(env);
}
#endif /* !USER_ONLY */
}
void alpha_cpu_dump_state(CPUState *cs, FILE *f, fprintf_function cpu_fprintf,
int flags)
{
static const char *linux_reg_names[] = {
"v0 ", "t0 ", "t1 ", "t2 ", "t3 ", "t4 ", "t5 ", "t6 ",
"t7 ", "s0 ", "s1 ", "s2 ", "s3 ", "s4 ", "s5 ", "fp ",
"a0 ", "a1 ", "a2 ", "a3 ", "a4 ", "a5 ", "t8 ", "t9 ",
"t10", "t11", "ra ", "t12", "at ", "gp ", "sp ", "zero",
};
AlphaCPU *cpu = ALPHA_CPU(cs);
CPUAlphaState *env = &cpu->env;
int i;
cpu_fprintf(f, " PC " TARGET_FMT_lx " PS %02x\n",
env->pc, env->ps);
for (i = 0; i < 31; i++) {
cpu_fprintf(f, "IR%02d %s " TARGET_FMT_lx " ", i,
linux_reg_names[i], env->ir[i]);
if ((i % 3) == 2)
cpu_fprintf(f, "\n");
}
cpu_fprintf(f, "lock_a " TARGET_FMT_lx " lock_v " TARGET_FMT_lx "\n",
env->lock_addr, env->lock_value);
for (i = 0; i < 31; i++) {
cpu_fprintf(f, "FIR%02d " TARGET_FMT_lx " ", i,
*((uint64_t *)(&env->fir[i])));
if ((i % 3) == 2)
cpu_fprintf(f, "\n");
}
cpu_fprintf(f, "\n");
}
/* This should only be called from translate, via gen_excp.
We expect that ENV->PC has already been updated. */
void QEMU_NORETURN helper_excp(CPUAlphaState *env, int excp, int error)
{
env->exception_index = excp;
env->error_code = error;
cpu_loop_exit(env);
}
/* This may be called from any of the helpers to set up EXCEPTION_INDEX. */
void QEMU_NORETURN dynamic_excp(CPUAlphaState *env, uintptr_t retaddr,
int excp, int error)
{
env->exception_index = excp;
env->error_code = error;
if (retaddr) {
cpu_restore_state(env, retaddr);
}
cpu_loop_exit(env);
}
void QEMU_NORETURN arith_excp(CPUAlphaState *env, uintptr_t retaddr,
int exc, uint64_t mask)
{
env->trap_arg0 = exc;
env->trap_arg1 = mask;
dynamic_excp(env, retaddr, EXCP_ARITH, 0);
}