qemu-e2k/hw/slavio_intctl.c

413 lines
12 KiB
C
Raw Normal View History

/*
* QEMU Sparc SLAVIO interrupt controller emulation
*
* Copyright (c) 2003-2005 Fabrice Bellard
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include "hw.h"
#include "sun4m.h"
#include "console.h"
//#define DEBUG_IRQ_COUNT
//#define DEBUG_IRQ
#ifdef DEBUG_IRQ
#define DPRINTF(fmt, args...) \
do { printf("IRQ: " fmt , ##args); } while (0)
#else
#define DPRINTF(fmt, args...)
#endif
/*
* Registers of interrupt controller in sun4m.
*
* This is the interrupt controller part of chip STP2001 (Slave I/O), also
* produced as NCR89C105. See
* http://www.ibiblio.org/pub/historic-linux/early-ports/Sparc/NCR/NCR89C105.txt
*
* There is a system master controller and one for each cpu.
*
*/
#define MAX_CPUS 16
#define MAX_PILS 16
typedef struct SLAVIO_INTCTLState {
uint32_t intreg_pending[MAX_CPUS];
uint32_t intregm_pending;
uint32_t intregm_disabled;
uint32_t target_cpu;
#ifdef DEBUG_IRQ_COUNT
uint64_t irq_count[32];
#endif
qemu_irq *cpu_irqs[MAX_CPUS];
const uint32_t *intbit_to_level;
uint32_t cputimer_lbit, cputimer_mbit;
uint32_t pil_out[MAX_CPUS];
} SLAVIO_INTCTLState;
#define INTCTL_MAXADDR 0xf
#define INTCTL_SIZE (INTCTL_MAXADDR + 1)
#define INTCTLM_MAXADDR 0x13
#define INTCTLM_SIZE (INTCTLM_MAXADDR + 1)
#define INTCTLM_MASK 0x1f
#define MASTER_IRQ_MASK ~0x0fa2007f
#define MASTER_DISABLE 0x80000000
#define CPU_SOFTIRQ_MASK 0xfffe0000
#define CPU_HARDIRQ_MASK 0x0000fffe
#define CPU_IRQ_INT15_IN 0x0004000
#define CPU_IRQ_INT15_MASK 0x80000000
static void slavio_check_interrupts(void *opaque);
// per-cpu interrupt controller
static uint32_t slavio_intctl_mem_readl(void *opaque, target_phys_addr_t addr)
{
SLAVIO_INTCTLState *s = opaque;
uint32_t saddr, ret;
int cpu;
cpu = (addr & (MAX_CPUS - 1) * TARGET_PAGE_SIZE) >> 12;
saddr = (addr & INTCTL_MAXADDR) >> 2;
switch (saddr) {
case 0:
ret = s->intreg_pending[cpu];
break;
default:
ret = 0;
break;
}
DPRINTF("read cpu %d reg 0x" TARGET_FMT_plx " = %x\n", cpu, addr, ret);
return ret;
}
static void slavio_intctl_mem_writel(void *opaque, target_phys_addr_t addr,
uint32_t val)
{
SLAVIO_INTCTLState *s = opaque;
uint32_t saddr;
int cpu;
cpu = (addr & (MAX_CPUS - 1) * TARGET_PAGE_SIZE) >> 12;
saddr = (addr & INTCTL_MAXADDR) >> 2;
DPRINTF("write cpu %d reg 0x" TARGET_FMT_plx " = %x\n", cpu, addr, val);
switch (saddr) {
case 1: // clear pending softints
if (val & CPU_IRQ_INT15_IN)
val |= CPU_IRQ_INT15_MASK;
val &= CPU_SOFTIRQ_MASK;
s->intreg_pending[cpu] &= ~val;
slavio_check_interrupts(s);
DPRINTF("Cleared cpu %d irq mask %x, curmask %x\n", cpu, val,
s->intreg_pending[cpu]);
break;
case 2: // set softint
val &= CPU_SOFTIRQ_MASK;
s->intreg_pending[cpu] |= val;
slavio_check_interrupts(s);
DPRINTF("Set cpu %d irq mask %x, curmask %x\n", cpu, val,
s->intreg_pending[cpu]);
break;
default:
break;
}
}
static CPUReadMemoryFunc *slavio_intctl_mem_read[3] = {
NULL,
NULL,
slavio_intctl_mem_readl,
};
static CPUWriteMemoryFunc *slavio_intctl_mem_write[3] = {
NULL,
NULL,
slavio_intctl_mem_writel,
};
// master system interrupt controller
static uint32_t slavio_intctlm_mem_readl(void *opaque, target_phys_addr_t addr)
{
SLAVIO_INTCTLState *s = opaque;
uint32_t saddr, ret;
saddr = (addr & INTCTLM_MASK) >> 2;
switch (saddr) {
case 0:
ret = s->intregm_pending & ~MASTER_DISABLE;
break;
case 1:
ret = s->intregm_disabled & MASTER_IRQ_MASK;
break;
case 4:
ret = s->target_cpu;
break;
default:
ret = 0;
break;
}
DPRINTF("read system reg 0x" TARGET_FMT_plx " = %x\n", addr, ret);
return ret;
}
static void slavio_intctlm_mem_writel(void *opaque, target_phys_addr_t addr,
uint32_t val)
{
SLAVIO_INTCTLState *s = opaque;
uint32_t saddr;
saddr = (addr & INTCTLM_MASK) >> 2;
DPRINTF("write system reg 0x" TARGET_FMT_plx " = %x\n", addr, val);
switch (saddr) {
case 2: // clear (enable)
// Force clear unused bits
val &= MASTER_IRQ_MASK;
s->intregm_disabled &= ~val;
DPRINTF("Enabled master irq mask %x, curmask %x\n", val,
s->intregm_disabled);
slavio_check_interrupts(s);
break;
case 3: // set (disable, clear pending)
// Force clear unused bits
val &= MASTER_IRQ_MASK;
s->intregm_disabled |= val;
s->intregm_pending &= ~val;
slavio_check_interrupts(s);
DPRINTF("Disabled master irq mask %x, curmask %x\n", val,
s->intregm_disabled);
break;
case 4:
s->target_cpu = val & (MAX_CPUS - 1);
slavio_check_interrupts(s);
DPRINTF("Set master irq cpu %d\n", s->target_cpu);
break;
default:
break;
}
}
static CPUReadMemoryFunc *slavio_intctlm_mem_read[3] = {
NULL,
NULL,
slavio_intctlm_mem_readl,
};
static CPUWriteMemoryFunc *slavio_intctlm_mem_write[3] = {
NULL,
NULL,
slavio_intctlm_mem_writel,
};
void slavio_pic_info(void *opaque)
{
SLAVIO_INTCTLState *s = opaque;
int i;
for (i = 0; i < MAX_CPUS; i++) {
term_printf("per-cpu %d: pending 0x%08x\n", i, s->intreg_pending[i]);
}
term_printf("master: pending 0x%08x, disabled 0x%08x\n",
s->intregm_pending, s->intregm_disabled);
}
void slavio_irq_info(void *opaque)
{
#ifndef DEBUG_IRQ_COUNT
term_printf("irq statistic code not compiled.\n");
#else
SLAVIO_INTCTLState *s = opaque;
int i;
int64_t count;
term_printf("IRQ statistics:\n");
for (i = 0; i < 32; i++) {
count = s->irq_count[i];
if (count > 0)
term_printf("%2d: %" PRId64 "\n", i, count);
}
#endif
}
static void slavio_check_interrupts(void *opaque)
{
SLAVIO_INTCTLState *s = opaque;
uint32_t pending = s->intregm_pending, pil_pending;
unsigned int i, j;
pending &= ~s->intregm_disabled;
DPRINTF("pending %x disabled %x\n", pending, s->intregm_disabled);
for (i = 0; i < MAX_CPUS; i++) {
pil_pending = 0;
if (pending && !(s->intregm_disabled & MASTER_DISABLE) &&
(i == s->target_cpu)) {
for (j = 0; j < 32; j++) {
if (pending & (1 << j))
pil_pending |= 1 << s->intbit_to_level[j];
}
}
pil_pending |= (s->intreg_pending[i] & CPU_SOFTIRQ_MASK) >> 16;
for (j = 0; j < MAX_PILS; j++) {
if (pil_pending & (1 << j)) {
if (!(s->pil_out[i] & (1 << j)))
qemu_irq_raise(s->cpu_irqs[i][j]);
} else {
if (s->pil_out[i] & (1 << j))
qemu_irq_lower(s->cpu_irqs[i][j]);
}
}
s->pil_out[i] = pil_pending;
}
}
/*
* "irq" here is the bit number in the system interrupt register to
* separate serial and keyboard interrupts sharing a level.
*/
static void slavio_set_irq(void *opaque, int irq, int level)
{
SLAVIO_INTCTLState *s = opaque;
uint32_t mask = 1 << irq;
uint32_t pil = s->intbit_to_level[irq];
DPRINTF("Set cpu %d irq %d -> pil %d level %d\n", s->target_cpu, irq, pil,
level);
if (pil > 0) {
if (level) {
#ifdef DEBUG_IRQ_COUNT
s->irq_count[pil]++;
#endif
s->intregm_pending |= mask;
s->intreg_pending[s->target_cpu] |= 1 << pil;
} else {
s->intregm_pending &= ~mask;
s->intreg_pending[s->target_cpu] &= ~(1 << pil);
}
slavio_check_interrupts(s);
}
}
static void slavio_set_timer_irq_cpu(void *opaque, int cpu, int level)
{
SLAVIO_INTCTLState *s = opaque;
DPRINTF("Set cpu %d local timer level %d\n", cpu, level);
if (level) {
s->intregm_pending |= s->cputimer_mbit;
s->intreg_pending[cpu] |= s->cputimer_lbit;
} else {
s->intregm_pending &= ~s->cputimer_mbit;
s->intreg_pending[cpu] &= ~s->cputimer_lbit;
}
slavio_check_interrupts(s);
}
static void slavio_intctl_save(QEMUFile *f, void *opaque)
{
SLAVIO_INTCTLState *s = opaque;
int i;
for (i = 0; i < MAX_CPUS; i++) {
qemu_put_be32s(f, &s->intreg_pending[i]);
}
qemu_put_be32s(f, &s->intregm_pending);
qemu_put_be32s(f, &s->intregm_disabled);
qemu_put_be32s(f, &s->target_cpu);
}
static int slavio_intctl_load(QEMUFile *f, void *opaque, int version_id)
{
SLAVIO_INTCTLState *s = opaque;
int i;
if (version_id != 1)
return -EINVAL;
for (i = 0; i < MAX_CPUS; i++) {
qemu_get_be32s(f, &s->intreg_pending[i]);
}
qemu_get_be32s(f, &s->intregm_pending);
qemu_get_be32s(f, &s->intregm_disabled);
qemu_get_be32s(f, &s->target_cpu);
slavio_check_interrupts(s);
return 0;
}
static void slavio_intctl_reset(void *opaque)
{
SLAVIO_INTCTLState *s = opaque;
int i;
for (i = 0; i < MAX_CPUS; i++) {
s->intreg_pending[i] = 0;
}
s->intregm_disabled = ~MASTER_IRQ_MASK;
s->intregm_pending = 0;
s->target_cpu = 0;
slavio_check_interrupts(s);
}
void *slavio_intctl_init(target_phys_addr_t addr, target_phys_addr_t addrg,
const uint32_t *intbit_to_level,
qemu_irq **irq, qemu_irq **cpu_irq,
qemu_irq **parent_irq, unsigned int cputimer)
{
int slavio_intctl_io_memory, slavio_intctlm_io_memory, i;
SLAVIO_INTCTLState *s;
s = qemu_mallocz(sizeof(SLAVIO_INTCTLState));
if (!s)
return NULL;
s->intbit_to_level = intbit_to_level;
for (i = 0; i < MAX_CPUS; i++) {
slavio_intctl_io_memory = cpu_register_io_memory(0,
slavio_intctl_mem_read,
slavio_intctl_mem_write,
s);
cpu_register_physical_memory(addr + i * TARGET_PAGE_SIZE, INTCTL_SIZE,
slavio_intctl_io_memory);
s->cpu_irqs[i] = parent_irq[i];
}
slavio_intctlm_io_memory = cpu_register_io_memory(0,
slavio_intctlm_mem_read,
slavio_intctlm_mem_write,
s);
cpu_register_physical_memory(addrg, INTCTLM_SIZE, slavio_intctlm_io_memory);
register_savevm("slavio_intctl", addr, 1, slavio_intctl_save,
slavio_intctl_load, s);
qemu_register_reset(slavio_intctl_reset, s);
*irq = qemu_allocate_irqs(slavio_set_irq, s, 32);
*cpu_irq = qemu_allocate_irqs(slavio_set_timer_irq_cpu, s, MAX_CPUS);
s->cputimer_mbit = 1 << cputimer;
s->cputimer_lbit = 1 << intbit_to_level[cputimer];
slavio_intctl_reset(s);
return s;
}