qemu-e2k/accel/tcg/tb-maint.c

Ignoring revisions in .git-blame-ignore-revs. Click here to bypass and see the normal blame view.

1233 lines
34 KiB
C
Raw Normal View History

/*
* Translation Block Maintaince
*
* Copyright (c) 2003 Fabrice Bellard
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, see <http://www.gnu.org/licenses/>.
*/
#include "qemu/osdep.h"
#include "qemu/interval-tree.h"
#include "qemu/qtree.h"
#include "exec/cputlb.h"
#include "exec/log.h"
#include "exec/exec-all.h"
#include "exec/tb-flush.h"
#include "exec/translate-all.h"
#include "sysemu/tcg.h"
#include "tcg/tcg.h"
#include "tb-hash.h"
#include "tb-context.h"
#include "internal.h"
/* List iterators for lists of tagged pointers in TranslationBlock. */
#define TB_FOR_EACH_TAGGED(head, tb, n, field) \
for (n = (head) & 1, tb = (TranslationBlock *)((head) & ~1); \
tb; tb = (TranslationBlock *)tb->field[n], n = (uintptr_t)tb & 1, \
tb = (TranslationBlock *)((uintptr_t)tb & ~1))
#define TB_FOR_EACH_JMP(head_tb, tb, n) \
TB_FOR_EACH_TAGGED((head_tb)->jmp_list_head, tb, n, jmp_list_next)
static bool tb_cmp(const void *ap, const void *bp)
{
const TranslationBlock *a = ap;
const TranslationBlock *b = bp;
return ((tb_cflags(a) & CF_PCREL || a->pc == b->pc) &&
a->cs_base == b->cs_base &&
a->flags == b->flags &&
(tb_cflags(a) & ~CF_INVALID) == (tb_cflags(b) & ~CF_INVALID) &&
tb_page_addr0(a) == tb_page_addr0(b) &&
tb_page_addr1(a) == tb_page_addr1(b));
}
void tb_htable_init(void)
{
unsigned int mode = QHT_MODE_AUTO_RESIZE;
qht_init(&tb_ctx.htable, tb_cmp, CODE_GEN_HTABLE_SIZE, mode);
}
typedef struct PageDesc PageDesc;
#ifdef CONFIG_USER_ONLY
/*
* In user-mode page locks aren't used; mmap_lock is enough.
*/
#define assert_page_locked(pd) tcg_debug_assert(have_mmap_lock())
static inline void page_lock_pair(PageDesc **ret_p1, tb_page_addr_t phys1,
PageDesc **ret_p2, tb_page_addr_t phys2,
bool alloc)
{
*ret_p1 = NULL;
*ret_p2 = NULL;
}
static inline void page_unlock(PageDesc *pd) { }
static inline void page_lock_tb(const TranslationBlock *tb) { }
static inline void page_unlock_tb(const TranslationBlock *tb) { }
/*
* For user-only, since we are protecting all of memory with a single lock,
* and because the two pages of a TranslationBlock are always contiguous,
* use a single data structure to record all TranslationBlocks.
*/
static IntervalTreeRoot tb_root;
static void tb_remove_all(void)
{
assert_memory_lock();
memset(&tb_root, 0, sizeof(tb_root));
}
/* Call with mmap_lock held. */
static void tb_record(TranslationBlock *tb, PageDesc *p1, PageDesc *p2)
{
target_ulong addr;
int flags;
assert_memory_lock();
tb->itree.last = tb->itree.start + tb->size - 1;
/* translator_loop() must have made all TB pages non-writable */
addr = tb_page_addr0(tb);
flags = page_get_flags(addr);
assert(!(flags & PAGE_WRITE));
addr = tb_page_addr1(tb);
if (addr != -1) {
flags = page_get_flags(addr);
assert(!(flags & PAGE_WRITE));
}
interval_tree_insert(&tb->itree, &tb_root);
}
/* Call with mmap_lock held. */
static void tb_remove(TranslationBlock *tb)
{
assert_memory_lock();
interval_tree_remove(&tb->itree, &tb_root);
}
/* TODO: For now, still shared with translate-all.c for system mode. */
#define PAGE_FOR_EACH_TB(start, last, pagedesc, T, N) \
for (T = foreach_tb_first(start, last), \
N = foreach_tb_next(T, start, last); \
T != NULL; \
T = N, N = foreach_tb_next(N, start, last))
typedef TranslationBlock *PageForEachNext;
static PageForEachNext foreach_tb_first(tb_page_addr_t start,
tb_page_addr_t last)
{
IntervalTreeNode *n = interval_tree_iter_first(&tb_root, start, last);
return n ? container_of(n, TranslationBlock, itree) : NULL;
}
static PageForEachNext foreach_tb_next(PageForEachNext tb,
tb_page_addr_t start,
tb_page_addr_t last)
{
IntervalTreeNode *n;
if (tb) {
n = interval_tree_iter_next(&tb->itree, start, last);
if (n) {
return container_of(n, TranslationBlock, itree);
}
}
return NULL;
}
#else
/*
* In system mode we want L1_MAP to be based on ram offsets.
*/
#if HOST_LONG_BITS < TARGET_PHYS_ADDR_SPACE_BITS
# define L1_MAP_ADDR_SPACE_BITS HOST_LONG_BITS
#else
# define L1_MAP_ADDR_SPACE_BITS TARGET_PHYS_ADDR_SPACE_BITS
#endif
/* Size of the L2 (and L3, etc) page tables. */
#define V_L2_BITS 10
#define V_L2_SIZE (1 << V_L2_BITS)
/*
* L1 Mapping properties
*/
static int v_l1_size;
static int v_l1_shift;
static int v_l2_levels;
/*
* The bottom level has pointers to PageDesc, and is indexed by
* anything from 4 to (V_L2_BITS + 3) bits, depending on target page size.
*/
#define V_L1_MIN_BITS 4
#define V_L1_MAX_BITS (V_L2_BITS + 3)
#define V_L1_MAX_SIZE (1 << V_L1_MAX_BITS)
static void *l1_map[V_L1_MAX_SIZE];
struct PageDesc {
QemuSpin lock;
/* list of TBs intersecting this ram page */
uintptr_t first_tb;
};
void page_table_config_init(void)
{
uint32_t v_l1_bits;
assert(TARGET_PAGE_BITS);
/* The bits remaining after N lower levels of page tables. */
v_l1_bits = (L1_MAP_ADDR_SPACE_BITS - TARGET_PAGE_BITS) % V_L2_BITS;
if (v_l1_bits < V_L1_MIN_BITS) {
v_l1_bits += V_L2_BITS;
}
v_l1_size = 1 << v_l1_bits;
v_l1_shift = L1_MAP_ADDR_SPACE_BITS - TARGET_PAGE_BITS - v_l1_bits;
v_l2_levels = v_l1_shift / V_L2_BITS - 1;
assert(v_l1_bits <= V_L1_MAX_BITS);
assert(v_l1_shift % V_L2_BITS == 0);
assert(v_l2_levels >= 0);
}
static PageDesc *page_find_alloc(tb_page_addr_t index, bool alloc)
{
PageDesc *pd;
void **lp;
int i;
/* Level 1. Always allocated. */
lp = l1_map + ((index >> v_l1_shift) & (v_l1_size - 1));
/* Level 2..N-1. */
for (i = v_l2_levels; i > 0; i--) {
void **p = qatomic_rcu_read(lp);
if (p == NULL) {
void *existing;
if (!alloc) {
return NULL;
}
p = g_new0(void *, V_L2_SIZE);
existing = qatomic_cmpxchg(lp, NULL, p);
if (unlikely(existing)) {
g_free(p);
p = existing;
}
}
lp = p + ((index >> (i * V_L2_BITS)) & (V_L2_SIZE - 1));
}
pd = qatomic_rcu_read(lp);
if (pd == NULL) {
void *existing;
if (!alloc) {
return NULL;
}
pd = g_new0(PageDesc, V_L2_SIZE);
for (int i = 0; i < V_L2_SIZE; i++) {
qemu_spin_init(&pd[i].lock);
}
existing = qatomic_cmpxchg(lp, NULL, pd);
if (unlikely(existing)) {
for (int i = 0; i < V_L2_SIZE; i++) {
qemu_spin_destroy(&pd[i].lock);
}
g_free(pd);
pd = existing;
}
}
return pd + (index & (V_L2_SIZE - 1));
}
static inline PageDesc *page_find(tb_page_addr_t index)
{
return page_find_alloc(index, false);
}
/**
* struct page_entry - page descriptor entry
* @pd: pointer to the &struct PageDesc of the page this entry represents
* @index: page index of the page
* @locked: whether the page is locked
*
* This struct helps us keep track of the locked state of a page, without
* bloating &struct PageDesc.
*
* A page lock protects accesses to all fields of &struct PageDesc.
*
* See also: &struct page_collection.
*/
struct page_entry {
PageDesc *pd;
tb_page_addr_t index;
bool locked;
};
/**
* struct page_collection - tracks a set of pages (i.e. &struct page_entry's)
* @tree: Binary search tree (BST) of the pages, with key == page index
* @max: Pointer to the page in @tree with the highest page index
*
* To avoid deadlock we lock pages in ascending order of page index.
* When operating on a set of pages, we need to keep track of them so that
* we can lock them in order and also unlock them later. For this we collect
* pages (i.e. &struct page_entry's) in a binary search @tree. Given that the
* @tree implementation we use does not provide an O(1) operation to obtain the
* highest-ranked element, we use @max to keep track of the inserted page
* with the highest index. This is valuable because if a page is not in
* the tree and its index is higher than @max's, then we can lock it
* without breaking the locking order rule.
*
* Note on naming: 'struct page_set' would be shorter, but we already have a few
* page_set_*() helpers, so page_collection is used instead to avoid confusion.
*
* See also: page_collection_lock().
*/
struct page_collection {
QTree *tree;
struct page_entry *max;
};
typedef int PageForEachNext;
#define PAGE_FOR_EACH_TB(start, last, pagedesc, tb, n) \
TB_FOR_EACH_TAGGED((pagedesc)->first_tb, tb, n, page_next)
#ifdef CONFIG_DEBUG_TCG
static __thread GHashTable *ht_pages_locked_debug;
static void ht_pages_locked_debug_init(void)
{
if (ht_pages_locked_debug) {
return;
}
ht_pages_locked_debug = g_hash_table_new(NULL, NULL);
}
static bool page_is_locked(const PageDesc *pd)
{
PageDesc *found;
ht_pages_locked_debug_init();
found = g_hash_table_lookup(ht_pages_locked_debug, pd);
return !!found;
}
static void page_lock__debug(PageDesc *pd)
{
ht_pages_locked_debug_init();
g_assert(!page_is_locked(pd));
g_hash_table_insert(ht_pages_locked_debug, pd, pd);
}
static void page_unlock__debug(const PageDesc *pd)
{
bool removed;
ht_pages_locked_debug_init();
g_assert(page_is_locked(pd));
removed = g_hash_table_remove(ht_pages_locked_debug, pd);
g_assert(removed);
}
static void do_assert_page_locked(const PageDesc *pd,
const char *file, int line)
{
if (unlikely(!page_is_locked(pd))) {
error_report("assert_page_lock: PageDesc %p not locked @ %s:%d",
pd, file, line);
abort();
}
}
#define assert_page_locked(pd) do_assert_page_locked(pd, __FILE__, __LINE__)
void assert_no_pages_locked(void)
{
ht_pages_locked_debug_init();
g_assert(g_hash_table_size(ht_pages_locked_debug) == 0);
}
#else /* !CONFIG_DEBUG_TCG */
static inline void page_lock__debug(const PageDesc *pd) { }
static inline void page_unlock__debug(const PageDesc *pd) { }
static inline void assert_page_locked(const PageDesc *pd) { }
#endif /* CONFIG_DEBUG_TCG */
static void page_lock(PageDesc *pd)
{
page_lock__debug(pd);
qemu_spin_lock(&pd->lock);
}
static void page_unlock(PageDesc *pd)
{
qemu_spin_unlock(&pd->lock);
page_unlock__debug(pd);
}
static inline struct page_entry *
page_entry_new(PageDesc *pd, tb_page_addr_t index)
{
struct page_entry *pe = g_malloc(sizeof(*pe));
pe->index = index;
pe->pd = pd;
pe->locked = false;
return pe;
}
static void page_entry_destroy(gpointer p)
{
struct page_entry *pe = p;
g_assert(pe->locked);
page_unlock(pe->pd);
g_free(pe);
}
/* returns false on success */
static bool page_entry_trylock(struct page_entry *pe)
{
bool busy;
busy = qemu_spin_trylock(&pe->pd->lock);
if (!busy) {
g_assert(!pe->locked);
pe->locked = true;
page_lock__debug(pe->pd);
}
return busy;
}
static void do_page_entry_lock(struct page_entry *pe)
{
page_lock(pe->pd);
g_assert(!pe->locked);
pe->locked = true;
}
static gboolean page_entry_lock(gpointer key, gpointer value, gpointer data)
{
struct page_entry *pe = value;
do_page_entry_lock(pe);
return FALSE;
}
static gboolean page_entry_unlock(gpointer key, gpointer value, gpointer data)
{
struct page_entry *pe = value;
if (pe->locked) {
pe->locked = false;
page_unlock(pe->pd);
}
return FALSE;
}
/*
* Trylock a page, and if successful, add the page to a collection.
* Returns true ("busy") if the page could not be locked; false otherwise.
*/
static bool page_trylock_add(struct page_collection *set, tb_page_addr_t addr)
{
tb_page_addr_t index = addr >> TARGET_PAGE_BITS;
struct page_entry *pe;
PageDesc *pd;
pe = q_tree_lookup(set->tree, &index);
if (pe) {
return false;
}
pd = page_find(index);
if (pd == NULL) {
return false;
}
pe = page_entry_new(pd, index);
q_tree_insert(set->tree, &pe->index, pe);
/*
* If this is either (1) the first insertion or (2) a page whose index
* is higher than any other so far, just lock the page and move on.
*/
if (set->max == NULL || pe->index > set->max->index) {
set->max = pe;
do_page_entry_lock(pe);
return false;
}
/*
* Try to acquire out-of-order lock; if busy, return busy so that we acquire
* locks in order.
*/
return page_entry_trylock(pe);
}
static gint tb_page_addr_cmp(gconstpointer ap, gconstpointer bp, gpointer udata)
{
tb_page_addr_t a = *(const tb_page_addr_t *)ap;
tb_page_addr_t b = *(const tb_page_addr_t *)bp;
if (a == b) {
return 0;
} else if (a < b) {
return -1;
}
return 1;
}
/*
* Lock a range of pages ([@start,@last]) as well as the pages of all
* intersecting TBs.
* Locking order: acquire locks in ascending order of page index.
*/
static struct page_collection *page_collection_lock(tb_page_addr_t start,
tb_page_addr_t last)
{
struct page_collection *set = g_malloc(sizeof(*set));
tb_page_addr_t index;
PageDesc *pd;
start >>= TARGET_PAGE_BITS;
last >>= TARGET_PAGE_BITS;
g_assert(start <= last);
set->tree = q_tree_new_full(tb_page_addr_cmp, NULL, NULL,
page_entry_destroy);
set->max = NULL;
assert_no_pages_locked();
retry:
q_tree_foreach(set->tree, page_entry_lock, NULL);
for (index = start; index <= last; index++) {
TranslationBlock *tb;
PageForEachNext n;
pd = page_find(index);
if (pd == NULL) {
continue;
}
if (page_trylock_add(set, index << TARGET_PAGE_BITS)) {
q_tree_foreach(set->tree, page_entry_unlock, NULL);
goto retry;
}
assert_page_locked(pd);
PAGE_FOR_EACH_TB(unused, unused, pd, tb, n) {
if (page_trylock_add(set, tb_page_addr0(tb)) ||
(tb_page_addr1(tb) != -1 &&
page_trylock_add(set, tb_page_addr1(tb)))) {
/* drop all locks, and reacquire in order */
q_tree_foreach(set->tree, page_entry_unlock, NULL);
goto retry;
}
}
}
return set;
}
static void page_collection_unlock(struct page_collection *set)
{
/* entries are unlocked and freed via page_entry_destroy */
q_tree_destroy(set->tree);
g_free(set);
}
/* Set to NULL all the 'first_tb' fields in all PageDescs. */
static void tb_remove_all_1(int level, void **lp)
{
int i;
if (*lp == NULL) {
return;
}
if (level == 0) {
PageDesc *pd = *lp;
for (i = 0; i < V_L2_SIZE; ++i) {
page_lock(&pd[i]);
pd[i].first_tb = (uintptr_t)NULL;
page_unlock(&pd[i]);
}
} else {
void **pp = *lp;
for (i = 0; i < V_L2_SIZE; ++i) {
tb_remove_all_1(level - 1, pp + i);
}
}
}
static void tb_remove_all(void)
{
int i, l1_sz = v_l1_size;
for (i = 0; i < l1_sz; i++) {
tb_remove_all_1(v_l2_levels, l1_map + i);
}
}
/*
* Add the tb in the target page and protect it if necessary.
* Called with @p->lock held.
*/
static inline void tb_page_add(PageDesc *p, TranslationBlock *tb,
unsigned int n)
{
bool page_already_protected;
assert_page_locked(p);
tb->page_next[n] = p->first_tb;
page_already_protected = p->first_tb != 0;
p->first_tb = (uintptr_t)tb | n;
/*
* If some code is already present, then the pages are already
* protected. So we handle the case where only the first TB is
* allocated in a physical page.
*/
if (!page_already_protected) {
tlb_protect_code(tb->page_addr[n] & TARGET_PAGE_MASK);
}
}
static void tb_record(TranslationBlock *tb, PageDesc *p1, PageDesc *p2)
{
tb_page_add(p1, tb, 0);
if (unlikely(p2)) {
tb_page_add(p2, tb, 1);
}
}
static inline void tb_page_remove(PageDesc *pd, TranslationBlock *tb)
{
TranslationBlock *tb1;
uintptr_t *pprev;
PageForEachNext n1;
assert_page_locked(pd);
pprev = &pd->first_tb;
PAGE_FOR_EACH_TB(unused, unused, pd, tb1, n1) {
if (tb1 == tb) {
*pprev = tb1->page_next[n1];
return;
}
pprev = &tb1->page_next[n1];
}
g_assert_not_reached();
}
static void tb_remove(TranslationBlock *tb)
{
PageDesc *pd;
pd = page_find(tb->page_addr[0] >> TARGET_PAGE_BITS);
tb_page_remove(pd, tb);
if (unlikely(tb->page_addr[1] != -1)) {
pd = page_find(tb->page_addr[1] >> TARGET_PAGE_BITS);
tb_page_remove(pd, tb);
}
}
static void page_lock_pair(PageDesc **ret_p1, tb_page_addr_t phys1,
PageDesc **ret_p2, tb_page_addr_t phys2, bool alloc)
{
PageDesc *p1, *p2;
tb_page_addr_t page1;
tb_page_addr_t page2;
assert_memory_lock();
g_assert(phys1 != -1);
page1 = phys1 >> TARGET_PAGE_BITS;
page2 = phys2 >> TARGET_PAGE_BITS;
p1 = page_find_alloc(page1, alloc);
if (ret_p1) {
*ret_p1 = p1;
}
if (likely(phys2 == -1)) {
page_lock(p1);
return;
} else if (page1 == page2) {
page_lock(p1);
if (ret_p2) {
*ret_p2 = p1;
}
return;
}
p2 = page_find_alloc(page2, alloc);
if (ret_p2) {
*ret_p2 = p2;
}
if (page1 < page2) {
page_lock(p1);
page_lock(p2);
} else {
page_lock(p2);
page_lock(p1);
}
}
/* lock the page(s) of a TB in the correct acquisition order */
static void page_lock_tb(const TranslationBlock *tb)
{
page_lock_pair(NULL, tb_page_addr0(tb), NULL, tb_page_addr1(tb), false);
}
static void page_unlock_tb(const TranslationBlock *tb)
{
PageDesc *p1 = page_find(tb_page_addr0(tb) >> TARGET_PAGE_BITS);
page_unlock(p1);
if (unlikely(tb_page_addr1(tb) != -1)) {
PageDesc *p2 = page_find(tb_page_addr1(tb) >> TARGET_PAGE_BITS);
if (p2 != p1) {
page_unlock(p2);
}
}
}
#endif /* CONFIG_USER_ONLY */
/* flush all the translation blocks */
static void do_tb_flush(CPUState *cpu, run_on_cpu_data tb_flush_count)
{
bool did_flush = false;
mmap_lock();
/* If it is already been done on request of another CPU, just retry. */
if (tb_ctx.tb_flush_count != tb_flush_count.host_int) {
goto done;
}
did_flush = true;
CPU_FOREACH(cpu) {
tcg_flush_jmp_cache(cpu);
}
qht_reset_size(&tb_ctx.htable, CODE_GEN_HTABLE_SIZE);
tb_remove_all();
tcg_region_reset_all();
/* XXX: flush processor icache at this point if cache flush is expensive */
qatomic_inc(&tb_ctx.tb_flush_count);
done:
mmap_unlock();
if (did_flush) {
qemu_plugin_flush_cb();
}
}
void tb_flush(CPUState *cpu)
{
if (tcg_enabled()) {
unsigned tb_flush_count = qatomic_read(&tb_ctx.tb_flush_count);
if (cpu_in_serial_context(cpu)) {
do_tb_flush(cpu, RUN_ON_CPU_HOST_INT(tb_flush_count));
} else {
async_safe_run_on_cpu(cpu, do_tb_flush,
RUN_ON_CPU_HOST_INT(tb_flush_count));
}
}
}
/* remove @orig from its @n_orig-th jump list */
static inline void tb_remove_from_jmp_list(TranslationBlock *orig, int n_orig)
{
uintptr_t ptr, ptr_locked;
TranslationBlock *dest;
TranslationBlock *tb;
uintptr_t *pprev;
int n;
/* mark the LSB of jmp_dest[] so that no further jumps can be inserted */
ptr = qatomic_or_fetch(&orig->jmp_dest[n_orig], 1);
dest = (TranslationBlock *)(ptr & ~1);
if (dest == NULL) {
return;
}
qemu_spin_lock(&dest->jmp_lock);
/*
* While acquiring the lock, the jump might have been removed if the
* destination TB was invalidated; check again.
*/
ptr_locked = qatomic_read(&orig->jmp_dest[n_orig]);
if (ptr_locked != ptr) {
qemu_spin_unlock(&dest->jmp_lock);
/*
* The only possibility is that the jump was unlinked via
* tb_jump_unlink(dest). Seeing here another destination would be a bug,
* because we set the LSB above.
*/
g_assert(ptr_locked == 1 && dest->cflags & CF_INVALID);
return;
}
/*
* We first acquired the lock, and since the destination pointer matches,
* we know for sure that @orig is in the jmp list.
*/
pprev = &dest->jmp_list_head;
TB_FOR_EACH_JMP(dest, tb, n) {
if (tb == orig && n == n_orig) {
*pprev = tb->jmp_list_next[n];
/* no need to set orig->jmp_dest[n]; setting the LSB was enough */
qemu_spin_unlock(&dest->jmp_lock);
return;
}
pprev = &tb->jmp_list_next[n];
}
g_assert_not_reached();
}
/*
* Reset the jump entry 'n' of a TB so that it is not chained to another TB.
*/
void tb_reset_jump(TranslationBlock *tb, int n)
{
uintptr_t addr = (uintptr_t)(tb->tc.ptr + tb->jmp_reset_offset[n]);
tb_set_jmp_target(tb, n, addr);
}
/* remove any jumps to the TB */
static inline void tb_jmp_unlink(TranslationBlock *dest)
{
TranslationBlock *tb;
int n;
qemu_spin_lock(&dest->jmp_lock);
TB_FOR_EACH_JMP(dest, tb, n) {
tb_reset_jump(tb, n);
qatomic_and(&tb->jmp_dest[n], (uintptr_t)NULL | 1);
/* No need to clear the list entry; setting the dest ptr is enough */
}
dest->jmp_list_head = (uintptr_t)NULL;
qemu_spin_unlock(&dest->jmp_lock);
}
static void tb_jmp_cache_inval_tb(TranslationBlock *tb)
{
CPUState *cpu;
if (tb_cflags(tb) & CF_PCREL) {
/* A TB may be at any virtual address */
CPU_FOREACH(cpu) {
tcg_flush_jmp_cache(cpu);
}
} else {
uint32_t h = tb_jmp_cache_hash_func(tb->pc);
CPU_FOREACH(cpu) {
CPUJumpCache *jc = cpu->tb_jmp_cache;
if (qatomic_read(&jc->array[h].tb) == tb) {
qatomic_set(&jc->array[h].tb, NULL);
}
}
}
}
/*
* In user-mode, call with mmap_lock held.
* In !user-mode, if @rm_from_page_list is set, call with the TB's pages'
* locks held.
*/
static void do_tb_phys_invalidate(TranslationBlock *tb, bool rm_from_page_list)
{
uint32_t h;
tb_page_addr_t phys_pc;
uint32_t orig_cflags = tb_cflags(tb);
assert_memory_lock();
/* make sure no further incoming jumps will be chained to this TB */
qemu_spin_lock(&tb->jmp_lock);
qatomic_set(&tb->cflags, tb->cflags | CF_INVALID);
qemu_spin_unlock(&tb->jmp_lock);
/* remove the TB from the hash list */
phys_pc = tb_page_addr0(tb);
h = tb_hash_func(phys_pc, (orig_cflags & CF_PCREL ? 0 : tb->pc),
tcg: remove the final vestiges of dstate Now we no longer have dynamic state affecting things we can remove the additional fields in cpu.h and simplify the TB hash calculation. For the benchmark: hyperfine -w 2 -m 20 \ "./arm-softmmu/qemu-system-arm -cpu cortex-a15 \ -machine type=virt,highmem=off \ -display none -m 2048 \ -serial mon:stdio \ -netdev user,id=unet,hostfwd=tcp::2222-:22 \ -device virtio-net-pci,netdev=unet \ -device virtio-scsi-pci \ -blockdev driver=raw,node-name=hd,discard=unmap,file.driver=host_device,file.filename=/dev/zen-disk/debian-bullseye-armhf \ -device scsi-hd,drive=hd -smp 4 \ -kernel /home/alex/lsrc/linux.git/builds/arm/arch/arm/boot/zImage \ -append 'console=ttyAMA0 root=/dev/sda2 systemd.unit=benchmark.service' \ -snapshot" It has a marginal effect on runtime, before: Time (mean ± σ): 26.279 s ± 2.438 s [User: 41.113 s, System: 1.843 s] Range (min … max): 24.420 s … 32.565 s 20 runs after: Time (mean ± σ): 24.440 s ± 2.885 s [User: 34.474 s, System: 2.028 s] Range (min … max): 21.663 s … 29.937 s 20 runs Resolves: https://gitlab.com/qemu-project/qemu/-/issues/1358 Reviewed-by: Stefan Hajnoczi <stefanha@redhat.com> Reviewed-by: Richard Henderson <richard.henderson@linaro.org> Reviewed-by: Philippe Mathieu-Daudé <philmd@linaro.org> Signed-off-by: Alex Bennée <alex.bennee@linaro.org> Message-id: 20230526165401.574474-10-alex.bennee@linaro.org Message-Id: <20230524133952.3971948-9-alex.bennee@linaro.org> Signed-off-by: Stefan Hajnoczi <stefanha@redhat.com>
2023-05-26 18:53:59 +02:00
tb->flags, orig_cflags);
if (!qht_remove(&tb_ctx.htable, tb, h)) {
return;
}
/* remove the TB from the page list */
if (rm_from_page_list) {
tb_remove(tb);
}
/* remove the TB from the hash list */
tb_jmp_cache_inval_tb(tb);
/* suppress this TB from the two jump lists */
tb_remove_from_jmp_list(tb, 0);
tb_remove_from_jmp_list(tb, 1);
/* suppress any remaining jumps to this TB */
tb_jmp_unlink(tb);
qatomic_set(&tb_ctx.tb_phys_invalidate_count,
tb_ctx.tb_phys_invalidate_count + 1);
}
static void tb_phys_invalidate__locked(TranslationBlock *tb)
{
qemu_thread_jit_write();
do_tb_phys_invalidate(tb, true);
qemu_thread_jit_execute();
}
/*
* Invalidate one TB.
* Called with mmap_lock held in user-mode.
*/
void tb_phys_invalidate(TranslationBlock *tb, tb_page_addr_t page_addr)
{
if (page_addr == -1 && tb_page_addr0(tb) != -1) {
page_lock_tb(tb);
do_tb_phys_invalidate(tb, true);
page_unlock_tb(tb);
} else {
do_tb_phys_invalidate(tb, false);
}
}
/*
* Add a new TB and link it to the physical page tables. phys_page2 is
* (-1) to indicate that only one page contains the TB.
*
* Called with mmap_lock held for user-mode emulation.
*
* Returns a pointer @tb, or a pointer to an existing TB that matches @tb.
* Note that in !user-mode, another thread might have already added a TB
* for the same block of guest code that @tb corresponds to. In that case,
* the caller should discard the original @tb, and use instead the returned TB.
*/
TranslationBlock *tb_link_page(TranslationBlock *tb, tb_page_addr_t phys_pc,
tb_page_addr_t phys_page2)
{
PageDesc *p;
PageDesc *p2 = NULL;
void *existing_tb = NULL;
uint32_t h;
assert_memory_lock();
tcg_debug_assert(!(tb->cflags & CF_INVALID));
/*
* Add the TB to the page list, acquiring first the pages's locks.
* We keep the locks held until after inserting the TB in the hash table,
* so that if the insertion fails we know for sure that the TBs are still
* in the page descriptors.
* Note that inserting into the hash table first isn't an option, since
* we can only insert TBs that are fully initialized.
*/
page_lock_pair(&p, phys_pc, &p2, phys_page2, true);
tb_record(tb, p, p2);
/* add in the hash table */
h = tb_hash_func(phys_pc, (tb->cflags & CF_PCREL ? 0 : tb->pc),
tcg: remove the final vestiges of dstate Now we no longer have dynamic state affecting things we can remove the additional fields in cpu.h and simplify the TB hash calculation. For the benchmark: hyperfine -w 2 -m 20 \ "./arm-softmmu/qemu-system-arm -cpu cortex-a15 \ -machine type=virt,highmem=off \ -display none -m 2048 \ -serial mon:stdio \ -netdev user,id=unet,hostfwd=tcp::2222-:22 \ -device virtio-net-pci,netdev=unet \ -device virtio-scsi-pci \ -blockdev driver=raw,node-name=hd,discard=unmap,file.driver=host_device,file.filename=/dev/zen-disk/debian-bullseye-armhf \ -device scsi-hd,drive=hd -smp 4 \ -kernel /home/alex/lsrc/linux.git/builds/arm/arch/arm/boot/zImage \ -append 'console=ttyAMA0 root=/dev/sda2 systemd.unit=benchmark.service' \ -snapshot" It has a marginal effect on runtime, before: Time (mean ± σ): 26.279 s ± 2.438 s [User: 41.113 s, System: 1.843 s] Range (min … max): 24.420 s … 32.565 s 20 runs after: Time (mean ± σ): 24.440 s ± 2.885 s [User: 34.474 s, System: 2.028 s] Range (min … max): 21.663 s … 29.937 s 20 runs Resolves: https://gitlab.com/qemu-project/qemu/-/issues/1358 Reviewed-by: Stefan Hajnoczi <stefanha@redhat.com> Reviewed-by: Richard Henderson <richard.henderson@linaro.org> Reviewed-by: Philippe Mathieu-Daudé <philmd@linaro.org> Signed-off-by: Alex Bennée <alex.bennee@linaro.org> Message-id: 20230526165401.574474-10-alex.bennee@linaro.org Message-Id: <20230524133952.3971948-9-alex.bennee@linaro.org> Signed-off-by: Stefan Hajnoczi <stefanha@redhat.com>
2023-05-26 18:53:59 +02:00
tb->flags, tb->cflags);
qht_insert(&tb_ctx.htable, tb, h, &existing_tb);
/* remove TB from the page(s) if we couldn't insert it */
if (unlikely(existing_tb)) {
tb_remove(tb);
tb = existing_tb;
}
if (p2 && p2 != p) {
page_unlock(p2);
}
page_unlock(p);
return tb;
}
#ifdef CONFIG_USER_ONLY
/*
* Invalidate all TBs which intersect with the target address range.
* Called with mmap_lock held for user-mode emulation.
* NOTE: this function must not be called while a TB is running.
*/
void tb_invalidate_phys_range(tb_page_addr_t start, tb_page_addr_t last)
{
TranslationBlock *tb;
PageForEachNext n;
assert_memory_lock();
PAGE_FOR_EACH_TB(start, last, unused, tb, n) {
tb_phys_invalidate__locked(tb);
}
}
/*
* Invalidate all TBs which intersect with the target address page @addr.
* Called with mmap_lock held for user-mode emulation
* NOTE: this function must not be called while a TB is running.
*/
void tb_invalidate_phys_page(tb_page_addr_t addr)
{
tb_page_addr_t start, last;
start = addr & TARGET_PAGE_MASK;
last = addr | ~TARGET_PAGE_MASK;
tb_invalidate_phys_range(start, last);
}
/*
* Called with mmap_lock held. If pc is not 0 then it indicates the
* host PC of the faulting store instruction that caused this invalidate.
* Returns true if the caller needs to abort execution of the current
* TB (because it was modified by this store and the guest CPU has
* precise-SMC semantics).
*/
bool tb_invalidate_phys_page_unwind(tb_page_addr_t addr, uintptr_t pc)
{
TranslationBlock *current_tb;
bool current_tb_modified;
TranslationBlock *tb;
PageForEachNext n;
tb_page_addr_t last;
/*
* Without precise smc semantics, or when outside of a TB,
* we can skip to invalidate.
*/
#ifndef TARGET_HAS_PRECISE_SMC
pc = 0;
#endif
if (!pc) {
tb_invalidate_phys_page(addr);
return false;
}
assert_memory_lock();
current_tb = tcg_tb_lookup(pc);
last = addr | ~TARGET_PAGE_MASK;
addr &= TARGET_PAGE_MASK;
current_tb_modified = false;
PAGE_FOR_EACH_TB(addr, last, unused, tb, n) {
if (current_tb == tb &&
(tb_cflags(current_tb) & CF_COUNT_MASK) != 1) {
/*
* If we are modifying the current TB, we must stop its
* execution. We could be more precise by checking that
* the modification is after the current PC, but it would
* require a specialized function to partially restore
* the CPU state.
*/
current_tb_modified = true;
cpu_restore_state_from_tb(current_cpu, current_tb, pc);
}
tb_phys_invalidate__locked(tb);
}
if (current_tb_modified) {
/* Force execution of one insn next time. */
CPUState *cpu = current_cpu;
cpu->cflags_next_tb = 1 | CF_NOIRQ | curr_cflags(current_cpu);
return true;
}
return false;
}
#else
/*
* @p must be non-NULL.
* Call with all @pages locked.
*/
static void
tb_invalidate_phys_page_range__locked(struct page_collection *pages,
PageDesc *p, tb_page_addr_t start,
tb_page_addr_t last,
uintptr_t retaddr)
{
TranslationBlock *tb;
PageForEachNext n;
#ifdef TARGET_HAS_PRECISE_SMC
bool current_tb_modified = false;
TranslationBlock *current_tb = retaddr ? tcg_tb_lookup(retaddr) : NULL;
#endif /* TARGET_HAS_PRECISE_SMC */
/*
* We remove all the TBs in the range [start, last].
* XXX: see if in some cases it could be faster to invalidate all the code
*/
PAGE_FOR_EACH_TB(start, last, p, tb, n) {
tb_page_addr_t tb_start, tb_last;
/* NOTE: this is subtle as a TB may span two physical pages */
tb_start = tb_page_addr0(tb);
tb_last = tb_start + tb->size - 1;
if (n == 0) {
tb_last = MIN(tb_last, tb_start | ~TARGET_PAGE_MASK);
} else {
tb_start = tb_page_addr1(tb);
tb_last = tb_start + (tb_last & ~TARGET_PAGE_MASK);
}
if (!(tb_last < start || tb_start > last)) {
#ifdef TARGET_HAS_PRECISE_SMC
if (current_tb == tb &&
(tb_cflags(current_tb) & CF_COUNT_MASK) != 1) {
/*
* If we are modifying the current TB, we must stop
* its execution. We could be more precise by checking
* that the modification is after the current PC, but it
* would require a specialized function to partially
* restore the CPU state.
*/
current_tb_modified = true;
cpu_restore_state_from_tb(current_cpu, current_tb, retaddr);
}
#endif /* TARGET_HAS_PRECISE_SMC */
tb_phys_invalidate__locked(tb);
}
}
/* if no code remaining, no need to continue to use slow writes */
if (!p->first_tb) {
tlb_unprotect_code(start);
}
#ifdef TARGET_HAS_PRECISE_SMC
if (current_tb_modified) {
page_collection_unlock(pages);
/* Force execution of one insn next time. */
current_cpu->cflags_next_tb = 1 | CF_NOIRQ | curr_cflags(current_cpu);
mmap_unlock();
cpu_loop_exit_noexc(current_cpu);
}
#endif
}
/*
* Invalidate all TBs which intersect with the target physical
* address page @addr.
*/
void tb_invalidate_phys_page(tb_page_addr_t addr)
{
struct page_collection *pages;
tb_page_addr_t start, last;
PageDesc *p;
p = page_find(addr >> TARGET_PAGE_BITS);
if (p == NULL) {
return;
}
start = addr & TARGET_PAGE_MASK;
last = addr | ~TARGET_PAGE_MASK;
pages = page_collection_lock(start, last);
tb_invalidate_phys_page_range__locked(pages, p, start, last, 0);
page_collection_unlock(pages);
}
/*
* Invalidate all TBs which intersect with the target physical address range
* [start;last]. NOTE: start and end may refer to *different* physical pages.
* 'is_cpu_write_access' should be true if called from a real cpu write
* access: the virtual CPU will exit the current TB if code is modified inside
* this TB.
*/
void tb_invalidate_phys_range(tb_page_addr_t start, tb_page_addr_t last)
{
struct page_collection *pages;
tb_page_addr_t index, index_last;
pages = page_collection_lock(start, last);
index_last = last >> TARGET_PAGE_BITS;
for (index = start >> TARGET_PAGE_BITS; index <= index_last; index++) {
PageDesc *pd = page_find(index);
tb_page_addr_t bound;
if (pd == NULL) {
continue;
}
assert_page_locked(pd);
bound = (index << TARGET_PAGE_BITS) | ~TARGET_PAGE_MASK;
bound = MIN(bound, last);
tb_invalidate_phys_page_range__locked(pages, pd, start, bound, 0);
}
page_collection_unlock(pages);
}
/*
* Call with all @pages in the range [@start, @start + len[ locked.
*/
static void tb_invalidate_phys_page_fast__locked(struct page_collection *pages,
tb_page_addr_t start,
unsigned len, uintptr_t ra)
{
PageDesc *p;
p = page_find(start >> TARGET_PAGE_BITS);
if (!p) {
return;
}
assert_page_locked(p);
tb_invalidate_phys_page_range__locked(pages, p, start, start + len - 1, ra);
}
/*
* len must be <= 8 and start must be a multiple of len.
* Called via softmmu_template.h when code areas are written to with
* iothread mutex not held.
*/
void tb_invalidate_phys_range_fast(ram_addr_t ram_addr,
unsigned size,
uintptr_t retaddr)
{
struct page_collection *pages;
pages = page_collection_lock(ram_addr, ram_addr + size - 1);
tb_invalidate_phys_page_fast__locked(pages, ram_addr, size, retaddr);
page_collection_unlock(pages);
}
#endif /* CONFIG_USER_ONLY */