qemu-e2k/hw/slavio_timer.c

289 lines
7.9 KiB
C
Raw Normal View History

/*
* QEMU Sparc SLAVIO timer controller emulation
*
* Copyright (c) 2003-2005 Fabrice Bellard
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include "vl.h"
//#define DEBUG_TIMER
#ifdef DEBUG_TIMER
#define DPRINTF(fmt, args...) \
do { printf("TIMER: " fmt , ##args); } while (0)
#else
#define DPRINTF(fmt, args...)
#endif
/*
* Registers of hardware timer in sun4m.
*
* This is the timer/counter part of chip STP2001 (Slave I/O), also
* produced as NCR89C105. See
* http://www.ibiblio.org/pub/historic-linux/early-ports/Sparc/NCR/NCR89C105.txt
*
* The 31-bit counter is incremented every 500ns by bit 9. Bits 8..0
* are zero. Bit 31 is 1 when count has been reached.
*
* Per-CPU timers interrupt local CPU, system timer uses normal
* interrupt routing.
*
*/
typedef struct SLAVIO_TIMERState {
uint32_t limit, count, counthigh;
int64_t count_load_time;
int64_t expire_time;
int64_t stop_time, tick_offset;
QEMUTimer *irq_timer;
int irq;
int reached, stopped;
int mode; // 0 = processor, 1 = user, 2 = system
unsigned int cpu;
} SLAVIO_TIMERState;
#define TIMER_MAXADDR 0x1f
#define CNT_FREQ 2000000
// Update count, set irq, update expire_time
static void slavio_timer_get_out(SLAVIO_TIMERState *s)
{
int out;
int64_t diff, ticks, count;
uint32_t limit;
// There are three clock tick units: CPU ticks, register units
// (nanoseconds), and counter ticks (500 ns).
if (s->mode == 1 && s->stopped)
ticks = s->stop_time;
else
ticks = qemu_get_clock(vm_clock) - s->tick_offset;
out = (ticks > s->expire_time);
if (out)
s->reached = 0x80000000;
if (!s->limit)
limit = 0x7fffffff;
else
limit = s->limit;
// Convert register units to counter ticks
limit = limit >> 9;
// Convert cpu ticks to counter ticks
diff = muldiv64(ticks - s->count_load_time, CNT_FREQ, ticks_per_sec);
// Calculate what the counter should be, convert to register
// units
count = diff % limit;
s->count = count << 9;
s->counthigh = count >> 22;
// Expire time: CPU ticks left to next interrupt
// Convert remaining counter ticks to CPU ticks
s->expire_time = ticks + muldiv64(limit - count, ticks_per_sec, CNT_FREQ);
DPRINTF("irq %d limit %d reached %d d %lld count %d s->c %x diff %lld stopped %d mode %d\n", s->irq, limit, s->reached?1:0, (ticks-s->count_load_time), count, s->count, s->expire_time - ticks, s->stopped, s->mode);
if (s->mode != 1)
pic_set_irq_cpu(s->irq, out, s->cpu);
}
// timer callback
static void slavio_timer_irq(void *opaque)
{
SLAVIO_TIMERState *s = opaque;
if (!s->irq_timer)
return;
slavio_timer_get_out(s);
if (s->mode != 1)
qemu_mod_timer(s->irq_timer, s->expire_time);
}
static uint32_t slavio_timer_mem_readl(void *opaque, target_phys_addr_t addr)
{
SLAVIO_TIMERState *s = opaque;
uint32_t saddr;
saddr = (addr & TIMER_MAXADDR) >> 2;
switch (saddr) {
case 0:
// read limit (system counter mode) or read most signifying
// part of counter (user mode)
if (s->mode != 1) {
// clear irq
pic_set_irq_cpu(s->irq, 0, s->cpu);
s->count_load_time = qemu_get_clock(vm_clock);
s->reached = 0;
return s->limit;
}
else {
slavio_timer_get_out(s);
return s->counthigh & 0x7fffffff;
}
case 1:
// read counter and reached bit (system mode) or read lsbits
// of counter (user mode)
slavio_timer_get_out(s);
if (s->mode != 1)
return (s->count & 0x7fffffff) | s->reached;
else
return s->count;
case 3:
// read start/stop status
return s->stopped;
case 4:
// read user/system mode
return s->mode & 1;
default:
return 0;
}
}
static void slavio_timer_mem_writel(void *opaque, target_phys_addr_t addr, uint32_t val)
{
SLAVIO_TIMERState *s = opaque;
uint32_t saddr;
saddr = (addr & TIMER_MAXADDR) >> 2;
switch (saddr) {
case 0:
// set limit, reset counter
s->count_load_time = qemu_get_clock(vm_clock);
// fall through
case 2:
// set limit without resetting counter
if (!val)
s->limit = 0x7fffffff;
else
s->limit = val & 0x7fffffff;
slavio_timer_irq(s);
break;
case 3:
// start/stop user counter
if (s->mode == 1) {
if (val & 1) {
s->stop_time = qemu_get_clock(vm_clock);
s->stopped = 1;
}
else {
if (s->stopped)
s->tick_offset += qemu_get_clock(vm_clock) - s->stop_time;
s->stopped = 0;
}
}
break;
case 4:
// bit 0: user (1) or system (0) counter mode
if (s->mode == 0 || s->mode == 1)
s->mode = val & 1;
break;
default:
break;
}
}
static CPUReadMemoryFunc *slavio_timer_mem_read[3] = {
slavio_timer_mem_readl,
slavio_timer_mem_readl,
slavio_timer_mem_readl,
};
static CPUWriteMemoryFunc *slavio_timer_mem_write[3] = {
slavio_timer_mem_writel,
slavio_timer_mem_writel,
slavio_timer_mem_writel,
};
static void slavio_timer_save(QEMUFile *f, void *opaque)
{
SLAVIO_TIMERState *s = opaque;
qemu_put_be32s(f, &s->limit);
qemu_put_be32s(f, &s->count);
qemu_put_be32s(f, &s->counthigh);
qemu_put_be64s(f, &s->count_load_time);
qemu_put_be64s(f, &s->expire_time);
qemu_put_be64s(f, &s->stop_time);
qemu_put_be64s(f, &s->tick_offset);
qemu_put_be32s(f, &s->irq);
qemu_put_be32s(f, &s->reached);
qemu_put_be32s(f, &s->stopped);
qemu_put_be32s(f, &s->mode);
}
static int slavio_timer_load(QEMUFile *f, void *opaque, int version_id)
{
SLAVIO_TIMERState *s = opaque;
if (version_id != 1)
return -EINVAL;
qemu_get_be32s(f, &s->limit);
qemu_get_be32s(f, &s->count);
qemu_get_be32s(f, &s->counthigh);
qemu_get_be64s(f, &s->count_load_time);
qemu_get_be64s(f, &s->expire_time);
qemu_get_be64s(f, &s->stop_time);
qemu_get_be64s(f, &s->tick_offset);
qemu_get_be32s(f, &s->irq);
qemu_get_be32s(f, &s->reached);
qemu_get_be32s(f, &s->stopped);
qemu_get_be32s(f, &s->mode);
return 0;
}
static void slavio_timer_reset(void *opaque)
{
SLAVIO_TIMERState *s = opaque;
s->limit = 0;
s->count = 0;
s->count_load_time = qemu_get_clock(vm_clock);;
s->stop_time = s->count_load_time;
s->tick_offset = 0;
s->reached = 0;
s->mode &= 2;
s->stopped = 1;
slavio_timer_get_out(s);
}
void slavio_timer_init(uint32_t addr, int irq, int mode, unsigned int cpu)
{
int slavio_timer_io_memory;
SLAVIO_TIMERState *s;
s = qemu_mallocz(sizeof(SLAVIO_TIMERState));
if (!s)
return;
s->irq = irq;
s->mode = mode;
s->cpu = cpu;
s->irq_timer = qemu_new_timer(vm_clock, slavio_timer_irq, s);
slavio_timer_io_memory = cpu_register_io_memory(0, slavio_timer_mem_read,
slavio_timer_mem_write, s);
cpu_register_physical_memory(addr, TIMER_MAXADDR, slavio_timer_io_memory);
register_savevm("slavio_timer", addr, 1, slavio_timer_save, slavio_timer_load, s);
qemu_register_reset(slavio_timer_reset, s);
slavio_timer_reset(s);
}