qemu-e2k/hw/eepro100.c

1809 lines
57 KiB
C
Raw Normal View History

/*
* QEMU i8255x (PRO100) emulation
*
* Copyright (c) 2006-2007 Stefan Weil
*
* Portions of the code are copies from grub / etherboot eepro100.c
* and linux e100.c.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*
* Tested features (i82559):
* PXE boot (i386) no valid link
* Linux networking (i386) ok
*
* Untested:
* non-i386 platforms
* Windows networking
*
* References:
*
* Intel 8255x 10/100 Mbps Ethernet Controller Family
* Open Source Software Developer Manual
*/
#if defined(TARGET_I386)
# warning "PXE boot still not working!"
#endif
#include <assert.h>
#include <stddef.h> /* offsetof */
#include "vl.h"
#include "eeprom93xx.h"
/* Common declarations for all PCI devices. */
#define PCI_VENDOR_ID 0x00 /* 16 bits */
#define PCI_DEVICE_ID 0x02 /* 16 bits */
#define PCI_COMMAND 0x04 /* 16 bits */
#define PCI_STATUS 0x06 /* 16 bits */
#define PCI_REVISION_ID 0x08 /* 8 bits */
#define PCI_CLASS_CODE 0x0b /* 8 bits */
#define PCI_SUBCLASS_CODE 0x0a /* 8 bits */
#define PCI_HEADER_TYPE 0x0e /* 8 bits */
#define PCI_BASE_ADDRESS_0 0x10 /* 32 bits */
#define PCI_BASE_ADDRESS_1 0x14 /* 32 bits */
#define PCI_BASE_ADDRESS_2 0x18 /* 32 bits */
#define PCI_BASE_ADDRESS_3 0x1c /* 32 bits */
#define PCI_BASE_ADDRESS_4 0x20 /* 32 bits */
#define PCI_BASE_ADDRESS_5 0x24 /* 32 bits */
#define PCI_CONFIG_8(offset, value) \
(pci_conf[offset] = (value))
#define PCI_CONFIG_16(offset, value) \
(*(uint16_t *)&pci_conf[offset] = cpu_to_le16(value))
#define PCI_CONFIG_32(offset, value) \
(*(uint32_t *)&pci_conf[offset] = cpu_to_le32(value))
#define KiB 1024
/* debug EEPRO100 card */
//~ #define DEBUG_EEPRO100
#ifdef DEBUG_EEPRO100
#define logout(fmt, args...) fprintf(stderr, "EE100\t%-24s" fmt, __func__, ##args)
#else
#define logout(fmt, args...) ((void)0)
#endif
/* Set flags to 0 to disable debug output. */
#define MDI 0
#define TRACE(flag, command) ((flag) ? (command) : (void)0)
#define missing(text) assert(!"feature is missing in this emulation: " text)
#define MAX_ETH_FRAME_SIZE 1514
/* This driver supports several different devices which are declared here. */
#define i82551 0x82551
#define i82557B 0x82557b
#define i82557C 0x82557c
#define i82558B 0x82558b
#define i82559C 0x82559c
#define i82559ER 0x82559e
#define i82562 0x82562
#define EEPROM_SIZE 64
#define PCI_MEM_SIZE (4 * KiB)
#define PCI_IO_SIZE 64
#define PCI_FLASH_SIZE (128 * KiB)
#define BIT(n) (1 << (n))
#define BITS(n, m) (((0xffffffffU << (31 - n)) >> (31 - n + m)) << m)
/* The SCB accepts the following controls for the Tx and Rx units: */
#define CU_NOP 0x0000 /* No operation. */
#define CU_START 0x0010 /* CU start. */
#define CU_RESUME 0x0020 /* CU resume. */
#define CU_STATSADDR 0x0040 /* Load dump counters address. */
#define CU_SHOWSTATS 0x0050 /* Dump statistical counters. */
#define CU_CMD_BASE 0x0060 /* Load CU base address. */
#define CU_DUMPSTATS 0x0070 /* Dump and reset statistical counters. */
#define CU_SRESUME 0x00a0 /* CU static resume. */
#define RU_NOP 0x0000
#define RX_START 0x0001
#define RX_RESUME 0x0002
#define RX_ABORT 0x0004
#define RX_ADDR_LOAD 0x0006
#define RX_RESUMENR 0x0007
#define INT_MASK 0x0100
#define DRVR_INT 0x0200 /* Driver generated interrupt. */
typedef unsigned char bool;
/* Offsets to the various registers.
All accesses need not be longword aligned. */
enum speedo_offsets {
SCBStatus = 0,
SCBAck = 1,
SCBCmd = 2, /* Rx/Command Unit command and status. */
SCBIntmask = 3,
SCBPointer = 4, /* General purpose pointer. */
SCBPort = 8, /* Misc. commands and operands. */
SCBflash = 12, SCBeeprom = 14, /* EEPROM and flash memory control. */
SCBCtrlMDI = 16, /* MDI interface control. */
SCBEarlyRx = 20, /* Early receive byte count. */
};
/* A speedo3 transmit buffer descriptor with two buffers... */
typedef struct {
uint16_t status;
uint16_t command;
uint32_t link; /* void * */
uint32_t tx_desc_addr; /* transmit buffer decsriptor array address. */
uint16_t tcb_bytes; /* transmit command block byte count (in lower 14 bits */
uint8_t tx_threshold; /* transmit threshold */
uint8_t tbd_count; /* TBD number */
//~ /* This constitutes two "TBD" entries: hdr and data */
//~ uint32_t tx_buf_addr0; /* void *, header of frame to be transmitted. */
//~ int32_t tx_buf_size0; /* Length of Tx hdr. */
//~ uint32_t tx_buf_addr1; /* void *, data to be transmitted. */
//~ int32_t tx_buf_size1; /* Length of Tx data. */
} eepro100_tx_t;
/* Receive frame descriptor. */
typedef struct {
int16_t status;
uint16_t command;
uint32_t link; /* struct RxFD * */
uint32_t rx_buf_addr; /* void * */
uint16_t count;
uint16_t size;
char packet[MAX_ETH_FRAME_SIZE + 4];
} eepro100_rx_t;
typedef struct {
uint32_t tx_good_frames, tx_max_collisions, tx_late_collisions,
tx_underruns, tx_lost_crs, tx_deferred, tx_single_collisions,
tx_multiple_collisions, tx_total_collisions;
uint32_t rx_good_frames, rx_crc_errors, rx_alignment_errors,
rx_resource_errors, rx_overrun_errors, rx_cdt_errors,
rx_short_frame_errors;
uint32_t fc_xmt_pause, fc_rcv_pause, fc_rcv_unsupported;
uint16_t xmt_tco_frames, rcv_tco_frames;
uint32_t complete;
} eepro100_stats_t;
typedef enum {
cu_idle = 0,
cu_suspended = 1,
cu_active = 2,
cu_lpq_active = 2,
cu_hqp_active = 3
} cu_state_t;
typedef enum {
ru_idle = 0,
ru_suspended = 1,
ru_no_resources = 2,
ru_ready = 4
} ru_state_t;
#if defined(__BIG_ENDIAN_BITFIELD)
#define X(a,b) b,a
#else
#define X(a,b) a,b
#endif
typedef struct {
#if 1
uint8_t cmd;
uint32_t start;
uint32_t stop;
uint8_t boundary;
uint8_t tsr;
uint8_t tpsr;
uint16_t tcnt;
uint16_t rcnt;
uint32_t rsar;
uint8_t rsr;
uint8_t rxcr;
uint8_t isr;
uint8_t dcfg;
uint8_t imr;
uint8_t phys[6]; /* mac address */
uint8_t curpag;
uint8_t mult[8]; /* multicast mask array */
int mmio_index;
PCIDevice *pci_dev;
VLANClientState *vc;
#endif
uint8_t scb_stat; /* SCB stat/ack byte */
uint8_t int_stat; /* PCI interrupt status */
uint32_t region[3]; /* PCI region addresses */
uint8_t macaddr[6];
uint32_t statcounter[19];
uint16_t mdimem[32];
eeprom_t *eeprom;
uint32_t device; /* device variant */
uint32_t pointer;
/* (cu_base + cu_offset) address the next command block in the command block list. */
uint32_t cu_base; /* CU base address */
uint32_t cu_offset; /* CU address offset */
/* (ru_base + ru_offset) address the RFD in the Receive Frame Area. */
uint32_t ru_base; /* RU base address */
uint32_t ru_offset; /* RU address offset */
uint32_t statsaddr; /* pointer to eepro100_stats_t */
eepro100_stats_t statistics; /* statistical counters */
#if 0
uint16_t status;
#endif
/* Configuration bytes. */
uint8_t configuration[22];
/* Data in mem is always in the byte order of the controller (le). */
uint8_t mem[PCI_MEM_SIZE];
} EEPRO100State;
/* Default values for MDI (PHY) registers */
static const uint16_t eepro100_mdi_default[] = {
/* MDI Registers 0 - 6, 7 */
0x3000, 0x780d, 0x02a8, 0x0154, 0x05e1, 0x0000, 0x0000, 0x0000,
/* MDI Registers 8 - 15 */
0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000,
/* MDI Registers 16 - 31 */
0x0003, 0x0000, 0x0001, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000,
0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000,
};
/* Readonly mask for MDI (PHY) registers */
static const uint16_t eepro100_mdi_mask[] = {
0x0000, 0xffff, 0xffff, 0xffff, 0xc01f, 0xffff, 0xffff, 0x0000,
0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000,
0x0fff, 0x0000, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff,
0xffff, 0xffff, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000,
};
#define POLYNOMIAL 0x04c11db6
/* From FreeBSD */
/* XXX: optimize */
static int compute_mcast_idx(const uint8_t * ep)
{
uint32_t crc;
int carry, i, j;
uint8_t b;
crc = 0xffffffff;
for (i = 0; i < 6; i++) {
b = *ep++;
for (j = 0; j < 8; j++) {
carry = ((crc & 0x80000000L) ? 1 : 0) ^ (b & 0x01);
crc <<= 1;
b >>= 1;
if (carry)
crc = ((crc ^ POLYNOMIAL) | carry);
}
}
return (crc >> 26);
}
#if defined(DEBUG_EEPRO100)
static const char *nic_dump(const uint8_t * buf, unsigned size)
{
static char dump[3 * 16 + 1];
char *p = &dump[0];
if (size > 16)
size = 16;
while (size-- > 0) {
p += sprintf(p, " %02x", *buf++);
}
return dump;
}
#endif /* DEBUG_EEPRO100 */
enum scb_stat_ack {
stat_ack_not_ours = 0x00,
stat_ack_sw_gen = 0x04,
stat_ack_rnr = 0x10,
stat_ack_cu_idle = 0x20,
stat_ack_frame_rx = 0x40,
stat_ack_cu_cmd_done = 0x80,
stat_ack_not_present = 0xFF,
stat_ack_rx = (stat_ack_sw_gen | stat_ack_rnr | stat_ack_frame_rx),
stat_ack_tx = (stat_ack_cu_idle | stat_ack_cu_cmd_done),
};
static void disable_interrupt(EEPRO100State * s)
{
if (s->int_stat) {
logout("interrupt disabled\n");
qemu_irq_lower(s->pci_dev->irq[0]);
s->int_stat = 0;
}
}
static void enable_interrupt(EEPRO100State * s)
{
if (!s->int_stat) {
logout("interrupt enabled\n");
qemu_irq_raise(s->pci_dev->irq[0]);
s->int_stat = 1;
}
}
static void eepro100_acknowledge(EEPRO100State * s)
{
s->scb_stat &= ~s->mem[SCBAck];
s->mem[SCBAck] = s->scb_stat;
if (s->scb_stat == 0) {
disable_interrupt(s);
}
}
static void eepro100_interrupt(EEPRO100State * s, uint8_t stat)
{
uint8_t mask = ~s->mem[SCBIntmask];
s->mem[SCBAck] |= stat;
stat = s->scb_stat = s->mem[SCBAck];
stat &= (mask | 0x0f);
//~ stat &= (~s->mem[SCBIntmask] | 0x0xf);
if (stat && (mask & 0x01)) {
/* SCB mask and SCB Bit M do not disable interrupt. */
enable_interrupt(s);
} else if (s->int_stat) {
disable_interrupt(s);
}
}
static void eepro100_cx_interrupt(EEPRO100State * s)
{
/* CU completed action command. */
/* Transmit not ok (82557 only, not in emulation). */
eepro100_interrupt(s, 0x80);
}
static void eepro100_cna_interrupt(EEPRO100State * s)
{
/* CU left the active state. */
eepro100_interrupt(s, 0x20);
}
static void eepro100_fr_interrupt(EEPRO100State * s)
{
/* RU received a complete frame. */
eepro100_interrupt(s, 0x40);
}
#if 0
static void eepro100_rnr_interrupt(EEPRO100State * s)
{
/* RU is not ready. */
eepro100_interrupt(s, 0x10);
}
#endif
static void eepro100_mdi_interrupt(EEPRO100State * s)
{
/* MDI completed read or write cycle. */
eepro100_interrupt(s, 0x08);
}
static void eepro100_swi_interrupt(EEPRO100State * s)
{
/* Software has requested an interrupt. */
eepro100_interrupt(s, 0x04);
}
#if 0
static void eepro100_fcp_interrupt(EEPRO100State * s)
{
/* Flow control pause interrupt (82558 and later). */
eepro100_interrupt(s, 0x01);
}
#endif
static void pci_reset(EEPRO100State * s)
{
uint32_t device = s->device;
uint8_t *pci_conf = s->pci_dev->config;
logout("%p\n", s);
/* PCI Vendor ID */
PCI_CONFIG_16(PCI_VENDOR_ID, 0x8086);
/* PCI Device ID */
PCI_CONFIG_16(PCI_DEVICE_ID, 0x1209);
/* PCI Command */
PCI_CONFIG_16(PCI_COMMAND, 0x0000);
/* PCI Status */
PCI_CONFIG_16(PCI_STATUS, 0x2800);
/* PCI Revision ID */
PCI_CONFIG_8(PCI_REVISION_ID, 0x08);
/* PCI Class Code */
PCI_CONFIG_8(0x09, 0x00);
PCI_CONFIG_8(PCI_SUBCLASS_CODE, 0x00); // ethernet network controller
PCI_CONFIG_8(PCI_CLASS_CODE, 0x02); // network controller
/* PCI Cache Line Size */
/* check cache line size!!! */
//~ PCI_CONFIG_8(0x0c, 0x00);
/* PCI Latency Timer */
PCI_CONFIG_8(0x0d, 0x20); // latency timer = 32 clocks
/* PCI Header Type */
/* BIST (built-in self test) */
#if defined(TARGET_I386)
// !!! workaround for buggy bios
//~ #define PCI_ADDRESS_SPACE_MEM_PREFETCH 0
#endif
#if 0
/* PCI Base Address Registers */
/* CSR Memory Mapped Base Address */
PCI_CONFIG_32(PCI_BASE_ADDRESS_0,
PCI_ADDRESS_SPACE_MEM | PCI_ADDRESS_SPACE_MEM_PREFETCH);
/* CSR I/O Mapped Base Address */
PCI_CONFIG_32(PCI_BASE_ADDRESS_1, PCI_ADDRESS_SPACE_IO);
#if 0
/* Flash Memory Mapped Base Address */
PCI_CONFIG_32(PCI_BASE_ADDRESS_2, 0xfffe0000 | PCI_ADDRESS_SPACE_MEM);
#endif
#endif
/* Expansion ROM Base Address (depends on boot disable!!!) */
PCI_CONFIG_32(0x30, 0x00000000);
/* Capability Pointer */
PCI_CONFIG_8(0x34, 0xdc);
/* Interrupt Pin */
PCI_CONFIG_8(0x3d, 1); // interrupt pin 0
/* Minimum Grant */
PCI_CONFIG_8(0x3e, 0x08);
/* Maximum Latency */
PCI_CONFIG_8(0x3f, 0x18);
/* Power Management Capabilities / Next Item Pointer / Capability ID */
PCI_CONFIG_32(0xdc, 0x7e210001);
switch (device) {
case i82551:
//~ PCI_CONFIG_16(PCI_DEVICE_ID, 0x1209);
PCI_CONFIG_8(PCI_REVISION_ID, 0x0f);
break;
case i82557B:
PCI_CONFIG_16(PCI_DEVICE_ID, 0x1229);
PCI_CONFIG_8(PCI_REVISION_ID, 0x02);
break;
case i82557C:
PCI_CONFIG_16(PCI_DEVICE_ID, 0x1229);
PCI_CONFIG_8(PCI_REVISION_ID, 0x03);
break;
case i82558B:
PCI_CONFIG_16(PCI_DEVICE_ID, 0x1229);
PCI_CONFIG_16(PCI_STATUS, 0x2810);
PCI_CONFIG_8(PCI_REVISION_ID, 0x05);
break;
case i82559C:
PCI_CONFIG_16(PCI_DEVICE_ID, 0x1229);
PCI_CONFIG_16(PCI_STATUS, 0x2810);
//~ PCI_CONFIG_8(PCI_REVISION_ID, 0x08);
break;
case i82559ER:
//~ PCI_CONFIG_16(PCI_DEVICE_ID, 0x1209);
PCI_CONFIG_16(PCI_STATUS, 0x2810);
PCI_CONFIG_8(PCI_REVISION_ID, 0x09);
break;
//~ PCI_CONFIG_16(PCI_DEVICE_ID, 0x1029);
//~ PCI_CONFIG_16(PCI_DEVICE_ID, 0x1030); /* 82559 InBusiness 10/100 */
default:
logout("Device %X is undefined!\n", device);
}
if (device == i82557C || device == i82558B || device == i82559C) {
logout("Get device id and revision from EEPROM!!!\n");
}
}
static void nic_selective_reset(EEPRO100State * s)
{
size_t i;
uint16_t *eeprom_contents = eeprom93xx_data(s->eeprom);
//~ eeprom93xx_reset(s->eeprom);
memcpy(eeprom_contents, s->macaddr, 6);
eeprom_contents[0xa] = 0x4000;
uint16_t sum = 0;
for (i = 0; i < EEPROM_SIZE - 1; i++) {
sum += eeprom_contents[i];
}
eeprom_contents[EEPROM_SIZE - 1] = 0xbaba - sum;
memset(s->mem, 0, sizeof(s->mem));
uint32_t val = BIT(21);
memcpy(&s->mem[SCBCtrlMDI], &val, sizeof(val));
assert(sizeof(s->mdimem) == sizeof(eepro100_mdi_default));
memcpy(&s->mdimem[0], &eepro100_mdi_default[0], sizeof(s->mdimem));
}
static void nic_reset(void *opaque)
{
EEPRO100State *s = (EEPRO100State *) opaque;
logout("%p\n", s);
static int first;
if (!first) {
first = 1;
}
nic_selective_reset(s);
}
#if defined(DEBUG_EEPRO100)
static const char *reg[PCI_IO_SIZE / 4] = {
"Command/Status",
"General Pointer",
"Port",
"EEPROM/Flash Control",
"MDI Control",
"Receive DMA Byte Count",
"Flow control register",
"General Status/Control"
};
static char *regname(uint32_t addr)
{
static char buf[16];
if (addr < PCI_IO_SIZE) {
const char *r = reg[addr / 4];
if (r != 0) {
sprintf(buf, "%s+%u", r, addr % 4);
} else {
sprintf(buf, "0x%02x", addr);
}
} else {
sprintf(buf, "??? 0x%08x", addr);
}
return buf;
}
#endif /* DEBUG_EEPRO100 */
#if 0
static uint16_t eepro100_read_status(EEPRO100State * s)
{
uint16_t val = s->status;
logout("val=0x%04x\n", val);
return val;
}
static void eepro100_write_status(EEPRO100State * s, uint16_t val)
{
logout("val=0x%04x\n", val);
s->status = val;
}
#endif
/*****************************************************************************
*
* Command emulation.
*
****************************************************************************/
#if 0
static uint16_t eepro100_read_command(EEPRO100State * s)
{
uint16_t val = 0xffff;
//~ logout("val=0x%04x\n", val);
return val;
}
#endif
/* Commands that can be put in a command list entry. */
enum commands {
CmdNOp = 0,
CmdIASetup = 1,
CmdConfigure = 2,
CmdMulticastList = 3,
CmdTx = 4,
CmdTDR = 5, /* load microcode */
CmdDump = 6,
CmdDiagnose = 7,
/* And some extra flags: */
CmdSuspend = 0x4000, /* Suspend after completion. */
CmdIntr = 0x2000, /* Interrupt after completion. */
CmdTxFlex = 0x0008, /* Use "Flexible mode" for CmdTx command. */
};
static cu_state_t get_cu_state(EEPRO100State * s)
{
return ((s->mem[SCBStatus] >> 6) & 0x03);
}
static void set_cu_state(EEPRO100State * s, cu_state_t state)
{
s->mem[SCBStatus] = (s->mem[SCBStatus] & 0x3f) + (state << 6);
}
static ru_state_t get_ru_state(EEPRO100State * s)
{
return ((s->mem[SCBStatus] >> 2) & 0x0f);
}
static void set_ru_state(EEPRO100State * s, ru_state_t state)
{
s->mem[SCBStatus] = (s->mem[SCBStatus] & 0xc3) + (state << 2);
}
static void dump_statistics(EEPRO100State * s)
{
/* Dump statistical data. Most data is never changed by the emulation
* and always 0, so we first just copy the whole block and then those
* values which really matter.
* Number of data should check configuration!!!
*/
cpu_physical_memory_write(s->statsaddr, (uint8_t *) & s->statistics, 64);
stl_phys(s->statsaddr + 0, s->statistics.tx_good_frames);
stl_phys(s->statsaddr + 36, s->statistics.rx_good_frames);
stl_phys(s->statsaddr + 48, s->statistics.rx_resource_errors);
stl_phys(s->statsaddr + 60, s->statistics.rx_short_frame_errors);
//~ stw_phys(s->statsaddr + 76, s->statistics.xmt_tco_frames);
//~ stw_phys(s->statsaddr + 78, s->statistics.rcv_tco_frames);
//~ missing("CU dump statistical counters");
}
static void eepro100_cu_command(EEPRO100State * s, uint8_t val)
{
eepro100_tx_t tx;
uint32_t cb_address;
switch (val) {
case CU_NOP:
/* No operation. */
break;
case CU_START:
if (get_cu_state(s) != cu_idle) {
/* Intel documentation says that CU must be idle for the CU
* start command. Intel driver for Linux also starts the CU
* from suspended state. */
logout("CU state is %u, should be %u\n", get_cu_state(s), cu_idle);
//~ assert(!"wrong CU state");
}
set_cu_state(s, cu_active);
s->cu_offset = s->pointer;
next_command:
cb_address = s->cu_base + s->cu_offset;
cpu_physical_memory_read(cb_address, (uint8_t *) & tx, sizeof(tx));
uint16_t status = le16_to_cpu(tx.status);
uint16_t command = le16_to_cpu(tx.command);
logout
("val=0x%02x (cu start), status=0x%04x, command=0x%04x, link=0x%08x\n",
val, status, command, tx.link);
bool bit_el = ((command & 0x8000) != 0);
bool bit_s = ((command & 0x4000) != 0);
bool bit_i = ((command & 0x2000) != 0);
bool bit_nc = ((command & 0x0010) != 0);
//~ bool bit_sf = ((command & 0x0008) != 0);
uint16_t cmd = command & 0x0007;
s->cu_offset = le32_to_cpu(tx.link);
switch (cmd) {
case CmdNOp:
/* Do nothing. */
break;
case CmdIASetup:
cpu_physical_memory_read(cb_address + 8, &s->macaddr[0], 6);
logout("macaddr: %s\n", nic_dump(&s->macaddr[0], 6));
break;
case CmdConfigure:
cpu_physical_memory_read(cb_address + 8, &s->configuration[0],
sizeof(s->configuration));
logout("configuration: %s\n", nic_dump(&s->configuration[0], 16));
break;
case CmdMulticastList:
//~ missing("multicast list");
break;
case CmdTx:
(void)0;
uint32_t tbd_array = le32_to_cpu(tx.tx_desc_addr);
uint16_t tcb_bytes = (le16_to_cpu(tx.tcb_bytes) & 0x3fff);
logout
("transmit, TBD array address 0x%08x, TCB byte count 0x%04x, TBD count %u\n",
tbd_array, tcb_bytes, tx.tbd_count);
assert(!bit_nc);
//~ assert(!bit_sf);
assert(tcb_bytes <= 2600);
/* Next assertion fails for local configuration. */
//~ assert((tcb_bytes > 0) || (tbd_array != 0xffffffff));
if (!((tcb_bytes > 0) || (tbd_array != 0xffffffff))) {
logout
("illegal values of TBD array address and TCB byte count!\n");
}
uint8_t buf[MAX_ETH_FRAME_SIZE + 4];
uint16_t size = 0;
uint32_t tbd_address = cb_address + 0x10;
assert(tcb_bytes <= sizeof(buf));
while (size < tcb_bytes) {
uint32_t tx_buffer_address = ldl_phys(tbd_address);
uint16_t tx_buffer_size = lduw_phys(tbd_address + 4);
//~ uint16_t tx_buffer_el = lduw_phys(tbd_address + 6);
tbd_address += 8;
logout
("TBD (simplified mode): buffer address 0x%08x, size 0x%04x\n",
tx_buffer_address, tx_buffer_size);
cpu_physical_memory_read(tx_buffer_address, &buf[size],
tx_buffer_size);
size += tx_buffer_size;
}
if (tbd_array == 0xffffffff) {
/* Simplified mode. Was already handled by code above. */
} else {
/* Flexible mode. */
uint8_t tbd_count = 0;
if (!(s->configuration[6] & BIT(4))) {
/* Extended TCB. */
assert(tcb_bytes == 0);
for (; tbd_count < 2; tbd_count++) {
uint32_t tx_buffer_address = ldl_phys(tbd_address);
uint16_t tx_buffer_size = lduw_phys(tbd_address + 4);
uint16_t tx_buffer_el = lduw_phys(tbd_address + 6);
tbd_address += 8;
logout
("TBD (extended mode): buffer address 0x%08x, size 0x%04x\n",
tx_buffer_address, tx_buffer_size);
cpu_physical_memory_read(tx_buffer_address, &buf[size],
tx_buffer_size);
size += tx_buffer_size;
if (tx_buffer_el & 1) {
break;
}
}
}
tbd_address = tbd_array;
for (; tbd_count < tx.tbd_count; tbd_count++) {
uint32_t tx_buffer_address = ldl_phys(tbd_address);
uint16_t tx_buffer_size = lduw_phys(tbd_address + 4);
uint16_t tx_buffer_el = lduw_phys(tbd_address + 6);
tbd_address += 8;
logout
("TBD (flexible mode): buffer address 0x%08x, size 0x%04x\n",
tx_buffer_address, tx_buffer_size);
cpu_physical_memory_read(tx_buffer_address, &buf[size],
tx_buffer_size);
size += tx_buffer_size;
if (tx_buffer_el & 1) {
break;
}
}
}
qemu_send_packet(s->vc, buf, size);
s->statistics.tx_good_frames++;
/* Transmit with bad status would raise an CX/TNO interrupt.
* (82557 only). Emulation never has bad status. */
//~ eepro100_cx_interrupt(s);
break;
case CmdTDR:
logout("load microcode\n");
/* Starting with offset 8, the command contains
* 64 dwords microcode which we just ignore here. */
break;
default:
missing("undefined command");
}
/* Write new status (success). */
stw_phys(cb_address, status | 0x8000 | 0x2000);
if (bit_i) {
/* CU completed action. */
eepro100_cx_interrupt(s);
}
if (bit_el) {
/* CU becomes idle. */
set_cu_state(s, cu_idle);
eepro100_cna_interrupt(s);
} else if (bit_s) {
/* CU becomes suspended. */
set_cu_state(s, cu_suspended);
eepro100_cna_interrupt(s);
} else {
/* More entries in list. */
logout("CU list with at least one more entry\n");
goto next_command;
}
logout("CU list empty\n");
/* List is empty. Now CU is idle or suspended. */
break;
case CU_RESUME:
if (get_cu_state(s) != cu_suspended) {
logout("bad CU resume from CU state %u\n", get_cu_state(s));
/* Workaround for bad Linux eepro100 driver which resumes
* from idle state. */
//~ missing("cu resume");
set_cu_state(s, cu_suspended);
}
if (get_cu_state(s) == cu_suspended) {
logout("CU resuming\n");
set_cu_state(s, cu_active);
goto next_command;
}
break;
case CU_STATSADDR:
/* Load dump counters address. */
s->statsaddr = s->pointer;
logout("val=0x%02x (status address)\n", val);
break;
case CU_SHOWSTATS:
/* Dump statistical counters. */
dump_statistics(s);
break;
case CU_CMD_BASE:
/* Load CU base. */
logout("val=0x%02x (CU base address)\n", val);
s->cu_base = s->pointer;
break;
case CU_DUMPSTATS:
/* Dump and reset statistical counters. */
dump_statistics(s);
memset(&s->statistics, 0, sizeof(s->statistics));
break;
case CU_SRESUME:
/* CU static resume. */
missing("CU static resume");
break;
default:
missing("Undefined CU command");
}
}
static void eepro100_ru_command(EEPRO100State * s, uint8_t val)
{
switch (val) {
case RU_NOP:
/* No operation. */
break;
case RX_START:
/* RU start. */
if (get_ru_state(s) != ru_idle) {
logout("RU state is %u, should be %u\n", get_ru_state(s), ru_idle);
//~ assert(!"wrong RU state");
}
set_ru_state(s, ru_ready);
s->ru_offset = s->pointer;
logout("val=0x%02x (rx start)\n", val);
break;
case RX_RESUME:
/* Restart RU. */
if (get_ru_state(s) != ru_suspended) {
logout("RU state is %u, should be %u\n", get_ru_state(s),
ru_suspended);
//~ assert(!"wrong RU state");
}
set_ru_state(s, ru_ready);
break;
case RX_ADDR_LOAD:
/* Load RU base. */
logout("val=0x%02x (RU base address)\n", val);
s->ru_base = s->pointer;
break;
default:
logout("val=0x%02x (undefined RU command)\n", val);
missing("Undefined SU command");
}
}
static void eepro100_write_command(EEPRO100State * s, uint8_t val)
{
eepro100_ru_command(s, val & 0x0f);
eepro100_cu_command(s, val & 0xf0);
if ((val) == 0) {
logout("val=0x%02x\n", val);
}
/* Clear command byte after command was accepted. */
s->mem[SCBCmd] = 0;
}
/*****************************************************************************
*
* EEPROM emulation.
*
****************************************************************************/
#define EEPROM_CS 0x02
#define EEPROM_SK 0x01
#define EEPROM_DI 0x04
#define EEPROM_DO 0x08
static uint16_t eepro100_read_eeprom(EEPRO100State * s)
{
uint16_t val;
memcpy(&val, &s->mem[SCBeeprom], sizeof(val));
if (eeprom93xx_read(s->eeprom)) {
val |= EEPROM_DO;
} else {
val &= ~EEPROM_DO;
}
return val;
}
static void eepro100_write_eeprom(eeprom_t * eeprom, uint8_t val)
{
logout("write val=0x%02x\n", val);
/* mask unwriteable bits */
//~ val = SET_MASKED(val, 0x31, eeprom->value);
int eecs = ((val & EEPROM_CS) != 0);
int eesk = ((val & EEPROM_SK) != 0);
int eedi = ((val & EEPROM_DI) != 0);
eeprom93xx_write(eeprom, eecs, eesk, eedi);
}
static void eepro100_write_pointer(EEPRO100State * s, uint32_t val)
{
s->pointer = le32_to_cpu(val);
logout("val=0x%08x\n", val);
}
/*****************************************************************************
*
* MDI emulation.
*
****************************************************************************/
#if defined(DEBUG_EEPRO100)
static const char *mdi_op_name[] = {
"opcode 0",
"write",
"read",
"opcode 3"
};
static const char *mdi_reg_name[] = {
"Control",
"Status",
"PHY Identification (Word 1)",
"PHY Identification (Word 2)",
"Auto-Negotiation Advertisement",
"Auto-Negotiation Link Partner Ability",
"Auto-Negotiation Expansion"
};
#endif /* DEBUG_EEPRO100 */
static uint32_t eepro100_read_mdi(EEPRO100State * s)
{
uint32_t val;
memcpy(&val, &s->mem[0x10], sizeof(val));
#ifdef DEBUG_EEPRO100
uint8_t raiseint = (val & BIT(29)) >> 29;
uint8_t opcode = (val & BITS(27, 26)) >> 26;
uint8_t phy = (val & BITS(25, 21)) >> 21;
uint8_t reg = (val & BITS(20, 16)) >> 16;
uint16_t data = (val & BITS(15, 0));
#endif
/* Emulation takes no time to finish MDI transaction. */
val |= BIT(28);
TRACE(MDI, logout("val=0x%08x (int=%u, %s, phy=%u, %s, data=0x%04x\n",
val, raiseint, mdi_op_name[opcode], phy,
mdi_reg_name[reg], data));
return val;
}
//~ #define BITS(val, upper, lower) (val & ???)
static void eepro100_write_mdi(EEPRO100State * s, uint32_t val)
{
uint8_t raiseint = (val & BIT(29)) >> 29;
uint8_t opcode = (val & BITS(27, 26)) >> 26;
uint8_t phy = (val & BITS(25, 21)) >> 21;
uint8_t reg = (val & BITS(20, 16)) >> 16;
uint16_t data = (val & BITS(15, 0));
if (phy != 1) {
/* Unsupported PHY address. */
//~ logout("phy must be 1 but is %u\n", phy);
data = 0;
} else if (opcode != 1 && opcode != 2) {
/* Unsupported opcode. */
logout("opcode must be 1 or 2 but is %u\n", opcode);
data = 0;
} else if (reg > 6) {
/* Unsupported register. */
logout("register must be 0...6 but is %u\n", reg);
data = 0;
} else {
TRACE(MDI, logout("val=0x%08x (int=%u, %s, phy=%u, %s, data=0x%04x\n",
val, raiseint, mdi_op_name[opcode], phy,
mdi_reg_name[reg], data));
if (opcode == 1) {
/* MDI write */
switch (reg) {
case 0: /* Control Register */
if (data & 0x8000) {
/* Reset status and control registers to default. */
s->mdimem[0] = eepro100_mdi_default[0];
s->mdimem[1] = eepro100_mdi_default[1];
data = s->mdimem[reg];
} else {
/* Restart Auto Configuration = Normal Operation */
data &= ~0x0200;
}
break;
case 1: /* Status Register */
missing("not writable");
data = s->mdimem[reg];
break;
case 2: /* PHY Identification Register (Word 1) */
case 3: /* PHY Identification Register (Word 2) */
missing("not implemented");
break;
case 4: /* Auto-Negotiation Advertisement Register */
case 5: /* Auto-Negotiation Link Partner Ability Register */
break;
case 6: /* Auto-Negotiation Expansion Register */
default:
missing("not implemented");
}
s->mdimem[reg] = data;
} else if (opcode == 2) {
/* MDI read */
switch (reg) {
case 0: /* Control Register */
if (data & 0x8000) {
/* Reset status and control registers to default. */
s->mdimem[0] = eepro100_mdi_default[0];
s->mdimem[1] = eepro100_mdi_default[1];
}
break;
case 1: /* Status Register */
s->mdimem[reg] |= 0x0020;
break;
case 2: /* PHY Identification Register (Word 1) */
case 3: /* PHY Identification Register (Word 2) */
case 4: /* Auto-Negotiation Advertisement Register */
break;
case 5: /* Auto-Negotiation Link Partner Ability Register */
s->mdimem[reg] = 0x41fe;
break;
case 6: /* Auto-Negotiation Expansion Register */
s->mdimem[reg] = 0x0001;
break;
}
data = s->mdimem[reg];
}
/* Emulation takes no time to finish MDI transaction.
* Set MDI bit in SCB status register. */
s->mem[SCBAck] |= 0x08;
val |= BIT(28);
if (raiseint) {
eepro100_mdi_interrupt(s);
}
}
val = (val & 0xffff0000) + data;
memcpy(&s->mem[0x10], &val, sizeof(val));
}
/*****************************************************************************
*
* Port emulation.
*
****************************************************************************/
#define PORT_SOFTWARE_RESET 0
#define PORT_SELFTEST 1
#define PORT_SELECTIVE_RESET 2
#define PORT_DUMP 3
#define PORT_SELECTION_MASK 3
typedef struct {
uint32_t st_sign; /* Self Test Signature */
uint32_t st_result; /* Self Test Results */
} eepro100_selftest_t;
static uint32_t eepro100_read_port(EEPRO100State * s)
{
return 0;
}
static void eepro100_write_port(EEPRO100State * s, uint32_t val)
{
val = le32_to_cpu(val);
uint32_t address = (val & ~PORT_SELECTION_MASK);
uint8_t selection = (val & PORT_SELECTION_MASK);
switch (selection) {
case PORT_SOFTWARE_RESET:
nic_reset(s);
break;
case PORT_SELFTEST:
logout("selftest address=0x%08x\n", address);
eepro100_selftest_t data;
cpu_physical_memory_read(address, (uint8_t *) & data, sizeof(data));
data.st_sign = 0xffffffff;
data.st_result = 0;
cpu_physical_memory_write(address, (uint8_t *) & data, sizeof(data));
break;
case PORT_SELECTIVE_RESET:
logout("selective reset, selftest address=0x%08x\n", address);
nic_selective_reset(s);
break;
default:
logout("val=0x%08x\n", val);
missing("unknown port selection");
}
}
/*****************************************************************************
*
* General hardware emulation.
*
****************************************************************************/
static uint8_t eepro100_read1(EEPRO100State * s, uint32_t addr)
{
uint8_t val;
if (addr <= sizeof(s->mem) - sizeof(val)) {
memcpy(&val, &s->mem[addr], sizeof(val));
}
switch (addr) {
case SCBStatus:
//~ val = eepro100_read_status(s);
logout("addr=%s val=0x%02x\n", regname(addr), val);
break;
case SCBAck:
//~ val = eepro100_read_status(s);
logout("addr=%s val=0x%02x\n", regname(addr), val);
break;
case SCBCmd:
logout("addr=%s val=0x%02x\n", regname(addr), val);
//~ val = eepro100_read_command(s);
break;
case SCBIntmask:
logout("addr=%s val=0x%02x\n", regname(addr), val);
break;
case SCBPort + 3:
logout("addr=%s val=0x%02x\n", regname(addr), val);
break;
case SCBeeprom:
val = eepro100_read_eeprom(s);
break;
case 0x1b: /* PMDR (power management driver register) */
val = 0;
logout("addr=%s val=0x%02x\n", regname(addr), val);
break;
case 0x1d: /* general status register */
/* 100 Mbps full duplex, valid link */
val = 0x07;
logout("addr=General Status val=%02x\n", val);
break;
default:
logout("addr=%s val=0x%02x\n", regname(addr), val);
missing("unknown byte read");
}
return val;
}
static uint16_t eepro100_read2(EEPRO100State * s, uint32_t addr)
{
uint16_t val;
if (addr <= sizeof(s->mem) - sizeof(val)) {
memcpy(&val, &s->mem[addr], sizeof(val));
}
logout("addr=%s val=0x%04x\n", regname(addr), val);
switch (addr) {
case SCBStatus:
//~ val = eepro100_read_status(s);
break;
case SCBeeprom:
val = eepro100_read_eeprom(s);
break;
default:
logout("addr=%s val=0x%04x\n", regname(addr), val);
missing("unknown word read");
}
return val;
}
static uint32_t eepro100_read4(EEPRO100State * s, uint32_t addr)
{
uint32_t val;
if (addr <= sizeof(s->mem) - sizeof(val)) {
memcpy(&val, &s->mem[addr], sizeof(val));
}
switch (addr) {
case SCBStatus:
//~ val = eepro100_read_status(s);
logout("addr=%s val=0x%08x\n", regname(addr), val);
break;
case SCBPointer:
//~ val = eepro100_read_pointer(s);
logout("addr=%s val=0x%08x\n", regname(addr), val);
break;
case SCBPort:
val = eepro100_read_port(s);
logout("addr=%s val=0x%08x\n", regname(addr), val);
break;
case SCBCtrlMDI:
val = eepro100_read_mdi(s);
break;
default:
logout("addr=%s val=0x%08x\n", regname(addr), val);
missing("unknown longword read");
}
return val;
}
static void eepro100_write1(EEPRO100State * s, uint32_t addr, uint8_t val)
{
if (addr <= sizeof(s->mem) - sizeof(val)) {
memcpy(&s->mem[addr], &val, sizeof(val));
}
logout("addr=%s val=0x%02x\n", regname(addr), val);
switch (addr) {
case SCBStatus:
//~ eepro100_write_status(s, val);
break;
case SCBAck:
eepro100_acknowledge(s);
break;
case SCBCmd:
eepro100_write_command(s, val);
break;
case SCBIntmask:
if (val & BIT(1)) {
eepro100_swi_interrupt(s);
}
eepro100_interrupt(s, 0);
break;
case SCBPort + 3:
logout("addr=%s val=0x%02x\n", regname(addr), val);
break;
case SCBeeprom:
eepro100_write_eeprom(s->eeprom, val);
break;
default:
logout("addr=%s val=0x%02x\n", regname(addr), val);
missing("unknown byte write");
}
}
static void eepro100_write2(EEPRO100State * s, uint32_t addr, uint16_t val)
{
if (addr <= sizeof(s->mem) - sizeof(val)) {
memcpy(&s->mem[addr], &val, sizeof(val));
}
logout("addr=%s val=0x%04x\n", regname(addr), val);
switch (addr) {
case SCBStatus:
//~ eepro100_write_status(s, val);
eepro100_acknowledge(s);
break;
case SCBCmd:
eepro100_write_command(s, val);
eepro100_write1(s, SCBIntmask, val >> 8);
break;
case SCBeeprom:
eepro100_write_eeprom(s->eeprom, val);
break;
default:
logout("addr=%s val=0x%04x\n", regname(addr), val);
missing("unknown word write");
}
}
static void eepro100_write4(EEPRO100State * s, uint32_t addr, uint32_t val)
{
if (addr <= sizeof(s->mem) - sizeof(val)) {
memcpy(&s->mem[addr], &val, sizeof(val));
}
switch (addr) {
case SCBPointer:
eepro100_write_pointer(s, val);
break;
case SCBPort:
logout("addr=%s val=0x%08x\n", regname(addr), val);
eepro100_write_port(s, val);
break;
case SCBCtrlMDI:
eepro100_write_mdi(s, val);
break;
default:
logout("addr=%s val=0x%08x\n", regname(addr), val);
missing("unknown longword write");
}
}
static uint32_t ioport_read1(void *opaque, uint32_t addr)
{
EEPRO100State *s = opaque;
//~ logout("addr=%s\n", regname(addr));
return eepro100_read1(s, addr - s->region[1]);
}
static uint32_t ioport_read2(void *opaque, uint32_t addr)
{
EEPRO100State *s = opaque;
return eepro100_read2(s, addr - s->region[1]);
}
static uint32_t ioport_read4(void *opaque, uint32_t addr)
{
EEPRO100State *s = opaque;
return eepro100_read4(s, addr - s->region[1]);
}
static void ioport_write1(void *opaque, uint32_t addr, uint32_t val)
{
EEPRO100State *s = opaque;
//~ logout("addr=%s val=0x%02x\n", regname(addr), val);
eepro100_write1(s, addr - s->region[1], val);
}
static void ioport_write2(void *opaque, uint32_t addr, uint32_t val)
{
EEPRO100State *s = opaque;
eepro100_write2(s, addr - s->region[1], val);
}
static void ioport_write4(void *opaque, uint32_t addr, uint32_t val)
{
EEPRO100State *s = opaque;
eepro100_write4(s, addr - s->region[1], val);
}
/***********************************************************/
/* PCI EEPRO100 definitions */
typedef struct PCIEEPRO100State {
PCIDevice dev;
EEPRO100State eepro100;
} PCIEEPRO100State;
static void pci_map(PCIDevice * pci_dev, int region_num,
uint32_t addr, uint32_t size, int type)
{
PCIEEPRO100State *d = (PCIEEPRO100State *) pci_dev;
EEPRO100State *s = &d->eepro100;
logout("region %d, addr=0x%08x, size=0x%08x, type=%d\n",
region_num, addr, size, type);
assert(region_num == 1);
register_ioport_write(addr, size, 1, ioport_write1, s);
register_ioport_read(addr, size, 1, ioport_read1, s);
register_ioport_write(addr, size, 2, ioport_write2, s);
register_ioport_read(addr, size, 2, ioport_read2, s);
register_ioport_write(addr, size, 4, ioport_write4, s);
register_ioport_read(addr, size, 4, ioport_read4, s);
s->region[region_num] = addr;
}
static void pci_mmio_writeb(void *opaque, target_phys_addr_t addr, uint32_t val)
{
EEPRO100State *s = opaque;
addr -= s->region[0];
//~ logout("addr=%s val=0x%02x\n", regname(addr), val);
eepro100_write1(s, addr, val);
}
static void pci_mmio_writew(void *opaque, target_phys_addr_t addr, uint32_t val)
{
EEPRO100State *s = opaque;
addr -= s->region[0];
//~ logout("addr=%s val=0x%02x\n", regname(addr), val);
eepro100_write2(s, addr, val);
}
static void pci_mmio_writel(void *opaque, target_phys_addr_t addr, uint32_t val)
{
EEPRO100State *s = opaque;
addr -= s->region[0];
//~ logout("addr=%s val=0x%02x\n", regname(addr), val);
eepro100_write4(s, addr, val);
}
static uint32_t pci_mmio_readb(void *opaque, target_phys_addr_t addr)
{
EEPRO100State *s = opaque;
addr -= s->region[0];
//~ logout("addr=%s\n", regname(addr));
return eepro100_read1(s, addr);
}
static uint32_t pci_mmio_readw(void *opaque, target_phys_addr_t addr)
{
EEPRO100State *s = opaque;
addr -= s->region[0];
//~ logout("addr=%s\n", regname(addr));
return eepro100_read2(s, addr);
}
static uint32_t pci_mmio_readl(void *opaque, target_phys_addr_t addr)
{
EEPRO100State *s = opaque;
addr -= s->region[0];
//~ logout("addr=%s\n", regname(addr));
return eepro100_read4(s, addr);
}
static CPUWriteMemoryFunc *pci_mmio_write[] = {
pci_mmio_writeb,
pci_mmio_writew,
pci_mmio_writel
};
static CPUReadMemoryFunc *pci_mmio_read[] = {
pci_mmio_readb,
pci_mmio_readw,
pci_mmio_readl
};
static void pci_mmio_map(PCIDevice * pci_dev, int region_num,
uint32_t addr, uint32_t size, int type)
{
PCIEEPRO100State *d = (PCIEEPRO100State *) pci_dev;
logout("region %d, addr=0x%08x, size=0x%08x, type=%d\n",
region_num, addr, size, type);
if (region_num == 0) {
/* Map control / status registers. */
cpu_register_physical_memory(addr, size, d->eepro100.mmio_index);
d->eepro100.region[region_num] = addr;
}
}
static int nic_can_receive(void *opaque)
{
EEPRO100State *s = opaque;
logout("%p\n", s);
return get_ru_state(s) == ru_ready;
//~ return !eepro100_buffer_full(s);
}
#define MIN_BUF_SIZE 60
static void nic_receive(void *opaque, const uint8_t * buf, int size)
{
/* TODO:
* - Magic packets should set bit 30 in power management driver register.
* - Interesting packets should set bit 29 in power management driver register.
*/
EEPRO100State *s = opaque;
uint16_t rfd_status = 0xa000;
static const uint8_t broadcast_macaddr[6] =
{ 0xff, 0xff, 0xff, 0xff, 0xff, 0xff };
/* TODO: check multiple IA bit. */
assert(!(s->configuration[20] & BIT(6)));
if (s->configuration[8] & 0x80) {
/* CSMA is disabled. */
logout("%p received while CSMA is disabled\n", s);
return;
} else if (size < 64 && (s->configuration[7] & 1)) {
/* Short frame and configuration byte 7/0 (discard short receive) set:
* Short frame is discarded */
logout("%p received short frame (%d byte)\n", s, size);
s->statistics.rx_short_frame_errors++;
//~ return;
} else if ((size > MAX_ETH_FRAME_SIZE + 4) && !(s->configuration[18] & 8)) {
/* Long frame and configuration byte 18/3 (long receive ok) not set:
* Long frames are discarded. */
logout("%p received long frame (%d byte), ignored\n", s, size);
return;
} else if (memcmp(buf, s->macaddr, 6) == 0) { // !!!
/* Frame matches individual address. */
/* TODO: check configuration byte 15/4 (ignore U/L). */
logout("%p received frame for me, len=%d\n", s, size);
} else if (memcmp(buf, broadcast_macaddr, 6) == 0) {
/* Broadcast frame. */
logout("%p received broadcast, len=%d\n", s, size);
rfd_status |= 0x0002;
} else if (buf[0] & 0x01) { // !!!
/* Multicast frame. */
logout("%p received multicast, len=%d\n", s, size);
/* TODO: check multicast all bit. */
assert(!(s->configuration[21] & BIT(3)));
int mcast_idx = compute_mcast_idx(buf);
if (!(s->mult[mcast_idx >> 3] & (1 << (mcast_idx & 7)))) {
return;
}
rfd_status |= 0x0002;
} else if (s->configuration[15] & 1) {
/* Promiscuous: receive all. */
logout("%p received frame in promiscuous mode, len=%d\n", s, size);
rfd_status |= 0x0004;
} else {
logout("%p received frame, ignored, len=%d,%s\n", s, size,
nic_dump(buf, size));
return;
}
if (get_ru_state(s) != ru_ready) {
/* No ressources available. */
logout("no ressources, state=%u\n", get_ru_state(s));
s->statistics.rx_resource_errors++;
//~ assert(!"no ressources");
return;
}
//~ !!!
//~ $3 = {status = 0x0, command = 0xc000, link = 0x2d220, rx_buf_addr = 0x207dc, count = 0x0, size = 0x5f8, packet = {0x0 <repeats 1518 times>}}
eepro100_rx_t rx;
cpu_physical_memory_read(s->ru_base + s->ru_offset, (uint8_t *) & rx,
offsetof(eepro100_rx_t, packet));
uint16_t rfd_command = le16_to_cpu(rx.command);
uint16_t rfd_size = le16_to_cpu(rx.size);
assert(size <= rfd_size);
if (size < 64) {
rfd_status |= 0x0080;
}
logout("command 0x%04x, link 0x%08x, addr 0x%08x, size %u\n", rfd_command,
rx.link, rx.rx_buf_addr, rfd_size);
stw_phys(s->ru_base + s->ru_offset + offsetof(eepro100_rx_t, status),
rfd_status);
stw_phys(s->ru_base + s->ru_offset + offsetof(eepro100_rx_t, count), size);
/* Early receive interrupt not supported. */
//~ eepro100_er_interrupt(s);
/* Receive CRC Transfer not supported. */
assert(!(s->configuration[18] & 4));
/* TODO: check stripping enable bit. */
//~ assert(!(s->configuration[17] & 1));
cpu_physical_memory_write(s->ru_base + s->ru_offset +
offsetof(eepro100_rx_t, packet), buf, size);
s->statistics.rx_good_frames++;
eepro100_fr_interrupt(s);
s->ru_offset = le32_to_cpu(rx.link);
if (rfd_command & 0x8000) {
/* EL bit is set, so this was the last frame. */
assert(0);
}
if (rfd_command & 0x4000) {
/* S bit is set. */
set_ru_state(s, ru_suspended);
}
}
static int nic_load(QEMUFile * f, void *opaque, int version_id)
{
EEPRO100State *s = (EEPRO100State *) opaque;
int i;
int ret;
if (version_id > 3)
return -EINVAL;
if (s->pci_dev && version_id >= 3) {
ret = pci_device_load(s->pci_dev, f);
if (ret < 0)
return ret;
}
if (version_id >= 2) {
qemu_get_8s(f, &s->rxcr);
} else {
s->rxcr = 0x0c;
}
qemu_get_8s(f, &s->cmd);
qemu_get_be32s(f, &s->start);
qemu_get_be32s(f, &s->stop);
qemu_get_8s(f, &s->boundary);
qemu_get_8s(f, &s->tsr);
qemu_get_8s(f, &s->tpsr);
qemu_get_be16s(f, &s->tcnt);
qemu_get_be16s(f, &s->rcnt);
qemu_get_be32s(f, &s->rsar);
qemu_get_8s(f, &s->rsr);
qemu_get_8s(f, &s->isr);
qemu_get_8s(f, &s->dcfg);
qemu_get_8s(f, &s->imr);
qemu_get_buffer(f, s->phys, 6);
qemu_get_8s(f, &s->curpag);
qemu_get_buffer(f, s->mult, 8);
qemu_get_buffer(f, s->mem, sizeof(s->mem));
/* Restore all members of struct between scv_stat and mem */
qemu_get_8s(f, &s->scb_stat);
qemu_get_8s(f, &s->int_stat);
for (i = 0; i < 3; i++)
qemu_get_be32s(f, &s->region[i]);
qemu_get_buffer(f, s->macaddr, 6);
for (i = 0; i < 19; i++)
qemu_get_be32s(f, &s->statcounter[i]);
for (i = 0; i < 32; i++)
qemu_get_be16s(f, &s->mdimem[i]);
/* The eeprom should be saved and restored by its own routines */
qemu_get_be32s(f, &s->device);
qemu_get_be32s(f, &s->pointer);
qemu_get_be32s(f, &s->cu_base);
qemu_get_be32s(f, &s->cu_offset);
qemu_get_be32s(f, &s->ru_base);
qemu_get_be32s(f, &s->ru_offset);
qemu_get_be32s(f, &s->statsaddr);
/* Restore epro100_stats_t statistics */
qemu_get_be32s(f, &s->statistics.tx_good_frames);
qemu_get_be32s(f, &s->statistics.tx_max_collisions);
qemu_get_be32s(f, &s->statistics.tx_late_collisions);
qemu_get_be32s(f, &s->statistics.tx_underruns);
qemu_get_be32s(f, &s->statistics.tx_lost_crs);
qemu_get_be32s(f, &s->statistics.tx_deferred);
qemu_get_be32s(f, &s->statistics.tx_single_collisions);
qemu_get_be32s(f, &s->statistics.tx_multiple_collisions);
qemu_get_be32s(f, &s->statistics.tx_total_collisions);
qemu_get_be32s(f, &s->statistics.rx_good_frames);
qemu_get_be32s(f, &s->statistics.rx_crc_errors);
qemu_get_be32s(f, &s->statistics.rx_alignment_errors);
qemu_get_be32s(f, &s->statistics.rx_resource_errors);
qemu_get_be32s(f, &s->statistics.rx_overrun_errors);
qemu_get_be32s(f, &s->statistics.rx_cdt_errors);
qemu_get_be32s(f, &s->statistics.rx_short_frame_errors);
qemu_get_be32s(f, &s->statistics.fc_xmt_pause);
qemu_get_be32s(f, &s->statistics.fc_rcv_pause);
qemu_get_be32s(f, &s->statistics.fc_rcv_unsupported);
qemu_get_be16s(f, &s->statistics.xmt_tco_frames);
qemu_get_be16s(f, &s->statistics.rcv_tco_frames);
qemu_get_be32s(f, &s->statistics.complete);
#if 0
qemu_get_be16s(f, &s->status);
#endif
/* Configuration bytes. */
qemu_get_buffer(f, s->configuration, sizeof(s->configuration));
return 0;
}
static void nic_save(QEMUFile * f, void *opaque)
{
EEPRO100State *s = (EEPRO100State *) opaque;
int i;
if (s->pci_dev)
pci_device_save(s->pci_dev, f);
qemu_put_8s(f, &s->rxcr);
qemu_put_8s(f, &s->cmd);
qemu_put_be32s(f, &s->start);
qemu_put_be32s(f, &s->stop);
qemu_put_8s(f, &s->boundary);
qemu_put_8s(f, &s->tsr);
qemu_put_8s(f, &s->tpsr);
qemu_put_be16s(f, &s->tcnt);
qemu_put_be16s(f, &s->rcnt);
qemu_put_be32s(f, &s->rsar);
qemu_put_8s(f, &s->rsr);
qemu_put_8s(f, &s->isr);
qemu_put_8s(f, &s->dcfg);
qemu_put_8s(f, &s->imr);
qemu_put_buffer(f, s->phys, 6);
qemu_put_8s(f, &s->curpag);
qemu_put_buffer(f, s->mult, 8);
qemu_put_buffer(f, s->mem, sizeof(s->mem));
/* Save all members of struct between scv_stat and mem */
qemu_put_8s(f, &s->scb_stat);
qemu_put_8s(f, &s->int_stat);
for (i = 0; i < 3; i++)
qemu_put_be32s(f, &s->region[i]);
qemu_put_buffer(f, s->macaddr, 6);
for (i = 0; i < 19; i++)
qemu_put_be32s(f, &s->statcounter[i]);
for (i = 0; i < 32; i++)
qemu_put_be16s(f, &s->mdimem[i]);
/* The eeprom should be saved and restored by its own routines */
qemu_put_be32s(f, &s->device);
qemu_put_be32s(f, &s->pointer);
qemu_put_be32s(f, &s->cu_base);
qemu_put_be32s(f, &s->cu_offset);
qemu_put_be32s(f, &s->ru_base);
qemu_put_be32s(f, &s->ru_offset);
qemu_put_be32s(f, &s->statsaddr);
/* Save epro100_stats_t statistics */
qemu_put_be32s(f, &s->statistics.tx_good_frames);
qemu_put_be32s(f, &s->statistics.tx_max_collisions);
qemu_put_be32s(f, &s->statistics.tx_late_collisions);
qemu_put_be32s(f, &s->statistics.tx_underruns);
qemu_put_be32s(f, &s->statistics.tx_lost_crs);
qemu_put_be32s(f, &s->statistics.tx_deferred);
qemu_put_be32s(f, &s->statistics.tx_single_collisions);
qemu_put_be32s(f, &s->statistics.tx_multiple_collisions);
qemu_put_be32s(f, &s->statistics.tx_total_collisions);
qemu_put_be32s(f, &s->statistics.rx_good_frames);
qemu_put_be32s(f, &s->statistics.rx_crc_errors);
qemu_put_be32s(f, &s->statistics.rx_alignment_errors);
qemu_put_be32s(f, &s->statistics.rx_resource_errors);
qemu_put_be32s(f, &s->statistics.rx_overrun_errors);
qemu_put_be32s(f, &s->statistics.rx_cdt_errors);
qemu_put_be32s(f, &s->statistics.rx_short_frame_errors);
qemu_put_be32s(f, &s->statistics.fc_xmt_pause);
qemu_put_be32s(f, &s->statistics.fc_rcv_pause);
qemu_put_be32s(f, &s->statistics.fc_rcv_unsupported);
qemu_put_be16s(f, &s->statistics.xmt_tco_frames);
qemu_put_be16s(f, &s->statistics.rcv_tco_frames);
qemu_put_be32s(f, &s->statistics.complete);
#if 0
qemu_put_be16s(f, &s->status);
#endif
/* Configuration bytes. */
qemu_put_buffer(f, s->configuration, sizeof(s->configuration));
}
static void nic_init(PCIBus * bus, NICInfo * nd,
const char *name, uint32_t device)
{
PCIEEPRO100State *d;
EEPRO100State *s;
logout("\n");
d = (PCIEEPRO100State *) pci_register_device(bus, name,
sizeof(PCIEEPRO100State), -1,
NULL, NULL);
s = &d->eepro100;
s->device = device;
s->pci_dev = &d->dev;
pci_reset(s);
/* Add 64 * 2 EEPROM. i82557 and i82558 support a 64 word EEPROM,
* i82559 and later support 64 or 256 word EEPROM. */
s->eeprom = eeprom93xx_new(EEPROM_SIZE);
/* Handler for memory-mapped I/O */
d->eepro100.mmio_index =
cpu_register_io_memory(0, pci_mmio_read, pci_mmio_write, s);
pci_register_io_region(&d->dev, 0, PCI_MEM_SIZE,
PCI_ADDRESS_SPACE_MEM |
PCI_ADDRESS_SPACE_MEM_PREFETCH, pci_mmio_map);
pci_register_io_region(&d->dev, 1, PCI_IO_SIZE, PCI_ADDRESS_SPACE_IO,
pci_map);
pci_register_io_region(&d->dev, 2, PCI_FLASH_SIZE, PCI_ADDRESS_SPACE_MEM,
pci_mmio_map);
memcpy(s->macaddr, nd->macaddr, 6);
logout("macaddr: %s\n", nic_dump(&s->macaddr[0], 6));
assert(s->region[1] == 0);
nic_reset(s);
s->vc = qemu_new_vlan_client(nd->vlan, nic_receive, nic_can_receive, s);
snprintf(s->vc->info_str, sizeof(s->vc->info_str),
"eepro100 pci macaddr=%02x:%02x:%02x:%02x:%02x:%02x",
s->macaddr[0],
s->macaddr[1],
s->macaddr[2], s->macaddr[3], s->macaddr[4], s->macaddr[5]);
qemu_register_reset(nic_reset, s);
/* XXX: instance number ? */
register_savevm(name, 0, 3, nic_save, nic_load, s);
}
void pci_i82551_init(PCIBus * bus, NICInfo * nd, int devfn)
{
nic_init(bus, nd, "i82551", i82551);
//~ uint8_t *pci_conf = d->dev.config;
}
void pci_i82557b_init(PCIBus * bus, NICInfo * nd, int devfn)
{
nic_init(bus, nd, "i82557b", i82557B);
}
void pci_i82559er_init(PCIBus * bus, NICInfo * nd, int devfn)
{
nic_init(bus, nd, "i82559er", i82559ER);
}
/* eof */