qemu-e2k/hw/leon3.c

226 lines
6.7 KiB
C
Raw Normal View History

/*
* QEMU Leon3 System Emulator
*
* Copyright (c) 2010-2011 AdaCore
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include "hw.h"
#include "qemu-timer.h"
#include "ptimer.h"
#include "qemu-char.h"
#include "sysemu.h"
#include "boards.h"
#include "loader.h"
#include "elf.h"
#include "trace.h"
#include "exec-memory.h"
#include "grlib.h"
/* Default system clock. */
#define CPU_CLK (40 * 1000 * 1000)
#define PROM_FILENAME "u-boot.bin"
#define MAX_PILS 16
typedef struct ResetData {
SPARCCPU *cpu;
uint32_t entry; /* save kernel entry in case of reset */
} ResetData;
static void main_cpu_reset(void *opaque)
{
ResetData *s = (ResetData *)opaque;
CPUSPARCState *env = &s->cpu->env;
cpu_reset(CPU(s->cpu));
env->halted = 0;
env->pc = s->entry;
env->npc = s->entry + 4;
}
void leon3_irq_ack(void *irq_manager, int intno)
{
grlib_irqmp_ack((DeviceState *)irq_manager, intno);
}
static void leon3_set_pil_in(void *opaque, uint32_t pil_in)
{
CPUSPARCState *env = (CPUSPARCState *)opaque;
assert(env != NULL);
env->pil_in = pil_in;
if (env->pil_in && (env->interrupt_index == 0 ||
(env->interrupt_index & ~15) == TT_EXTINT)) {
unsigned int i;
for (i = 15; i > 0; i--) {
if (env->pil_in & (1 << i)) {
int old_interrupt = env->interrupt_index;
env->interrupt_index = TT_EXTINT | i;
if (old_interrupt != env->interrupt_index) {
trace_leon3_set_irq(i);
cpu_interrupt(env, CPU_INTERRUPT_HARD);
}
break;
}
}
} else if (!env->pil_in && (env->interrupt_index & ~15) == TT_EXTINT) {
trace_leon3_reset_irq(env->interrupt_index & 15);
env->interrupt_index = 0;
cpu_reset_interrupt(env, CPU_INTERRUPT_HARD);
}
}
static void leon3_generic_hw_init(ram_addr_t ram_size,
const char *boot_device,
const char *kernel_filename,
const char *kernel_cmdline,
const char *initrd_filename,
const char *cpu_model)
{
SPARCCPU *cpu;
CPUSPARCState *env;
MemoryRegion *address_space_mem = get_system_memory();
MemoryRegion *ram = g_new(MemoryRegion, 1);
MemoryRegion *prom = g_new(MemoryRegion, 1);
int ret;
char *filename;
qemu_irq *cpu_irqs = NULL;
int bios_size;
int prom_size;
ResetData *reset_info;
/* Init CPU */
if (!cpu_model) {
cpu_model = "LEON3";
}
cpu = cpu_sparc_init(cpu_model);
if (cpu == NULL) {
fprintf(stderr, "qemu: Unable to find Sparc CPU definition\n");
exit(1);
}
env = &cpu->env;
cpu_sparc_set_id(env, 0);
/* Reset data */
reset_info = g_malloc0(sizeof(ResetData));
reset_info->cpu = cpu;
qemu_register_reset(main_cpu_reset, reset_info);
/* Allocate IRQ manager */
grlib_irqmp_create(0x80000200, env, &cpu_irqs, MAX_PILS, &leon3_set_pil_in);
env->qemu_irq_ack = leon3_irq_manager;
/* Allocate RAM */
if ((uint64_t)ram_size > (1UL << 30)) {
fprintf(stderr,
"qemu: Too much memory for this machine: %d, maximum 1G\n",
(unsigned int)(ram_size / (1024 * 1024)));
exit(1);
}
memory_region_init_ram(ram, "leon3.ram", ram_size);
vmstate_register_ram_global(ram);
memory_region_add_subregion(address_space_mem, 0x40000000, ram);
/* Allocate BIOS */
prom_size = 8 * 1024 * 1024; /* 8Mb */
memory_region_init_ram(prom, "Leon3.bios", prom_size);
vmstate_register_ram_global(prom);
memory_region_set_readonly(prom, true);
memory_region_add_subregion(address_space_mem, 0x00000000, prom);
/* Load boot prom */
if (bios_name == NULL) {
bios_name = PROM_FILENAME;
}
filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name);
bios_size = get_image_size(filename);
if (bios_size > prom_size) {
fprintf(stderr, "qemu: could not load prom '%s': file too big\n",
filename);
exit(1);
}
if (bios_size > 0) {
ret = load_image_targphys(filename, 0x00000000, bios_size);
if (ret < 0 || ret > prom_size) {
fprintf(stderr, "qemu: could not load prom '%s'\n", filename);
exit(1);
}
} else if (kernel_filename == NULL) {
fprintf(stderr, "Can't read bios image %s\n", filename);
exit(1);
}
/* Can directly load an application. */
if (kernel_filename != NULL) {
long kernel_size;
uint64_t entry;
kernel_size = load_elf(kernel_filename, NULL, NULL, &entry, NULL, NULL,
1 /* big endian */, ELF_MACHINE, 0);
if (kernel_size < 0) {
fprintf(stderr, "qemu: could not load kernel '%s'\n",
kernel_filename);
exit(1);
}
if (bios_size <= 0) {
/* If there is no bios/monitor, start the application. */
env->pc = entry;
env->npc = entry + 4;
reset_info->entry = entry;
}
}
/* Allocate timers */
grlib_gptimer_create(0x80000300, 2, CPU_CLK, cpu_irqs, 6);
/* Allocate uart */
if (serial_hds[0]) {
grlib_apbuart_create(0x80000100, serial_hds[0], cpu_irqs[3]);
}
}
QEMUMachine leon3_generic_machine = {
.name = "leon3_generic",
.desc = "Leon-3 generic",
.init = leon3_generic_hw_init,
.use_scsi = 0,
};
static void leon3_machine_init(void)
{
qemu_register_machine(&leon3_generic_machine);
}
machine_init(leon3_machine_init);