qemu-e2k/qapi/machine.json

1373 lines
33 KiB
JSON
Raw Normal View History

# -*- Mode: Python -*-
# vim: filetype=python
#
# This work is licensed under the terms of the GNU GPL, version 2 or later.
# See the COPYING file in the top-level directory.
##
# = Machines
##
{ 'include': 'common.json' }
##
# @SysEmuTarget:
#
# The comprehensive enumeration of QEMU system emulation ("softmmu")
# targets. Run "./configure --help" in the project root directory, and
# look for the \*-softmmu targets near the "--target-list" option. The
# individual target constants are not documented here, for the time
# being.
#
# @rx: since 5.0
# @avr: since 5.1
#
# Notes: The resulting QMP strings can be appended to the "qemu-system-"
# prefix to produce the corresponding QEMU executable name. This
# is true even for "qemu-system-x86_64".
#
# Since: 3.0
##
{ 'enum' : 'SysEmuTarget',
'data' : [ 'aarch64', 'alpha', 'arm', 'avr', 'cris', 'hppa', 'i386',
'm68k', 'microblaze', 'microblazeel', 'mips', 'mips64',
'mips64el', 'mipsel', 'nios2', 'or1k', 'ppc',
'ppc64', 'riscv32', 'riscv64', 'rx', 's390x', 'sh4',
'sh4eb', 'sparc', 'sparc64', 'tricore',
'x86_64', 'xtensa', 'xtensaeb' ] }
##
# @CpuS390State:
#
# An enumeration of cpu states that can be assumed by a virtual
# S390 CPU
#
# Since: 2.12
##
{ 'enum': 'CpuS390State',
'prefix': 'S390_CPU_STATE',
'data': [ 'uninitialized', 'stopped', 'check-stop', 'operating', 'load' ] }
##
# @CpuInfoS390:
#
# Additional information about a virtual S390 CPU
#
# @cpu-state: the virtual CPU's state
#
# Since: 2.12
##
{ 'struct': 'CpuInfoS390', 'data': { 'cpu-state': 'CpuS390State' } }
##
# @CpuInfoFast:
#
# Information about a virtual CPU
#
# @cpu-index: index of the virtual CPU
#
# @qom-path: path to the CPU object in the QOM tree
#
# @thread-id: ID of the underlying host thread
#
# @props: properties describing to which node/socket/core/thread
# virtual CPU belongs to, provided if supported by board
#
# @target: the QEMU system emulation target, which determines which
# additional fields will be listed (since 3.0)
#
# Since: 2.12
#
##
{ 'union' : 'CpuInfoFast',
'base' : { 'cpu-index' : 'int',
'qom-path' : 'str',
'thread-id' : 'int',
'*props' : 'CpuInstanceProperties',
'target' : 'SysEmuTarget' },
'discriminator' : 'target',
'data' : { 's390x' : 'CpuInfoS390' } }
##
# @query-cpus-fast:
#
# Returns information about all virtual CPUs.
#
# Returns: list of @CpuInfoFast
#
# Since: 2.12
#
# Example:
#
# -> { "execute": "query-cpus-fast" }
# <- { "return": [
# {
# "thread-id": 25627,
# "props": {
# "core-id": 0,
# "thread-id": 0,
# "socket-id": 0
# },
# "qom-path": "/machine/unattached/device[0]",
# "arch":"x86",
# "target":"x86_64",
# "cpu-index": 0
# },
# {
# "thread-id": 25628,
# "props": {
# "core-id": 0,
# "thread-id": 0,
# "socket-id": 1
# },
# "qom-path": "/machine/unattached/device[2]",
# "arch":"x86",
# "target":"x86_64",
# "cpu-index": 1
# }
# ]
# }
##
{ 'command': 'query-cpus-fast', 'returns': [ 'CpuInfoFast' ] }
##
# @MachineInfo:
#
# Information describing a machine.
#
# @name: the name of the machine
#
# @alias: an alias for the machine name
#
# @is-default: whether the machine is default
#
# @cpu-max: maximum number of CPUs supported by the machine type
# (since 1.5)
#
# @hotpluggable-cpus: cpu hotplug via -device is supported (since 2.7)
#
# @numa-mem-supported: true if '-numa node,mem' option is supported by
# the machine type and false otherwise (since 4.1)
#
# @deprecated: if true, the machine type is deprecated and may be removed
# in future versions of QEMU according to the QEMU deprecation
# policy (since 4.1)
#
# @default-cpu-type: default CPU model typename if none is requested via
# the -cpu argument. (since 4.2)
#
# @default-ram-id: the default ID of initial RAM memory backend (since 5.2)
#
# Since: 1.2
##
{ 'struct': 'MachineInfo',
'data': { 'name': 'str', '*alias': 'str',
'*is-default': 'bool', 'cpu-max': 'int',
'hotpluggable-cpus': 'bool', 'numa-mem-supported': 'bool',
'deprecated': 'bool', '*default-cpu-type': 'str',
'*default-ram-id': 'str' } }
##
# @query-machines:
#
# Return a list of supported machines
#
# Returns: a list of MachineInfo
#
# Since: 1.2
##
{ 'command': 'query-machines', 'returns': ['MachineInfo'] }
##
# @CurrentMachineParams:
#
# Information describing the running machine parameters.
#
# @wakeup-suspend-support: true if the machine supports wake up from
# suspend
#
# Since: 4.0
##
{ 'struct': 'CurrentMachineParams',
'data': { 'wakeup-suspend-support': 'bool'} }
##
# @query-current-machine:
#
# Return information on the current virtual machine.
#
# Returns: CurrentMachineParams
#
# Since: 4.0
##
{ 'command': 'query-current-machine', 'returns': 'CurrentMachineParams' }
##
# @TargetInfo:
#
# Information describing the QEMU target.
#
# @arch: the target architecture
#
# Since: 1.2
##
{ 'struct': 'TargetInfo',
'data': { 'arch': 'SysEmuTarget' } }
##
# @query-target:
#
# Return information about the target for this QEMU
#
# Returns: TargetInfo
#
# Since: 1.2
##
{ 'command': 'query-target', 'returns': 'TargetInfo' }
##
# @UuidInfo:
#
# Guest UUID information (Universally Unique Identifier).
#
# @UUID: the UUID of the guest
#
# Since: 0.14
#
# Notes: If no UUID was specified for the guest, a null UUID is returned.
##
{ 'struct': 'UuidInfo', 'data': {'UUID': 'str'} }
##
# @query-uuid:
#
# Query the guest UUID information.
#
# Returns: The @UuidInfo for the guest
#
# Since: 0.14
#
# Example:
#
# -> { "execute": "query-uuid" }
# <- { "return": { "UUID": "550e8400-e29b-41d4-a716-446655440000" } }
#
##
{ 'command': 'query-uuid', 'returns': 'UuidInfo', 'allow-preconfig': true }
##
# @GuidInfo:
#
# GUID information.
#
# @guid: the globally unique identifier
#
# Since: 2.9
##
{ 'struct': 'GuidInfo', 'data': {'guid': 'str'} }
##
# @query-vm-generation-id:
#
# Show Virtual Machine Generation ID
#
# Since: 2.9
##
{ 'command': 'query-vm-generation-id', 'returns': 'GuidInfo' }
##
# @system_reset:
#
# Performs a hard reset of a guest.
#
# Since: 0.14
#
# Example:
#
# -> { "execute": "system_reset" }
# <- { "return": {} }
#
##
{ 'command': 'system_reset' }
##
# @system_powerdown:
#
# Requests that a guest perform a powerdown operation.
#
# Since: 0.14
#
# Notes: A guest may or may not respond to this command. This command
# returning does not indicate that a guest has accepted the request or
# that it has shut down. Many guests will respond to this command by
# prompting the user in some way.
# Example:
#
# -> { "execute": "system_powerdown" }
# <- { "return": {} }
#
##
{ 'command': 'system_powerdown' }
##
# @system_wakeup:
#
# Wake up guest from suspend. If the guest has wake-up from suspend
# support enabled (wakeup-suspend-support flag from
# query-current-machine), wake-up guest from suspend if the guest is
# in SUSPENDED state. Return an error otherwise.
#
# Since: 1.1
#
# Returns: nothing.
#
# Note: prior to 4.0, this command does nothing in case the guest
# isn't suspended.
#
# Example:
#
# -> { "execute": "system_wakeup" }
# <- { "return": {} }
#
##
{ 'command': 'system_wakeup' }
##
# @LostTickPolicy:
#
# Policy for handling lost ticks in timer devices. Ticks end up getting
# lost when, for example, the guest is paused.
#
# @discard: throw away the missed ticks and continue with future injection
# normally. The guest OS will see the timer jump ahead by a
# potentially quite significant amount all at once, as if the
# intervening chunk of time had simply not existed; needless to
# say, such a sudden jump can easily confuse a guest OS which is
# not specifically prepared to deal with it. Assuming the guest
# OS can deal correctly with the time jump, the time in the guest
# and in the host should now match.
#
# @delay: continue to deliver ticks at the normal rate. The guest OS will
# not notice anything is amiss, as from its point of view time will
# have continued to flow normally. The time in the guest should now
# be behind the time in the host by exactly the amount of time during
# which ticks have been missed.
#
# @slew: deliver ticks at a higher rate to catch up with the missed ticks.
# The guest OS will not notice anything is amiss, as from its point
# of view time will have continued to flow normally. Once the timer
# has managed to catch up with all the missing ticks, the time in
# the guest and in the host should match.
#
# Since: 2.0
##
{ 'enum': 'LostTickPolicy',
'data': ['discard', 'delay', 'slew' ] }
##
# @inject-nmi:
#
# Injects a Non-Maskable Interrupt into the default CPU (x86/s390) or all CPUs (ppc64).
# The command fails when the guest doesn't support injecting.
#
# Returns: If successful, nothing
#
# Since: 0.14
#
# Note: prior to 2.1, this command was only supported for x86 and s390 VMs
#
# Example:
#
# -> { "execute": "inject-nmi" }
# <- { "return": {} }
#
##
{ 'command': 'inject-nmi' }
##
# @KvmInfo:
#
# Information about support for KVM acceleration
#
# @enabled: true if KVM acceleration is active
#
# @present: true if KVM acceleration is built into this executable
#
# Since: 0.14
##
{ 'struct': 'KvmInfo', 'data': {'enabled': 'bool', 'present': 'bool'} }
##
# @query-kvm:
#
# Returns information about KVM acceleration
#
# Returns: @KvmInfo
#
# Since: 0.14
#
# Example:
#
# -> { "execute": "query-kvm" }
# <- { "return": { "enabled": true, "present": true } }
#
##
{ 'command': 'query-kvm', 'returns': 'KvmInfo' }
##
# @NumaOptionsType:
#
# @node: NUMA nodes configuration
#
# @dist: NUMA distance configuration (since 2.10)
#
# @cpu: property based CPU(s) to node mapping (Since: 2.10)
#
# @hmat-lb: memory latency and bandwidth information (Since: 5.0)
#
# @hmat-cache: memory side cache information (Since: 5.0)
#
# Since: 2.1
##
{ 'enum': 'NumaOptionsType',
'data': [ 'node', 'dist', 'cpu', 'hmat-lb', 'hmat-cache' ] }
##
# @NumaOptions:
#
# A discriminated record of NUMA options. (for OptsVisitor)
#
# Since: 2.1
##
{ 'union': 'NumaOptions',
'base': { 'type': 'NumaOptionsType' },
'discriminator': 'type',
'data': {
'node': 'NumaNodeOptions',
'dist': 'NumaDistOptions',
'cpu': 'NumaCpuOptions',
'hmat-lb': 'NumaHmatLBOptions',
'hmat-cache': 'NumaHmatCacheOptions' }}
##
# @NumaNodeOptions:
#
# Create a guest NUMA node. (for OptsVisitor)
#
# @nodeid: NUMA node ID (increase by 1 from 0 if omitted)
#
# @cpus: VCPUs belonging to this node (assign VCPUS round-robin
# if omitted)
#
# @mem: memory size of this node; mutually exclusive with @memdev.
# Equally divide total memory among nodes if both @mem and @memdev are
# omitted.
#
# @memdev: memory backend object. If specified for one node,
# it must be specified for all nodes.
#
# @initiator: defined in ACPI 6.3 Chapter 5.2.27.3 Table 5-145,
# points to the nodeid which has the memory controller
# responsible for this NUMA node. This field provides
# additional information as to the initiator node that
# is closest (as in directly attached) to this node, and
# therefore has the best performance (since 5.0)
#
# Since: 2.1
##
{ 'struct': 'NumaNodeOptions',
'data': {
'*nodeid': 'uint16',
'*cpus': ['uint16'],
'*mem': 'size',
'*memdev': 'str',
'*initiator': 'uint16' }}
##
# @NumaDistOptions:
#
# Set the distance between 2 NUMA nodes.
#
# @src: source NUMA node.
#
# @dst: destination NUMA node.
#
# @val: NUMA distance from source node to destination node.
# When a node is unreachable from another node, set the distance
# between them to 255.
#
# Since: 2.10
##
{ 'struct': 'NumaDistOptions',
'data': {
'src': 'uint16',
'dst': 'uint16',
'val': 'uint8' }}
##
# @X86CPURegister32:
#
# A X86 32-bit register
#
# Since: 1.5
##
{ 'enum': 'X86CPURegister32',
'data': [ 'EAX', 'EBX', 'ECX', 'EDX', 'ESP', 'EBP', 'ESI', 'EDI' ] }
##
# @X86CPUFeatureWordInfo:
#
# Information about a X86 CPU feature word
#
# @cpuid-input-eax: Input EAX value for CPUID instruction for that feature word
#
# @cpuid-input-ecx: Input ECX value for CPUID instruction for that
# feature word
#
# @cpuid-register: Output register containing the feature bits
#
# @features: value of output register, containing the feature bits
#
# Since: 1.5
##
{ 'struct': 'X86CPUFeatureWordInfo',
'data': { 'cpuid-input-eax': 'int',
'*cpuid-input-ecx': 'int',
'cpuid-register': 'X86CPURegister32',
'features': 'int' } }
##
# @DummyForceArrays:
#
# Not used by QMP; hack to let us use X86CPUFeatureWordInfoList internally
#
# Since: 2.5
##
{ 'struct': 'DummyForceArrays',
'data': { 'unused': ['X86CPUFeatureWordInfo'] } }
##
# @NumaCpuOptions:
#
# Option "-numa cpu" overrides default cpu to node mapping.
# It accepts the same set of cpu properties as returned by
# query-hotpluggable-cpus[].props, where node-id could be used to
# override default node mapping.
#
# Since: 2.10
##
{ 'struct': 'NumaCpuOptions',
'base': 'CpuInstanceProperties',
'data' : {} }
##
# @HmatLBMemoryHierarchy:
#
# The memory hierarchy in the System Locality Latency and Bandwidth
# Information Structure of HMAT (Heterogeneous Memory Attribute Table)
#
# For more information about @HmatLBMemoryHierarchy, see chapter
# 5.2.27.4: Table 5-146: Field "Flags" of ACPI 6.3 spec.
#
# @memory: the structure represents the memory performance
#
# @first-level: first level of memory side cache
#
# @second-level: second level of memory side cache
#
# @third-level: third level of memory side cache
#
# Since: 5.0
##
{ 'enum': 'HmatLBMemoryHierarchy',
'data': [ 'memory', 'first-level', 'second-level', 'third-level' ] }
##
# @HmatLBDataType:
#
# Data type in the System Locality Latency and Bandwidth
# Information Structure of HMAT (Heterogeneous Memory Attribute Table)
#
# For more information about @HmatLBDataType, see chapter
# 5.2.27.4: Table 5-146: Field "Data Type" of ACPI 6.3 spec.
#
# @access-latency: access latency (nanoseconds)
#
# @read-latency: read latency (nanoseconds)
#
# @write-latency: write latency (nanoseconds)
#
# @access-bandwidth: access bandwidth (Bytes per second)
#
# @read-bandwidth: read bandwidth (Bytes per second)
#
# @write-bandwidth: write bandwidth (Bytes per second)
#
# Since: 5.0
##
{ 'enum': 'HmatLBDataType',
'data': [ 'access-latency', 'read-latency', 'write-latency',
'access-bandwidth', 'read-bandwidth', 'write-bandwidth' ] }
##
# @NumaHmatLBOptions:
#
# Set the system locality latency and bandwidth information
# between Initiator and Target proximity Domains.
#
# For more information about @NumaHmatLBOptions, see chapter
# 5.2.27.4: Table 5-146 of ACPI 6.3 spec.
#
# @initiator: the Initiator Proximity Domain.
#
# @target: the Target Proximity Domain.
#
# @hierarchy: the Memory Hierarchy. Indicates the performance
# of memory or side cache.
#
# @data-type: presents the type of data, access/read/write
# latency or hit latency.
#
# @latency: the value of latency from @initiator to @target
# proximity domain, the latency unit is "ns(nanosecond)".
#
# @bandwidth: the value of bandwidth between @initiator and @target
# proximity domain, the bandwidth unit is
# "Bytes per second".
#
# Since: 5.0
##
{ 'struct': 'NumaHmatLBOptions',
'data': {
'initiator': 'uint16',
'target': 'uint16',
'hierarchy': 'HmatLBMemoryHierarchy',
'data-type': 'HmatLBDataType',
'*latency': 'uint64',
'*bandwidth': 'size' }}
##
# @HmatCacheAssociativity:
#
# Cache associativity in the Memory Side Cache Information Structure
# of HMAT
#
# For more information of @HmatCacheAssociativity, see chapter
# 5.2.27.5: Table 5-147 of ACPI 6.3 spec.
#
# @none: None (no memory side cache in this proximity domain,
# or cache associativity unknown)
#
# @direct: Direct Mapped
#
# @complex: Complex Cache Indexing (implementation specific)
#
# Since: 5.0
##
{ 'enum': 'HmatCacheAssociativity',
'data': [ 'none', 'direct', 'complex' ] }
##
# @HmatCacheWritePolicy:
#
# Cache write policy in the Memory Side Cache Information Structure
# of HMAT
#
# For more information of @HmatCacheWritePolicy, see chapter
# 5.2.27.5: Table 5-147: Field "Cache Attributes" of ACPI 6.3 spec.
#
# @none: None (no memory side cache in this proximity domain,
# or cache write policy unknown)
#
# @write-back: Write Back (WB)
#
# @write-through: Write Through (WT)
#
# Since: 5.0
##
{ 'enum': 'HmatCacheWritePolicy',
'data': [ 'none', 'write-back', 'write-through' ] }
##
# @NumaHmatCacheOptions:
#
# Set the memory side cache information for a given memory domain.
#
# For more information of @NumaHmatCacheOptions, see chapter
# 5.2.27.5: Table 5-147: Field "Cache Attributes" of ACPI 6.3 spec.
#
# @node-id: the memory proximity domain to which the memory belongs.
#
# @size: the size of memory side cache in bytes.
#
# @level: the cache level described in this structure.
#
# @associativity: the cache associativity,
# none/direct-mapped/complex(complex cache indexing).
#
# @policy: the write policy, none/write-back/write-through.
#
# @line: the cache Line size in bytes.
#
# Since: 5.0
##
{ 'struct': 'NumaHmatCacheOptions',
'data': {
'node-id': 'uint32',
'size': 'size',
'level': 'uint8',
'associativity': 'HmatCacheAssociativity',
'policy': 'HmatCacheWritePolicy',
'line': 'uint16' }}
##
# @memsave:
#
# Save a portion of guest memory to a file.
#
# @val: the virtual address of the guest to start from
#
# @size: the size of memory region to save
#
# @filename: the file to save the memory to as binary data
#
# @cpu-index: the index of the virtual CPU to use for translating the
# virtual address (defaults to CPU 0)
#
# Returns: Nothing on success
#
# Since: 0.14
#
# Notes: Errors were not reliably returned until 1.1
#
# Example:
#
# -> { "execute": "memsave",
# "arguments": { "val": 10,
# "size": 100,
# "filename": "/tmp/virtual-mem-dump" } }
# <- { "return": {} }
#
##
{ 'command': 'memsave',
'data': {'val': 'int', 'size': 'int', 'filename': 'str', '*cpu-index': 'int'} }
##
# @pmemsave:
#
# Save a portion of guest physical memory to a file.
#
# @val: the physical address of the guest to start from
#
# @size: the size of memory region to save
#
# @filename: the file to save the memory to as binary data
#
# Returns: Nothing on success
#
# Since: 0.14
#
# Notes: Errors were not reliably returned until 1.1
#
# Example:
#
# -> { "execute": "pmemsave",
# "arguments": { "val": 10,
# "size": 100,
# "filename": "/tmp/physical-mem-dump" } }
# <- { "return": {} }
#
##
{ 'command': 'pmemsave',
'data': {'val': 'int', 'size': 'int', 'filename': 'str'} }
##
# @Memdev:
#
# Information about memory backend
#
# @id: backend's ID if backend has 'id' property (since 2.9)
#
# @size: memory backend size
#
# @merge: whether memory merge support is enabled
#
# @dump: whether memory backend's memory is included in a core dump
#
# @prealloc: whether memory was preallocated
#
# @share: whether memory is private to QEMU or shared (since 6.1)
#
# @reserve: whether swap space (or huge pages) was reserved if applicable.
# This corresponds to the user configuration and not the actual
# behavior implemented in the OS to perform the reservation.
# For example, Linux will never reserve swap space for shared
# file mappings. (since 6.1)
#
# @host-nodes: host nodes for its memory policy
#
# @policy: memory policy of memory backend
#
# Since: 2.1
##
{ 'struct': 'Memdev',
'data': {
'*id': 'str',
'size': 'size',
'merge': 'bool',
'dump': 'bool',
'prealloc': 'bool',
'share': 'bool',
'*reserve': 'bool',
'host-nodes': ['uint16'],
'policy': 'HostMemPolicy' }}
##
# @query-memdev:
#
# Returns information for all memory backends.
#
# Returns: a list of @Memdev.
#
# Since: 2.1
#
# Example:
#
# -> { "execute": "query-memdev" }
# <- { "return": [
# {
# "id": "mem1",
# "size": 536870912,
# "merge": false,
# "dump": true,
# "prealloc": false,
# "host-nodes": [0, 1],
# "policy": "bind"
# },
# {
# "size": 536870912,
# "merge": false,
# "dump": true,
# "prealloc": true,
# "host-nodes": [2, 3],
# "policy": "preferred"
# }
# ]
# }
#
##
{ 'command': 'query-memdev', 'returns': ['Memdev'], 'allow-preconfig': true }
##
# @CpuInstanceProperties:
#
# List of properties to be used for hotplugging a CPU instance,
# it should be passed by management with device_add command when
# a CPU is being hotplugged.
#
# @node-id: NUMA node ID the CPU belongs to
# @socket-id: socket number within node/board the CPU belongs to
# @die-id: die number within node/board the CPU belongs to (Since 4.1)
# @core-id: core number within die the CPU belongs to
# @thread-id: thread number within core the CPU belongs to
#
# Note: currently there are 5 properties that could be present
# but management should be prepared to pass through other
# properties with device_add command to allow for future
# interface extension. This also requires the filed names to be kept in
# sync with the properties passed to -device/device_add.
#
# Since: 2.7
##
{ 'struct': 'CpuInstanceProperties',
'data': { '*node-id': 'int',
'*socket-id': 'int',
'*die-id': 'int',
'*core-id': 'int',
'*thread-id': 'int'
}
}
##
# @HotpluggableCPU:
#
# @type: CPU object type for usage with device_add command
# @props: list of properties to be used for hotplugging CPU
# @vcpus-count: number of logical VCPU threads @HotpluggableCPU provides
# @qom-path: link to existing CPU object if CPU is present or
# omitted if CPU is not present.
#
# Since: 2.7
##
{ 'struct': 'HotpluggableCPU',
'data': { 'type': 'str',
'vcpus-count': 'int',
'props': 'CpuInstanceProperties',
'*qom-path': 'str'
}
}
##
# @query-hotpluggable-cpus:
#
# TODO: Better documentation; currently there is none.
#
# Returns: a list of HotpluggableCPU objects.
#
# Since: 2.7
#
# Example:
#
# For pseries machine type started with -smp 2,cores=2,maxcpus=4 -cpu POWER8:
#
# -> { "execute": "query-hotpluggable-cpus" }
# <- {"return": [
# { "props": { "core": 8 }, "type": "POWER8-spapr-cpu-core",
# "vcpus-count": 1 },
# { "props": { "core": 0 }, "type": "POWER8-spapr-cpu-core",
# "vcpus-count": 1, "qom-path": "/machine/unattached/device[0]"}
# ]}'
#
# For pc machine type started with -smp 1,maxcpus=2:
#
# -> { "execute": "query-hotpluggable-cpus" }
# <- {"return": [
# {
# "type": "qemu64-x86_64-cpu", "vcpus-count": 1,
# "props": {"core-id": 0, "socket-id": 1, "thread-id": 0}
# },
# {
# "qom-path": "/machine/unattached/device[0]",
# "type": "qemu64-x86_64-cpu", "vcpus-count": 1,
# "props": {"core-id": 0, "socket-id": 0, "thread-id": 0}
# }
# ]}
#
# For s390x-virtio-ccw machine type started with -smp 1,maxcpus=2 -cpu qemu
# (Since: 2.11):
#
# -> { "execute": "query-hotpluggable-cpus" }
# <- {"return": [
# {
# "type": "qemu-s390x-cpu", "vcpus-count": 1,
# "props": { "core-id": 1 }
# },
# {
# "qom-path": "/machine/unattached/device[0]",
# "type": "qemu-s390x-cpu", "vcpus-count": 1,
# "props": { "core-id": 0 }
# }
# ]}
#
##
{ 'command': 'query-hotpluggable-cpus', 'returns': ['HotpluggableCPU'],
'allow-preconfig': true }
##
# @set-numa-node:
#
# Runtime equivalent of '-numa' CLI option, available at
# preconfigure stage to configure numa mapping before initializing
# machine.
#
# Since 3.0
##
{ 'command': 'set-numa-node', 'boxed': true,
'data': 'NumaOptions',
'allow-preconfig': true
}
##
# @balloon:
#
# Request the balloon driver to change its balloon size.
#
# @value: the target logical size of the VM in bytes.
# We can deduce the size of the balloon using this formula:
#
# logical_vm_size = vm_ram_size - balloon_size
#
# From it we have: balloon_size = vm_ram_size - @value
#
# Returns: - Nothing on success
# - If the balloon driver is enabled but not functional because the KVM
# kernel module cannot support it, KvmMissingCap
# - If no balloon device is present, DeviceNotActive
#
# Notes: This command just issues a request to the guest. When it returns,
# the balloon size may not have changed. A guest can change the balloon
# size independent of this command.
#
# Since: 0.14
#
# Example:
#
# -> { "execute": "balloon", "arguments": { "value": 536870912 } }
# <- { "return": {} }
#
# With a 2.5GiB guest this command inflated the ballon to 3GiB.
#
##
{ 'command': 'balloon', 'data': {'value': 'int'} }
##
# @BalloonInfo:
#
# Information about the guest balloon device.
#
# @actual: the logical size of the VM in bytes
# Formula used: logical_vm_size = vm_ram_size - balloon_size
#
# Since: 0.14
#
##
{ 'struct': 'BalloonInfo', 'data': {'actual': 'int' } }
##
# @query-balloon:
#
# Return information about the balloon device.
#
# Returns: - @BalloonInfo on success
# - If the balloon driver is enabled but not functional because the KVM
# kernel module cannot support it, KvmMissingCap
# - If no balloon device is present, DeviceNotActive
#
# Since: 0.14
#
# Example:
#
# -> { "execute": "query-balloon" }
# <- { "return": {
# "actual": 1073741824,
# }
# }
#
##
{ 'command': 'query-balloon', 'returns': 'BalloonInfo' }
##
# @BALLOON_CHANGE:
#
# Emitted when the guest changes the actual BALLOON level. This value is
# equivalent to the @actual field return by the 'query-balloon' command
#
# @actual: the logical size of the VM in bytes
# Formula used: logical_vm_size = vm_ram_size - balloon_size
#
# Note: this event is rate-limited.
#
# Since: 1.2
#
# Example:
#
# <- { "event": "BALLOON_CHANGE",
# "data": { "actual": 944766976 },
# "timestamp": { "seconds": 1267020223, "microseconds": 435656 } }
#
##
{ 'event': 'BALLOON_CHANGE',
'data': { 'actual': 'int' } }
##
# @MemoryInfo:
#
# Actual memory information in bytes.
#
# @base-memory: size of "base" memory specified with command line
# option -m.
#
# @plugged-memory: size of memory that can be hot-unplugged. This field
# is omitted if target doesn't support memory hotplug
# (i.e. CONFIG_MEM_DEVICE not defined at build time).
#
# Since: 2.11
##
{ 'struct': 'MemoryInfo',
'data' : { 'base-memory': 'size', '*plugged-memory': 'size' } }
##
# @query-memory-size-summary:
#
# Return the amount of initially allocated and present hotpluggable (if
# enabled) memory in bytes.
#
# Example:
#
# -> { "execute": "query-memory-size-summary" }
# <- { "return": { "base-memory": 4294967296, "plugged-memory": 0 } }
#
# Since: 2.11
##
{ 'command': 'query-memory-size-summary', 'returns': 'MemoryInfo' }
##
# @PCDIMMDeviceInfo:
#
# PCDIMMDevice state information
#
# @id: device's ID
#
# @addr: physical address, where device is mapped
#
# @size: size of memory that the device provides
#
# @slot: slot number at which device is plugged in
#
# @node: NUMA node number where device is plugged in
#
# @memdev: memory backend linked with device
#
# @hotplugged: true if device was hotplugged
#
# @hotpluggable: true if device if could be added/removed while machine is running
#
# Since: 2.1
##
{ 'struct': 'PCDIMMDeviceInfo',
'data': { '*id': 'str',
'addr': 'int',
'size': 'int',
'slot': 'int',
'node': 'int',
'memdev': 'str',
'hotplugged': 'bool',
'hotpluggable': 'bool'
}
}
##
# @VirtioPMEMDeviceInfo:
#
# VirtioPMEM state information
#
# @id: device's ID
#
# @memaddr: physical address in memory, where device is mapped
#
# @size: size of memory that the device provides
#
# @memdev: memory backend linked with device
#
# Since: 4.1
##
{ 'struct': 'VirtioPMEMDeviceInfo',
'data': { '*id': 'str',
'memaddr': 'size',
'size': 'size',
'memdev': 'str'
}
}
##
# @VirtioMEMDeviceInfo:
#
# VirtioMEMDevice state information
#
# @id: device's ID
#
# @memaddr: physical address in memory, where device is mapped
#
# @requested-size: the user requested size of the device
#
# @size: the (current) size of memory that the device provides
#
# @max-size: the maximum size of memory that the device can provide
#
# @block-size: the block size of memory that the device provides
#
# @node: NUMA node number where device is assigned to
#
# @memdev: memory backend linked with the region
#
# Since: 5.1
##
{ 'struct': 'VirtioMEMDeviceInfo',
'data': { '*id': 'str',
'memaddr': 'size',
'requested-size': 'size',
'size': 'size',
'max-size': 'size',
'block-size': 'size',
'node': 'int',
'memdev': 'str'
}
}
##
# @MemoryDeviceInfoKind:
#
# Since: 2.1
##
{ 'enum': 'MemoryDeviceInfoKind',
'data': [ 'dimm', 'nvdimm', 'virtio-pmem', 'virtio-mem' ] }
##
# @PCDIMMDeviceInfoWrapper:
#
# Since: 2.1
##
{ 'struct': 'PCDIMMDeviceInfoWrapper',
'data': { 'data': 'PCDIMMDeviceInfo' } }
##
# @VirtioPMEMDeviceInfoWrapper:
#
# Since: 2.1
##
{ 'struct': 'VirtioPMEMDeviceInfoWrapper',
'data': { 'data': 'VirtioPMEMDeviceInfo' } }
##
# @VirtioMEMDeviceInfoWrapper:
#
# Since: 2.1
##
{ 'struct': 'VirtioMEMDeviceInfoWrapper',
'data': { 'data': 'VirtioMEMDeviceInfo' } }
##
# @MemoryDeviceInfo:
#
# Union containing information about a memory device
#
# nvdimm is included since 2.12. virtio-pmem is included since 4.1.
# virtio-mem is included since 5.1.
#
# Since: 2.1
##
{ 'union': 'MemoryDeviceInfo',
'base': { 'type': 'MemoryDeviceInfoKind' },
'discriminator': 'type',
'data': { 'dimm': 'PCDIMMDeviceInfoWrapper',
'nvdimm': 'PCDIMMDeviceInfoWrapper',
'virtio-pmem': 'VirtioPMEMDeviceInfoWrapper',
'virtio-mem': 'VirtioMEMDeviceInfoWrapper'
}
}
vl: Add sgx compound properties to expose SGX EPC sections to guest Because SGX EPC is enumerated through CPUID, EPC "devices" need to be realized prior to realizing the vCPUs themselves, i.e. long before generic devices are parsed and realized. From a virtualization perspective, the CPUID aspect also means that EPC sections cannot be hotplugged without paravirtualizing the guest kernel (hardware does not support hotplugging as EPC sections must be locked down during pre-boot to provide EPC's security properties). So even though EPC sections could be realized through the generic -devices command, they need to be created much earlier for them to actually be usable by the guest. Place all EPC sections in a contiguous block, somewhat arbitrarily starting after RAM above 4g. Ensuring EPC is in a contiguous region simplifies calculations, e.g. device memory base, PCI hole, etc..., allows dynamic calculation of the total EPC size, e.g. exposing EPC to guests does not require -maxmem, and last but not least allows all of EPC to be enumerated in a single ACPI entry, which is expected by some kernels, e.g. Windows 7 and 8. The new compound properties command for sgx like below: ...... -object memory-backend-epc,id=mem1,size=28M,prealloc=on \ -object memory-backend-epc,id=mem2,size=10M \ -M sgx-epc.0.memdev=mem1,sgx-epc.1.memdev=mem2 Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com> Signed-off-by: Yang Zhong <yang.zhong@intel.com> Message-Id: <20210719112136.57018-6-yang.zhong@intel.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-09-28 10:40:58 +02:00
##
# @SgxEPC:
#
# Sgx EPC cmdline information
#
# @memdev: memory backend linked with device
#
# Since: 6.2
##
{ 'struct': 'SgxEPC',
'data': { 'memdev': 'str' } }
##
# @SgxEPCProperties:
#
# SGX properties of machine types.
#
# @sgx-epc: list of ids of memory-backend-epc objects.
#
# Since: 6.2
##
{ 'struct': 'SgxEPCProperties',
'data': { 'sgx-epc': ['SgxEPC'] }
}
##
# @query-memory-devices:
#
# Lists available memory devices and their state
#
# Since: 2.1
#
# Example:
#
# -> { "execute": "query-memory-devices" }
# <- { "return": [ { "data":
# { "addr": 5368709120,
# "hotpluggable": true,
# "hotplugged": true,
# "id": "d1",
# "memdev": "/objects/memX",
# "node": 0,
# "size": 1073741824,
# "slot": 0},
# "type": "dimm"
# } ] }
#
##
{ 'command': 'query-memory-devices', 'returns': ['MemoryDeviceInfo'] }
##
# @MEMORY_DEVICE_SIZE_CHANGE:
#
# Emitted when the size of a memory device changes. Only emitted for memory
# devices that can actually change the size (e.g., virtio-mem due to guest
# action).
#
# @id: device's ID
# @size: the new size of memory that the device provides
#
# Note: this event is rate-limited.
#
# Since: 5.1
#
# Example:
#
# <- { "event": "MEMORY_DEVICE_SIZE_CHANGE",
# "data": { "id": "vm0", "size": 1073741824},
# "timestamp": { "seconds": 1588168529, "microseconds": 201316 } }
#
##
{ 'event': 'MEMORY_DEVICE_SIZE_CHANGE',
'data': { '*id': 'str', 'size': 'size' } }
##
# @MEM_UNPLUG_ERROR:
#
# Emitted when memory hot unplug error occurs.
#
# @device: device name
#
# @msg: Informative message
#
# Since: 2.4
#
# Example:
#
# <- { "event": "MEM_UNPLUG_ERROR"
# "data": { "device": "dimm1",
# "msg": "acpi: device unplug for unsupported device"
# },
# "timestamp": { "seconds": 1265044230, "microseconds": 450486 } }
#
##
{ 'event': 'MEM_UNPLUG_ERROR',
'data': { 'device': 'str', 'msg': 'str' } }
##
# @SMPConfiguration:
#
# Schema for CPU topology configuration. A missing value lets
# QEMU figure out a suitable value based on the ones that are provided.
#
# @cpus: number of virtual CPUs in the virtual machine
#
# @sockets: number of sockets in the CPU topology
#
# @dies: number of dies per socket in the CPU topology
#
# @cores: number of cores per thread in the CPU topology
#
# @threads: number of threads per core in the CPU topology
#
# @maxcpus: maximum number of hotpluggable virtual CPUs in the virtual machine
#
# Since: 6.1
##
{ 'struct': 'SMPConfiguration', 'data': {
'*cpus': 'int',
'*sockets': 'int',
'*dies': 'int',
'*cores': 'int',
'*threads': 'int',
'*maxcpus': 'int' } }