qemu-e2k/hw/core/bus.c

326 lines
8.9 KiB
C
Raw Normal View History

/*
* Dynamic device configuration and creation -- buses.
*
* Copyright (c) 2009 CodeSourcery
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, see <http://www.gnu.org/licenses/>.
*/
#include "qemu/osdep.h"
#include "hw/qdev-properties.h"
#include "qemu/ctype.h"
#include "qemu/module.h"
#include "qapi/error.h"
void qbus_set_hotplug_handler(BusState *bus, Object *handler, Error **errp)
{
object_property_set_link(OBJECT(bus), handler,
QDEV_HOTPLUG_HANDLER_PROPERTY, errp);
}
void qbus_set_bus_hotplug_handler(BusState *bus, Error **errp)
{
qbus_set_hotplug_handler(bus, OBJECT(bus), errp);
}
int qbus_walk_children(BusState *bus,
qdev_walkerfn *pre_devfn, qbus_walkerfn *pre_busfn,
qdev_walkerfn *post_devfn, qbus_walkerfn *post_busfn,
void *opaque)
{
BusChild *kid;
int err;
if (pre_busfn) {
err = pre_busfn(bus, opaque);
if (err) {
return err;
}
}
QTAILQ_FOREACH(kid, &bus->children, sibling) {
err = qdev_walk_children(kid->child,
pre_devfn, pre_busfn,
post_devfn, post_busfn, opaque);
if (err < 0) {
return err;
}
}
if (post_busfn) {
err = post_busfn(bus, opaque);
if (err) {
return err;
}
}
return 0;
}
void bus_cold_reset(BusState *bus)
{
resettable_reset(OBJECT(bus), RESET_TYPE_COLD);
}
bool bus_is_in_reset(BusState *bus)
{
return resettable_is_in_reset(OBJECT(bus));
}
static ResettableState *bus_get_reset_state(Object *obj)
{
BusState *bus = BUS(obj);
return &bus->reset;
}
static void bus_reset_child_foreach(Object *obj, ResettableChildCallback cb,
void *opaque, ResetType type)
{
BusState *bus = BUS(obj);
BusChild *kid;
QTAILQ_FOREACH(kid, &bus->children, sibling) {
cb(OBJECT(kid->child), opaque, type);
}
}
static void qbus_realize(BusState *bus, DeviceState *parent, const char *name)
{
const char *typename = object_get_typename(OBJECT(bus));
BusClass *bc;
int i, bus_id;
bus->parent = parent;
if (name) {
bus->name = g_strdup(name);
} else if (bus->parent && bus->parent->id) {
/* parent device has id -> use it plus parent-bus-id for bus name */
bus_id = bus->parent->num_child_bus;
bus->name = g_strdup_printf("%s.%d", bus->parent->id, bus_id);
} else {
/* no id -> use lowercase bus type plus global bus-id for bus name */
bc = BUS_GET_CLASS(bus);
bus_id = bc->automatic_ids++;
bus->name = g_strdup_printf("%s.%d", typename, bus_id);
for (i = 0; bus->name[i]; i++) {
bus->name[i] = qemu_tolower(bus->name[i]);
}
}
if (bus->parent) {
QLIST_INSERT_HEAD(&bus->parent->child_bus, bus, sibling);
bus->parent->num_child_bus++;
qom: Drop parameter @errp of object_property_add() & friends The only way object_property_add() can fail is when a property with the same name already exists. Since our property names are all hardcoded, failure is a programming error, and the appropriate way to handle it is passing &error_abort. Same for its variants, except for object_property_add_child(), which additionally fails when the child already has a parent. Parentage is also under program control, so this is a programming error, too. We have a bit over 500 callers. Almost half of them pass &error_abort, slightly fewer ignore errors, one test case handles errors, and the remaining few callers pass them to their own callers. The previous few commits demonstrated once again that ignoring programming errors is a bad idea. Of the few ones that pass on errors, several violate the Error API. The Error ** argument must be NULL, &error_abort, &error_fatal, or a pointer to a variable containing NULL. Passing an argument of the latter kind twice without clearing it in between is wrong: if the first call sets an error, it no longer points to NULL for the second call. ich9_pm_add_properties(), sparc32_ledma_realize(), sparc32_dma_realize(), xilinx_axidma_realize(), xilinx_enet_realize() are wrong that way. When the one appropriate choice of argument is &error_abort, letting users pick the argument is a bad idea. Drop parameter @errp and assert the preconditions instead. There's one exception to "duplicate property name is a programming error": the way object_property_add() implements the magic (and undocumented) "automatic arrayification". Don't drop @errp there. Instead, rename object_property_add() to object_property_try_add(), and add the obvious wrapper object_property_add(). Signed-off-by: Markus Armbruster <armbru@redhat.com> Reviewed-by: Eric Blake <eblake@redhat.com> Reviewed-by: Paolo Bonzini <pbonzini@redhat.com> Message-Id: <20200505152926.18877-15-armbru@redhat.com> [Two semantic rebase conflicts resolved]
2020-05-05 17:29:22 +02:00
object_property_add_child(OBJECT(bus->parent), bus->name, OBJECT(bus));
object_unref(OBJECT(bus));
} else {
/* The only bus without a parent is the main system bus */
assert(bus == sysbus_get_default());
}
}
static void bus_unparent(Object *obj)
{
BusState *bus = BUS(obj);
BusChild *kid;
/* Only the main system bus has no parent, and that bus is never freed */
assert(bus->parent);
while ((kid = QTAILQ_FIRST(&bus->children)) != NULL) {
DeviceState *dev = kid->child;
object_unparent(OBJECT(dev));
}
QLIST_REMOVE(bus, sibling);
bus->parent->num_child_bus--;
bus->parent = NULL;
}
void qbus_create_inplace(void *bus, size_t size, const char *typename,
DeviceState *parent, const char *name)
{
object_initialize(bus, size, typename);
qbus_realize(bus, parent, name);
}
BusState *qbus_create(const char *typename, DeviceState *parent, const char *name)
{
BusState *bus;
bus = BUS(object_new(typename));
qbus_realize(bus, parent, name);
return bus;
}
static bool bus_get_realized(Object *obj, Error **errp)
{
BusState *bus = BUS(obj);
return bus->realized;
}
static void bus_set_realized(Object *obj, bool value, Error **errp)
{
BusState *bus = BUS(obj);
BusClass *bc = BUS_GET_CLASS(bus);
BusChild *kid;
if (value && !bus->realized) {
if (bc->realize) {
qdev: Unrealize must not fail Devices may have component devices and buses. Device realization may fail. Realization is recursive: a device's realize() method realizes its components, and device_set_realized() realizes its buses (which should in turn realize the devices on that bus, except bus_set_realized() doesn't implement that, yet). When realization of a component or bus fails, we need to roll back: unrealize everything we realized so far. If any of these unrealizes failed, the device would be left in an inconsistent state. Must not happen. device_set_realized() lets it happen: it ignores errors in the roll back code starting at label child_realize_fail. Since realization is recursive, unrealization must be recursive, too. But how could a partly failed unrealize be rolled back? We'd have to re-realize, which can fail. This design is fundamentally broken. device_set_realized() does not roll back at all. Instead, it keeps unrealizing, ignoring further errors. It can screw up even for a device with no buses: if the lone dc->unrealize() fails, it still unregisters vmstate, and calls listeners' unrealize() callback. bus_set_realized() does not roll back either. Instead, it stops unrealizing. Fortunately, no unrealize method can fail, as we'll see below. To fix the design error, drop parameter @errp from all the unrealize methods. Any unrealize method that uses @errp now needs an update. This leads us to unrealize() methods that can fail. Merely passing it to another unrealize method cannot cause failure, though. Here are the ones that do other things with @errp: * virtio_serial_device_unrealize() Fails when qbus_set_hotplug_handler() fails, but still does all the other work. On failure, the device would stay realized with its resources completely gone. Oops. Can't happen, because qbus_set_hotplug_handler() can't actually fail here. Pass &error_abort to qbus_set_hotplug_handler() instead. * hw/ppc/spapr_drc.c's unrealize() Fails when object_property_del() fails, but all the other work is already done. On failure, the device would stay realized with its vmstate registration gone. Oops. Can't happen, because object_property_del() can't actually fail here. Pass &error_abort to object_property_del() instead. * spapr_phb_unrealize() Fails and bails out when remove_drcs() fails, but other work is already done. On failure, the device would stay realized with some of its resources gone. Oops. remove_drcs() fails only when chassis_from_bus()'s object_property_get_uint() fails, and it can't here. Pass &error_abort to remove_drcs() instead. Therefore, no unrealize method can fail before this patch. device_set_realized()'s recursive unrealization via bus uses object_property_set_bool(). Can't drop @errp there, so pass &error_abort. We similarly unrealize with object_property_set_bool() elsewhere, always ignoring errors. Pass &error_abort instead. Several unrealize methods no longer handle errors from other unrealize methods: virtio_9p_device_unrealize(), virtio_input_device_unrealize(), scsi_qdev_unrealize(), ... Much of the deleted error handling looks wrong anyway. One unrealize methods no longer ignore such errors: usb_ehci_pci_exit(). Several realize methods no longer ignore errors when rolling back: v9fs_device_realize_common(), pci_qdev_unrealize(), spapr_phb_realize(), usb_qdev_realize(), vfio_ccw_realize(), virtio_device_realize(). Signed-off-by: Markus Armbruster <armbru@redhat.com> Reviewed-by: Philippe Mathieu-Daudé <philmd@redhat.com> Reviewed-by: Paolo Bonzini <pbonzini@redhat.com> Message-Id: <20200505152926.18877-17-armbru@redhat.com>
2020-05-05 17:29:24 +02:00
bc->realize(bus, errp);
}
/* TODO: recursive realization */
} else if (!value && bus->realized) {
QTAILQ_FOREACH(kid, &bus->children, sibling) {
DeviceState *dev = kid->child;
object_property_set_bool(OBJECT(dev), false, "realized",
qdev: Unrealize must not fail Devices may have component devices and buses. Device realization may fail. Realization is recursive: a device's realize() method realizes its components, and device_set_realized() realizes its buses (which should in turn realize the devices on that bus, except bus_set_realized() doesn't implement that, yet). When realization of a component or bus fails, we need to roll back: unrealize everything we realized so far. If any of these unrealizes failed, the device would be left in an inconsistent state. Must not happen. device_set_realized() lets it happen: it ignores errors in the roll back code starting at label child_realize_fail. Since realization is recursive, unrealization must be recursive, too. But how could a partly failed unrealize be rolled back? We'd have to re-realize, which can fail. This design is fundamentally broken. device_set_realized() does not roll back at all. Instead, it keeps unrealizing, ignoring further errors. It can screw up even for a device with no buses: if the lone dc->unrealize() fails, it still unregisters vmstate, and calls listeners' unrealize() callback. bus_set_realized() does not roll back either. Instead, it stops unrealizing. Fortunately, no unrealize method can fail, as we'll see below. To fix the design error, drop parameter @errp from all the unrealize methods. Any unrealize method that uses @errp now needs an update. This leads us to unrealize() methods that can fail. Merely passing it to another unrealize method cannot cause failure, though. Here are the ones that do other things with @errp: * virtio_serial_device_unrealize() Fails when qbus_set_hotplug_handler() fails, but still does all the other work. On failure, the device would stay realized with its resources completely gone. Oops. Can't happen, because qbus_set_hotplug_handler() can't actually fail here. Pass &error_abort to qbus_set_hotplug_handler() instead. * hw/ppc/spapr_drc.c's unrealize() Fails when object_property_del() fails, but all the other work is already done. On failure, the device would stay realized with its vmstate registration gone. Oops. Can't happen, because object_property_del() can't actually fail here. Pass &error_abort to object_property_del() instead. * spapr_phb_unrealize() Fails and bails out when remove_drcs() fails, but other work is already done. On failure, the device would stay realized with some of its resources gone. Oops. remove_drcs() fails only when chassis_from_bus()'s object_property_get_uint() fails, and it can't here. Pass &error_abort to remove_drcs() instead. Therefore, no unrealize method can fail before this patch. device_set_realized()'s recursive unrealization via bus uses object_property_set_bool(). Can't drop @errp there, so pass &error_abort. We similarly unrealize with object_property_set_bool() elsewhere, always ignoring errors. Pass &error_abort instead. Several unrealize methods no longer handle errors from other unrealize methods: virtio_9p_device_unrealize(), virtio_input_device_unrealize(), scsi_qdev_unrealize(), ... Much of the deleted error handling looks wrong anyway. One unrealize methods no longer ignore such errors: usb_ehci_pci_exit(). Several realize methods no longer ignore errors when rolling back: v9fs_device_realize_common(), pci_qdev_unrealize(), spapr_phb_realize(), usb_qdev_realize(), vfio_ccw_realize(), virtio_device_realize(). Signed-off-by: Markus Armbruster <armbru@redhat.com> Reviewed-by: Philippe Mathieu-Daudé <philmd@redhat.com> Reviewed-by: Paolo Bonzini <pbonzini@redhat.com> Message-Id: <20200505152926.18877-17-armbru@redhat.com>
2020-05-05 17:29:24 +02:00
&error_abort);
}
qdev: Unrealize must not fail Devices may have component devices and buses. Device realization may fail. Realization is recursive: a device's realize() method realizes its components, and device_set_realized() realizes its buses (which should in turn realize the devices on that bus, except bus_set_realized() doesn't implement that, yet). When realization of a component or bus fails, we need to roll back: unrealize everything we realized so far. If any of these unrealizes failed, the device would be left in an inconsistent state. Must not happen. device_set_realized() lets it happen: it ignores errors in the roll back code starting at label child_realize_fail. Since realization is recursive, unrealization must be recursive, too. But how could a partly failed unrealize be rolled back? We'd have to re-realize, which can fail. This design is fundamentally broken. device_set_realized() does not roll back at all. Instead, it keeps unrealizing, ignoring further errors. It can screw up even for a device with no buses: if the lone dc->unrealize() fails, it still unregisters vmstate, and calls listeners' unrealize() callback. bus_set_realized() does not roll back either. Instead, it stops unrealizing. Fortunately, no unrealize method can fail, as we'll see below. To fix the design error, drop parameter @errp from all the unrealize methods. Any unrealize method that uses @errp now needs an update. This leads us to unrealize() methods that can fail. Merely passing it to another unrealize method cannot cause failure, though. Here are the ones that do other things with @errp: * virtio_serial_device_unrealize() Fails when qbus_set_hotplug_handler() fails, but still does all the other work. On failure, the device would stay realized with its resources completely gone. Oops. Can't happen, because qbus_set_hotplug_handler() can't actually fail here. Pass &error_abort to qbus_set_hotplug_handler() instead. * hw/ppc/spapr_drc.c's unrealize() Fails when object_property_del() fails, but all the other work is already done. On failure, the device would stay realized with its vmstate registration gone. Oops. Can't happen, because object_property_del() can't actually fail here. Pass &error_abort to object_property_del() instead. * spapr_phb_unrealize() Fails and bails out when remove_drcs() fails, but other work is already done. On failure, the device would stay realized with some of its resources gone. Oops. remove_drcs() fails only when chassis_from_bus()'s object_property_get_uint() fails, and it can't here. Pass &error_abort to remove_drcs() instead. Therefore, no unrealize method can fail before this patch. device_set_realized()'s recursive unrealization via bus uses object_property_set_bool(). Can't drop @errp there, so pass &error_abort. We similarly unrealize with object_property_set_bool() elsewhere, always ignoring errors. Pass &error_abort instead. Several unrealize methods no longer handle errors from other unrealize methods: virtio_9p_device_unrealize(), virtio_input_device_unrealize(), scsi_qdev_unrealize(), ... Much of the deleted error handling looks wrong anyway. One unrealize methods no longer ignore such errors: usb_ehci_pci_exit(). Several realize methods no longer ignore errors when rolling back: v9fs_device_realize_common(), pci_qdev_unrealize(), spapr_phb_realize(), usb_qdev_realize(), vfio_ccw_realize(), virtio_device_realize(). Signed-off-by: Markus Armbruster <armbru@redhat.com> Reviewed-by: Philippe Mathieu-Daudé <philmd@redhat.com> Reviewed-by: Paolo Bonzini <pbonzini@redhat.com> Message-Id: <20200505152926.18877-17-armbru@redhat.com>
2020-05-05 17:29:24 +02:00
if (bc->unrealize) {
bc->unrealize(bus);
}
}
bus->realized = value;
}
static void qbus_initfn(Object *obj)
{
BusState *bus = BUS(obj);
QTAILQ_INIT(&bus->children);
object_property_add_link(obj, QDEV_HOTPLUG_HANDLER_PROPERTY,
TYPE_HOTPLUG_HANDLER,
(Object **)&bus->hotplug_handler,
object_property_allow_set_link,
qom: Drop parameter @errp of object_property_add() & friends The only way object_property_add() can fail is when a property with the same name already exists. Since our property names are all hardcoded, failure is a programming error, and the appropriate way to handle it is passing &error_abort. Same for its variants, except for object_property_add_child(), which additionally fails when the child already has a parent. Parentage is also under program control, so this is a programming error, too. We have a bit over 500 callers. Almost half of them pass &error_abort, slightly fewer ignore errors, one test case handles errors, and the remaining few callers pass them to their own callers. The previous few commits demonstrated once again that ignoring programming errors is a bad idea. Of the few ones that pass on errors, several violate the Error API. The Error ** argument must be NULL, &error_abort, &error_fatal, or a pointer to a variable containing NULL. Passing an argument of the latter kind twice without clearing it in between is wrong: if the first call sets an error, it no longer points to NULL for the second call. ich9_pm_add_properties(), sparc32_ledma_realize(), sparc32_dma_realize(), xilinx_axidma_realize(), xilinx_enet_realize() are wrong that way. When the one appropriate choice of argument is &error_abort, letting users pick the argument is a bad idea. Drop parameter @errp and assert the preconditions instead. There's one exception to "duplicate property name is a programming error": the way object_property_add() implements the magic (and undocumented) "automatic arrayification". Don't drop @errp there. Instead, rename object_property_add() to object_property_try_add(), and add the obvious wrapper object_property_add(). Signed-off-by: Markus Armbruster <armbru@redhat.com> Reviewed-by: Eric Blake <eblake@redhat.com> Reviewed-by: Paolo Bonzini <pbonzini@redhat.com> Message-Id: <20200505152926.18877-15-armbru@redhat.com> [Two semantic rebase conflicts resolved]
2020-05-05 17:29:22 +02:00
0);
object_property_add_bool(obj, "realized",
qom: Drop parameter @errp of object_property_add() & friends The only way object_property_add() can fail is when a property with the same name already exists. Since our property names are all hardcoded, failure is a programming error, and the appropriate way to handle it is passing &error_abort. Same for its variants, except for object_property_add_child(), which additionally fails when the child already has a parent. Parentage is also under program control, so this is a programming error, too. We have a bit over 500 callers. Almost half of them pass &error_abort, slightly fewer ignore errors, one test case handles errors, and the remaining few callers pass them to their own callers. The previous few commits demonstrated once again that ignoring programming errors is a bad idea. Of the few ones that pass on errors, several violate the Error API. The Error ** argument must be NULL, &error_abort, &error_fatal, or a pointer to a variable containing NULL. Passing an argument of the latter kind twice without clearing it in between is wrong: if the first call sets an error, it no longer points to NULL for the second call. ich9_pm_add_properties(), sparc32_ledma_realize(), sparc32_dma_realize(), xilinx_axidma_realize(), xilinx_enet_realize() are wrong that way. When the one appropriate choice of argument is &error_abort, letting users pick the argument is a bad idea. Drop parameter @errp and assert the preconditions instead. There's one exception to "duplicate property name is a programming error": the way object_property_add() implements the magic (and undocumented) "automatic arrayification". Don't drop @errp there. Instead, rename object_property_add() to object_property_try_add(), and add the obvious wrapper object_property_add(). Signed-off-by: Markus Armbruster <armbru@redhat.com> Reviewed-by: Eric Blake <eblake@redhat.com> Reviewed-by: Paolo Bonzini <pbonzini@redhat.com> Message-Id: <20200505152926.18877-15-armbru@redhat.com> [Two semantic rebase conflicts resolved]
2020-05-05 17:29:22 +02:00
bus_get_realized, bus_set_realized);
}
static char *default_bus_get_fw_dev_path(DeviceState *dev)
{
return g_strdup(object_get_typename(OBJECT(dev)));
}
/**
* bus_phases_reset:
* Transition reset method for buses to allow moving
* smoothly from legacy reset method to multi-phases
*/
static void bus_phases_reset(BusState *bus)
{
ResettableClass *rc = RESETTABLE_GET_CLASS(bus);
if (rc->phases.enter) {
rc->phases.enter(OBJECT(bus), RESET_TYPE_COLD);
}
if (rc->phases.hold) {
rc->phases.hold(OBJECT(bus));
}
if (rc->phases.exit) {
rc->phases.exit(OBJECT(bus));
}
}
static void bus_transitional_reset(Object *obj)
{
BusClass *bc = BUS_GET_CLASS(obj);
/*
* This will call either @bus_phases_reset (for multi-phases transitioned
* buses) or a bus's specific method for not-yet transitioned buses.
* In both case, it does not reset children.
*/
if (bc->reset) {
bc->reset(BUS(obj));
}
}
/**
* bus_get_transitional_reset:
* check if the bus's class is ready for multi-phase
*/
static ResettableTrFunction bus_get_transitional_reset(Object *obj)
{
BusClass *dc = BUS_GET_CLASS(obj);
if (dc->reset != bus_phases_reset) {
/*
* dc->reset has been overridden by a subclass,
* the bus is not ready for multi phase yet.
*/
return bus_transitional_reset;
}
return NULL;
}
static void bus_class_init(ObjectClass *class, void *data)
{
BusClass *bc = BUS_CLASS(class);
ResettableClass *rc = RESETTABLE_CLASS(class);
class->unparent = bus_unparent;
bc->get_fw_dev_path = default_bus_get_fw_dev_path;
rc->get_state = bus_get_reset_state;
rc->child_foreach = bus_reset_child_foreach;
/*
* @bus_phases_reset is put as the default reset method below, allowing
* to do the multi-phase transition from base classes to leaf classes. It
* allows a legacy-reset Bus class to extend a multi-phases-reset
* Bus class for the following reason:
* + If a base class B has been moved to multi-phase, then it does not
* override this default reset method and may have defined phase methods.
* + A child class C (extending class B) which uses
* bus_class_set_parent_reset() (or similar means) to override the
* reset method will still work as expected. @bus_phases_reset function
* will be registered as the parent reset method and effectively call
* parent reset phases.
*/
bc->reset = bus_phases_reset;
rc->get_transitional_function = bus_get_transitional_reset;
}
static void qbus_finalize(Object *obj)
{
BusState *bus = BUS(obj);
g_free(bus->name);
}
static const TypeInfo bus_info = {
.name = TYPE_BUS,
.parent = TYPE_OBJECT,
.instance_size = sizeof(BusState),
.abstract = true,
.class_size = sizeof(BusClass),
.instance_init = qbus_initfn,
.instance_finalize = qbus_finalize,
.class_init = bus_class_init,
.interfaces = (InterfaceInfo[]) {
{ TYPE_RESETTABLE_INTERFACE },
{ }
},
};
static void bus_register_types(void)
{
type_register_static(&bus_info);
}
type_init(bus_register_types)