qemu-e2k/target-i386/ops_template_mem.h

484 lines
11 KiB
C
Raw Normal View History

/*
* i386 micro operations (included several times to generate
* different operand sizes)
*
* Copyright (c) 2003 Fabrice Bellard
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*/
#ifdef MEM_WRITE
#if MEM_WRITE == 0
#if DATA_BITS == 8
#define MEM_SUFFIX b_raw
#elif DATA_BITS == 16
#define MEM_SUFFIX w_raw
#elif DATA_BITS == 32
#define MEM_SUFFIX l_raw
#elif DATA_BITS == 64
#define MEM_SUFFIX q_raw
#endif
#elif MEM_WRITE == 1
#if DATA_BITS == 8
#define MEM_SUFFIX b_kernel
#elif DATA_BITS == 16
#define MEM_SUFFIX w_kernel
#elif DATA_BITS == 32
#define MEM_SUFFIX l_kernel
#elif DATA_BITS == 64
#define MEM_SUFFIX q_kernel
#endif
#elif MEM_WRITE == 2
#if DATA_BITS == 8
#define MEM_SUFFIX b_user
#elif DATA_BITS == 16
#define MEM_SUFFIX w_user
#elif DATA_BITS == 32
#define MEM_SUFFIX l_user
#elif DATA_BITS == 64
#define MEM_SUFFIX q_user
#endif
#else
#error invalid MEM_WRITE
#endif
#else
#define MEM_SUFFIX SUFFIX
#endif
void OPPROTO glue(glue(op_rol, MEM_SUFFIX), _T0_T1_cc)(void)
{
int count;
target_long src;
if (T1 & SHIFT1_MASK) {
count = T1 & SHIFT_MASK;
src = T0;
T0 &= DATA_MASK;
T0 = (T0 << count) | (T0 >> (DATA_BITS - count));
#ifdef MEM_WRITE
glue(st, MEM_SUFFIX)(A0, T0);
#else
/* gcc 3.2 workaround. This is really a bug in gcc. */
asm volatile("" : : "r" (T0));
#endif
CC_SRC = (cc_table[CC_OP].compute_all() & ~(CC_O | CC_C)) |
(lshift(src ^ T0, 11 - (DATA_BITS - 1)) & CC_O) |
(T0 & CC_C);
CC_OP = CC_OP_EFLAGS;
}
FORCE_RET();
}
void OPPROTO glue(glue(op_ror, MEM_SUFFIX), _T0_T1_cc)(void)
{
int count;
target_long src;
if (T1 & SHIFT1_MASK) {
count = T1 & SHIFT_MASK;
src = T0;
T0 &= DATA_MASK;
T0 = (T0 >> count) | (T0 << (DATA_BITS - count));
#ifdef MEM_WRITE
glue(st, MEM_SUFFIX)(A0, T0);
#else
/* gcc 3.2 workaround. This is really a bug in gcc. */
asm volatile("" : : "r" (T0));
#endif
CC_SRC = (cc_table[CC_OP].compute_all() & ~(CC_O | CC_C)) |
(lshift(src ^ T0, 11 - (DATA_BITS - 1)) & CC_O) |
((T0 >> (DATA_BITS - 1)) & CC_C);
CC_OP = CC_OP_EFLAGS;
}
FORCE_RET();
}
void OPPROTO glue(glue(op_rol, MEM_SUFFIX), _T0_T1)(void)
{
int count;
count = T1 & SHIFT_MASK;
if (count) {
T0 &= DATA_MASK;
T0 = (T0 << count) | (T0 >> (DATA_BITS - count));
#ifdef MEM_WRITE
glue(st, MEM_SUFFIX)(A0, T0);
#endif
}
FORCE_RET();
}
void OPPROTO glue(glue(op_ror, MEM_SUFFIX), _T0_T1)(void)
{
int count;
count = T1 & SHIFT_MASK;
if (count) {
T0 &= DATA_MASK;
T0 = (T0 >> count) | (T0 << (DATA_BITS - count));
#ifdef MEM_WRITE
glue(st, MEM_SUFFIX)(A0, T0);
#endif
}
FORCE_RET();
}
void OPPROTO glue(glue(op_rcl, MEM_SUFFIX), _T0_T1_cc)(void)
{
int count, eflags;
target_ulong src;
target_long res;
count = T1 & SHIFT1_MASK;
#if DATA_BITS == 16
count = rclw_table[count];
#elif DATA_BITS == 8
count = rclb_table[count];
#endif
if (count) {
eflags = cc_table[CC_OP].compute_all();
T0 &= DATA_MASK;
src = T0;
res = (T0 << count) | ((target_ulong)(eflags & CC_C) << (count - 1));
if (count > 1)
res |= T0 >> (DATA_BITS + 1 - count);
T0 = res;
#ifdef MEM_WRITE
glue(st, MEM_SUFFIX)(A0, T0);
#endif
CC_SRC = (eflags & ~(CC_C | CC_O)) |
(lshift(src ^ T0, 11 - (DATA_BITS - 1)) & CC_O) |
((src >> (DATA_BITS - count)) & CC_C);
CC_OP = CC_OP_EFLAGS;
}
FORCE_RET();
}
void OPPROTO glue(glue(op_rcr, MEM_SUFFIX), _T0_T1_cc)(void)
{
int count, eflags;
target_ulong src;
target_long res;
count = T1 & SHIFT1_MASK;
#if DATA_BITS == 16
count = rclw_table[count];
#elif DATA_BITS == 8
count = rclb_table[count];
#endif
if (count) {
eflags = cc_table[CC_OP].compute_all();
T0 &= DATA_MASK;
src = T0;
res = (T0 >> count) | ((target_ulong)(eflags & CC_C) << (DATA_BITS - count));
if (count > 1)
res |= T0 << (DATA_BITS + 1 - count);
T0 = res;
#ifdef MEM_WRITE
glue(st, MEM_SUFFIX)(A0, T0);
#endif
CC_SRC = (eflags & ~(CC_C | CC_O)) |
(lshift(src ^ T0, 11 - (DATA_BITS - 1)) & CC_O) |
((src >> (count - 1)) & CC_C);
CC_OP = CC_OP_EFLAGS;
}
FORCE_RET();
}
void OPPROTO glue(glue(op_shl, MEM_SUFFIX), _T0_T1_cc)(void)
{
int count;
target_long src;
count = T1 & SHIFT1_MASK;
if (count) {
src = (DATA_TYPE)T0 << (count - 1);
T0 = T0 << count;
#ifdef MEM_WRITE
glue(st, MEM_SUFFIX)(A0, T0);
#endif
CC_SRC = src;
CC_DST = T0;
CC_OP = CC_OP_SHLB + SHIFT;
}
FORCE_RET();
}
void OPPROTO glue(glue(op_shr, MEM_SUFFIX), _T0_T1_cc)(void)
{
int count;
target_long src;
count = T1 & SHIFT1_MASK;
if (count) {
T0 &= DATA_MASK;
src = T0 >> (count - 1);
T0 = T0 >> count;
#ifdef MEM_WRITE
glue(st, MEM_SUFFIX)(A0, T0);
#endif
CC_SRC = src;
CC_DST = T0;
CC_OP = CC_OP_SARB + SHIFT;
}
FORCE_RET();
}
void OPPROTO glue(glue(op_sar, MEM_SUFFIX), _T0_T1_cc)(void)
{
int count;
target_long src;
count = T1 & SHIFT1_MASK;
if (count) {
src = (DATA_STYPE)T0;
T0 = src >> count;
src = src >> (count - 1);
#ifdef MEM_WRITE
glue(st, MEM_SUFFIX)(A0, T0);
#endif
CC_SRC = src;
CC_DST = T0;
CC_OP = CC_OP_SARB + SHIFT;
}
FORCE_RET();
}
#if DATA_BITS == 16
/* XXX: overflow flag might be incorrect in some cases in shldw */
void OPPROTO glue(glue(op_shld, MEM_SUFFIX), _T0_T1_im_cc)(void)
{
int count;
unsigned int res, tmp;
count = PARAM1;
T1 &= 0xffff;
res = T1 | (T0 << 16);
tmp = res >> (32 - count);
res <<= count;
if (count > 16)
res |= T1 << (count - 16);
T0 = res >> 16;
#ifdef MEM_WRITE
glue(st, MEM_SUFFIX)(A0, T0);
#endif
CC_SRC = tmp;
CC_DST = T0;
}
void OPPROTO glue(glue(op_shld, MEM_SUFFIX), _T0_T1_ECX_cc)(void)
{
int count;
unsigned int res, tmp;
count = ECX & 0x1f;
if (count) {
T1 &= 0xffff;
res = T1 | (T0 << 16);
tmp = res >> (32 - count);
res <<= count;
if (count > 16)
res |= T1 << (count - 16);
T0 = res >> 16;
#ifdef MEM_WRITE
glue(st, MEM_SUFFIX)(A0, T0);
#endif
CC_SRC = tmp;
CC_DST = T0;
CC_OP = CC_OP_SARB + SHIFT;
}
FORCE_RET();
}
void OPPROTO glue(glue(op_shrd, MEM_SUFFIX), _T0_T1_im_cc)(void)
{
int count;
unsigned int res, tmp;
count = PARAM1;
res = (T0 & 0xffff) | (T1 << 16);
tmp = res >> (count - 1);
res >>= count;
if (count > 16)
res |= T1 << (32 - count);
T0 = res;
#ifdef MEM_WRITE
glue(st, MEM_SUFFIX)(A0, T0);
#endif
CC_SRC = tmp;
CC_DST = T0;
}
void OPPROTO glue(glue(op_shrd, MEM_SUFFIX), _T0_T1_ECX_cc)(void)
{
int count;
unsigned int res, tmp;
count = ECX & 0x1f;
if (count) {
res = (T0 & 0xffff) | (T1 << 16);
tmp = res >> (count - 1);
res >>= count;
if (count > 16)
res |= T1 << (32 - count);
T0 = res;
#ifdef MEM_WRITE
glue(st, MEM_SUFFIX)(A0, T0);
#endif
CC_SRC = tmp;
CC_DST = T0;
CC_OP = CC_OP_SARB + SHIFT;
}
FORCE_RET();
}
#endif
#if DATA_BITS >= 32
void OPPROTO glue(glue(op_shld, MEM_SUFFIX), _T0_T1_im_cc)(void)
{
int count;
target_long tmp;
count = PARAM1;
T0 &= DATA_MASK;
T1 &= DATA_MASK;
tmp = T0 << (count - 1);
T0 = (T0 << count) | (T1 >> (DATA_BITS - count));
#ifdef MEM_WRITE
glue(st, MEM_SUFFIX)(A0, T0);
#endif
CC_SRC = tmp;
CC_DST = T0;
}
void OPPROTO glue(glue(op_shld, MEM_SUFFIX), _T0_T1_ECX_cc)(void)
{
int count;
target_long tmp;
count = ECX & SHIFT1_MASK;
if (count) {
T0 &= DATA_MASK;
T1 &= DATA_MASK;
tmp = T0 << (count - 1);
T0 = (T0 << count) | (T1 >> (DATA_BITS - count));
#ifdef MEM_WRITE
glue(st, MEM_SUFFIX)(A0, T0);
#endif
CC_SRC = tmp;
CC_DST = T0;
CC_OP = CC_OP_SHLB + SHIFT;
}
FORCE_RET();
}
void OPPROTO glue(glue(op_shrd, MEM_SUFFIX), _T0_T1_im_cc)(void)
{
int count;
target_long tmp;
count = PARAM1;
T0 &= DATA_MASK;
T1 &= DATA_MASK;
tmp = T0 >> (count - 1);
T0 = (T0 >> count) | (T1 << (DATA_BITS - count));
#ifdef MEM_WRITE
glue(st, MEM_SUFFIX)(A0, T0);
#endif
CC_SRC = tmp;
CC_DST = T0;
}
void OPPROTO glue(glue(op_shrd, MEM_SUFFIX), _T0_T1_ECX_cc)(void)
{
int count;
target_long tmp;
count = ECX & SHIFT1_MASK;
if (count) {
T0 &= DATA_MASK;
T1 &= DATA_MASK;
tmp = T0 >> (count - 1);
T0 = (T0 >> count) | (T1 << (DATA_BITS - count));
#ifdef MEM_WRITE
glue(st, MEM_SUFFIX)(A0, T0);
#endif
CC_SRC = tmp;
CC_DST = T0;
CC_OP = CC_OP_SARB + SHIFT;
}
FORCE_RET();
}
#endif
/* carry add/sub (we only need to set CC_OP differently) */
void OPPROTO glue(glue(op_adc, MEM_SUFFIX), _T0_T1_cc)(void)
{
int cf;
cf = cc_table[CC_OP].compute_c();
T0 = T0 + T1 + cf;
#ifdef MEM_WRITE
glue(st, MEM_SUFFIX)(A0, T0);
#endif
CC_SRC = T1;
CC_DST = T0;
CC_OP = CC_OP_ADDB + SHIFT + cf * 4;
}
void OPPROTO glue(glue(op_sbb, MEM_SUFFIX), _T0_T1_cc)(void)
{
int cf;
cf = cc_table[CC_OP].compute_c();
T0 = T0 - T1 - cf;
#ifdef MEM_WRITE
glue(st, MEM_SUFFIX)(A0, T0);
#endif
CC_SRC = T1;
CC_DST = T0;
CC_OP = CC_OP_SUBB + SHIFT + cf * 4;
}
void OPPROTO glue(glue(op_cmpxchg, MEM_SUFFIX), _T0_T1_EAX_cc)(void)
{
target_ulong src, dst;
src = T0;
dst = EAX - T0;
if ((DATA_TYPE)dst == 0) {
T0 = T1;
#ifdef MEM_WRITE
glue(st, MEM_SUFFIX)(A0, T0);
#endif
} else {
EAX = (EAX & ~DATA_MASK) | (T0 & DATA_MASK);
}
CC_SRC = src;
CC_DST = dst;
FORCE_RET();
}
#undef MEM_SUFFIX
#undef MEM_WRITE